TAIWANESE JOURNAL OF MATHEMATICS
Vol. 12, No. 1, pp. 245-253, February 2008
This paper is available online at http://www.tjm.nsysu.edu.tw/

POLYNOMIALS OVER FINITE FIELDS WITH A GIVEN VALUE SET

Jiangmin Pan* and Kar-Ping Shum

Abstract

We study polynomials over finite fields with a given value set. By constructing relations among the coefficients of Lagrange Interpolation Formula of these polynomials, we obtain its new kind of expression. Using this we find some characterizations for the set and the number of such polynomials.

1. Introduction

Definition 1.1. Let F_{q} be the finite field of $q=p^{n}$ elements, where p is a prime and n is a positive integer. Let $f \in F_{q}[x]$, the value set V_{f} of polynomial f is defined to be the set $\left\{f(a): a \in F_{q}\right\}$.

It is well known that every function (map) $f: F_{q} \rightarrow F_{q}$ can be uniquely expressed by a polynomial with degree $\leq q-1$ (since f and g induce the same function on F_{q} if and only if $\left.f(x) \equiv g(x)\left(\bmod x^{q}-x\right)\right)$. In fact, using well known Lagrange Interpolation Formula, see [5, p. 348], f can be expressed as follows:

$$
\begin{equation*}
f(x)=\sum_{a \in F_{q}} f(a)\left(1-(x-a)^{q-1}\right) \tag{1}
\end{equation*}
$$

Henceforth, it is enough to restrict our attention on polynomials with degree $\leq q-1$.
Throughout the paper, we adopt following definitions and notations.
Definition 1.2. For $0 \leq d \leq q-1,1 \leq k \leq q$, we define $M_{q}(k), N_{q}(k)$, $M_{q}(d, k), N_{q}(d, k)$ as follows:

$$
M_{q}(k)=\left\{f \in F_{q}[x]:\left|V_{f}\right|=k\right\}
$$

Received July 13, 2005, accepted July 5, 2006.
Communicated by Shun-Jen Cheng.
2000 Mathematics Subject Classification: 13M10, 12 Y 05.
Key words and phrases: Value set, Minimal value set polynomial, Trace, finite field.
*Supported by the NNSF of China.

$$
M_{q}(d, k)=\left\{f \in F_{q}[x]: \operatorname{deg}(f)=d \text { and }\left|V_{f}\right|=k\right\}
$$

and

$$
N_{q}(k)=\left|M_{q}(k)\right|, \quad N_{q}(d, k)=\left|M_{q}(d, k)\right| .
$$

Definition 1.3. Let $M=\left\{a_{1}, \cdots, a_{k}\right\}$ be a subset of F_{q}. We define $M_{q}(d, M)=M_{q}\left(d,\left\{a_{1}, \cdots, a_{k}\right\}\right)$ as follows:

$$
M_{q}(d, M)=\left\{f \in F_{q}[x]: \operatorname{deg}(f)=d \text { and } V_{f}=M\right\}
$$

and $N_{q}(d, M)=\left|M_{q}(d, M)\right|$.

Proposition 1.4.

$$
\begin{aligned}
& M_{q}(k)=\bigcup_{d=0}^{q-1} M_{q}(d, k), M_{q}(d, k)=\bigcup_{M} M_{q}(d, M), \\
& N_{q}(k)=\sum_{d=0}^{q-1} N_{q}(d, k), N_{q}(d, k)=\sum_{M} N_{q}(d, M),
\end{aligned}
$$

where M extends over all k-elements subsets of F_{q}.
$N_{q}(d, 2)=N_{q}(d, M)\binom{q}{2}$ for each 2-elements subset M of F_{q}.
Proof. Note that $\varphi: f(x) \rightarrow c_{1}+\left(c_{2}-c_{1}\right) f(x)$ is an one-to-one correspondence between $M_{q}(d,\{0,1\})$ and $M_{q}\left(d,\left\{c_{1}, c_{2}\right\}\right)$, the second statement follows. The first statement is trivial.

Among the notions defined above, the number $N_{q}(k)$ is not difficult to determine (see [2, p. 173]). However, the others, in general, are difficult to characterise even in a simple case: F_{q} is prime and $k=2$ or 3 (see [1], [4]). Recently, [3] studied the number of polynomials of a given degree over a finite field with value sets of a given cardinality. By observing that the coefficient c_{q-1} of x^{q-1} (we use c_{k} to denote the coefficient of x^{k}) of $f(x)$ in (1) $=-\sum_{a \in F_{q}} f(a)$, the author related these numbers to the solutions of a class of equation over F_{q}, and, for prime fields, obtained a explicit formula for $N_{p}(p-1, M)$. In the present paper, we study $M_{q}(d, M)$ and $N_{q}(d, M)$ without the restriction $d=q-1$. In section 2 , we give a new expression of polynomials over finite field with a given value set by analyzing the relations among $c_{1}, c_{2}, \cdots, c_{q-1}$. In section 3 , we obtain a specific characterization of polynomials over $F_{2^{n}}$ with value set of cardinality 2 . Precisely, we give a formula to count the number $N_{2^{n}}(d, 2)$ and determine the explicit form of polynomials in $M_{2^{n}}(d, 2)$ for every d. In section 4, The number of minimal value set polynomials with cardinality p^{t} is determined. In final section, we obtain a formula to count the number $N_{q}(q-1,3)$.
2. Expressions of Polynomials over F_{q} with Given Value Set

Let $q=p^{n}, s=p^{t}$, where $t \leq n$ is a positive integer. Let $T=\{0,1, \cdots, q-1\}$. We define a relation " \sim " over T as follows:
$0 \sim 0$,
$i \sim j$ iff $i \equiv s^{r} j(\bmod q-1)$ for some integer $r \geq 0$ when $1 \leq i, j \leq q-1$.
It is not difficult to prove that the relation " \sim " is an equivalence relation over T, so it can determine a partition of T. Write
$[i]$: the equivalent class of number i.
$n(i)$: the cardinality of the set $[i]$.
$l(i)$: the largest number of the set $[i]$.
$\bar{k}:$ the smallest positive integer of $k \bmod (q-1)$.
R : the representative set consisting of the largest integer in each equivalent class of T and $R^{*}=R \backslash\{0\}$.

The next proposition is obvious.

Proposition 2.1.

(1) $[i]=\left\{i, \overline{s i}, \cdots, \overline{s^{n(i)-1} i}\right\}$ for $1 \leq i \leq q-1$.
(2) $n(i)=\min \left\{j>0: s^{j} i \equiv i(\bmod q-1)\right\}$. Particularly, $n(0)=n(q-1)=1$.

As a direct consequence of Lemma 2.1, it follows from (1) that

$$
\begin{equation*}
c_{k}=(-1)^{q} \sum_{a \in F_{q}} f(a) a^{q-k-1} \quad(k=1,2, \cdots, q-1) \tag{2}
\end{equation*}
$$

Theorem 2.2. Let $f \in F_{q}[x]$. If $a^{s}=a$ for each $a \in V_{f}$, then f can be uniquely expressed in the following form:

$$
\begin{equation*}
f(x)=c_{0}+\sum_{i \in R^{*}} \sum_{j=0}^{n(i)-1} c_{i}^{s^{j}} x^{\overline{s^{j}}} \tag{3}
\end{equation*}
$$

Where c_{i} satisfying $c_{i}^{n(i)}=c_{i}$ for each $i \in R^{*}$.
Proof. To prove the theorem, by Proposition 2.1, it suffices to prove

$$
c_{\overline{i s^{j}}}=c_{i}^{s^{j}} \quad \text { for } i=1,2, \cdots, q-1 .
$$

Note that if k, l are positive integers, then x^{k} and x^{l} express the same function over F_{q} if and only if $k \equiv l(\bmod q-1)$. So, for $1 \leq i \leq q-1, a^{(q-i-1) s^{j}}=a^{q-\overline{i s^{j}}-1}$ for each $a \in F_{q}$. Then (2) gives

$$
\begin{aligned}
c_{i}^{s^{j}} & =(-1)^{q s^{j}} \sum_{a \in F_{q}} f(a)^{s^{j}} a^{(q-i-1) s^{j}} \\
& =(-1)^{q} \sum_{a \in F_{q}} f(a) a^{q-\overline{i s^{j}}}-1 \\
& =c_{\overline{i s j}}
\end{aligned}
$$

The uniqueness of the expression is obvious.
Remark 2.3. In a special case $t \mid n$, i.e., V_{f} is in the subfield F_{s} of $F_{q}, f(x)$ can be expressed in form (3) with $c_{i} \in F_{p^{n(i)}}$ for all $i \in R^{*}$.

Corollary 2.4. Let M be a subset of F_{q}. If $a^{s}=a$ for each $a \in M$, then $N_{q}(d, M)=0$ if $d \notin R^{*}$.

3. Characterization of Polynomials over $F_{2^{n}}$ with Value Set of Cardinality 2

In this section, we always suppose that $q=2^{n}$.
The following Theorem 3.1 and Corollary 3.2 give a specific characterization for polynomials with a value set of cardinality 2 over F_{q}.

Theorem 3.1.

$$
\begin{align*}
M_{q}(2) & =\left\{a+b \sum_{i \in R^{*}} \sum_{j=0}^{n(i)-1} c_{i}^{2^{j}} x^{\overline{i 2^{j}}}\right. \tag{4}\\
& \left.: a \in F_{q}, b \in F_{q}^{*}, c_{i} \in F_{2^{n(i)}} \text { not all zero }\right\}
\end{align*}
$$

Proof. By Proposition 1.4, each polynomial $f(x) \in M_{q}(2)$ has the form:

$$
f(x)=a+b g(x)
$$

where $g(x) \in F_{q}[x]$ with the value set $V_{g}=\{0,1\}$. Theorem 2.3 now implies that the set in left-hand side of (4) is contained in the set in right-hand side.

Conversely, for every $i \in R^{k}$, since $c_{i}^{2^{n(i)}}=c_{i}$ and $\overline{i 2^{n(i)}}=i$, one can check that $\sum_{i \in R^{*}} \sum_{j=0}^{n(i)-1} c_{i}^{2^{j}} x^{\overline{2^{j}}}$ (denoted by $h(x)$) satisfies

$$
h(x)^{2} \equiv h(x)\left(\bmod x^{q}-x\right)
$$

So $V_{h} \subseteq\{0,1\}$. Our proof is then finished by noting that these polynomials have degrees $\in\{1,2, \cdots, q-1\}$.

Corollary 3.2. Write $R^{*}=\left\{l\left(i_{1}\right), l\left(i_{2}\right), \cdots, l\left(i_{r}\right)\right\}$ with $l\left(i_{j}\right)$ ordered such that $l\left(i_{1}\right)<l\left(i_{2}\right)<\cdots<l\left(i_{r}\right)$, where $r=\left|R^{*}\right|$. Then

$$
N_{q}(d, 2)= \begin{cases}2^{1+\sum_{j=1}^{k-1} n\left(i_{j}\right)}\left(2^{n\left(i_{k}\right)}-1\right)\binom{q}{2} & \text { when } d=l\left(i_{k}\right) \\ 0 & \text { other case }\end{cases}
$$

The "even" property of degrees of polynomials in $M_{q}(2)$ is revealed as follows.
Theorem 3.3. Let $f \in F_{q}[x]$ and $\left|V_{f}\right|=2$. Then $\operatorname{deg}(f)$ is always an even integer $\geq 2^{n-1}$ except $\operatorname{deg}(f)=q-1$.

Proof. The inequality is trivial. If $\operatorname{deg}(f) \neq q-1$, by Corollary 2.4, it is suffices to prove that $l(i)$ are even for all $i \neq q-1$, equivalently, following claim:

Claim: If $\overline{2^{r+1} i}$ is odd, then $\overline{2^{r} i}>\overline{2^{r+1} i}$.
Suppose $\overline{2^{r+1} i}=2 k+1<\underline{q-1}$, then $\overline{2^{r} i}>2^{n-1}$. Otherwise, $\overline{2^{r+1} i}=2 \overline{2^{r} i}$ is even, a contradiction. So $\overline{2^{r} i}-\overline{2^{r+1} i}=\overline{2^{r} i}-\left(2 \overline{2^{r} i}-(q-1)\right)=q-1-\overline{2^{r} i}>0$.

Corollary 3.4. $M_{q}\left(2^{n-1}, 2\right)=\left\{a+b \operatorname{Tr}_{F_{q} / F_{2}}(c x): a \in F_{q}, b, c \in F_{q}^{*}\right\}$, and $N_{q}\left(2^{n-1}, 2\right)=\left(2^{n+1}-2\right)\binom{q}{2}$.

Proof. It is easy to see that $l(1)=2^{n-1}, n(1)=n, l(i)>l(1)$ for $1<i \leq q-1$ and each polynomial $f \in M_{q}\left(2^{n-1}, 2\right)$ can be expressed as follows:

$$
f(x)=a+b\left(c x+c^{2} x^{2}+\cdots+c^{2^{n-1}} x^{2^{n-1}}\right)=a+b \operatorname{Tr}_{F_{q} / F_{2}}(c x)
$$

where $a \in F_{q}, b, c \in F_{q}^{*}$. The second result is then obvious.
Corollary 3.5. $\quad N_{q}(q-1,2)=2^{q-1}\binom{q}{2}$.
Proof. For each polynomial $f \in \bigcup_{d<q-1} M_{q}(d,\{0,1\})$, by Theorem 3.1, $x^{q-1}+f(x) \in M_{q}(q-1,\{0,1\})$, and each polynomial in $M_{q}(q-1,\{0,1\})$ can be obtained in this way, so $N_{q}(q-1,\{0,1\})=\sum_{d<q-1} N_{q}(d,\{0,1\})$. Therefore, $N_{q}(q-1,2)=\sum_{d<q-1} N_{q}(d, 2)$. The result now follows by $N_{q}(2)=2^{q}\binom{q}{2}$.

Corollary 3.6. If $q-1$ is a (Mersenne) prime, with notations as in Theorem 3.2, we have

$$
M_{q}(2)=\left\{a+b\left(c_{q-1} x^{q-1}+\operatorname{Tr}_{F_{q} / F_{2}}\left(c_{i_{1}} x^{i_{1}}+c_{i_{2}} x^{i_{2}}+\cdots+c_{i_{r-1}} x^{i_{r-1}}\right)\right)\right\}
$$

where $a \in F_{q}, b \in F_{q}^{*}, c_{i_{1}}, \cdots, c_{i_{r-1}} \in F_{q}, c_{q-1} \in F_{2}$ and c_{i} not all zero.
Proof. First, $n(q-1)=1$. For $1 \leq i \leq q-2$, we have $n(i)=n$, the result now follows by Theorem 3.1 and the additivity of traces.

4. Minimal Value Set Polynomials with Given Cardinality over Finite Fields

If $f \in F_{q}[x]$ has degree d, since every polynomial cannot have zeroes more than its degree in any field, it is easy to see that

$$
\begin{equation*}
\left\lfloor\frac{q-1}{d}\right\rfloor+1 \leq\left|V_{f}\right| \leq q \tag{5}
\end{equation*}
$$

(We use $\lfloor k\rfloor$ to denote the integer part of k). Polynomials achieving the lower bound are said to be minimal value set polynomials, and polynomials achieving the upper bound q (i.e., $V_{f}=F_{q}$) are known as permutation polynomials (see [5, Chapter 7]).

Let $q=p^{n}, s=p^{t}$, where t is a positive divisor of n. Set $\lambda=\left\lfloor\frac{q-1}{s-1}\right\rfloor$. Then it is easy to see that $f(x) \in M_{q}(s)$ is a minimal value set polynomial if and only if $p^{n-t} \leq \operatorname{deg}(f) \leq \lambda$.

The following theorem give the expression of minimal value set polynomials with cardinality s over F_{q}.

Theorem 4.2. Set $S=\left\{p^{n-t}, p^{n-t}+1, \cdots, \lambda\right\}$. Then the set of all minimal value set polynomials with the value set F_{s} is as follows:

$$
\left\{c_{0}+\sum_{i \in R^{*} \cap S} \sum_{j=0}^{n(i)-1} c_{i}^{s^{j}} x^{\overline{s^{j}}}: c_{0} \in F_{s}, c_{i} \in F_{s^{n(i)}} \text { not all zero }\right\}
$$

Proof. Similar to the proof of Theorem 3.1.
Corollary 4.2. Write $R^{*} \cap S=\left\{l\left(i_{1}\right), l\left(i_{2}\right), \cdots, l\left(i_{m}\right)\right\}$ with $l\left(i_{1}\right)<l\left(i_{2}\right)<$ $\cdots<l\left(i_{m}\right)$. Then for $p^{n-t} \leq d \leq \lambda$, we have

$$
N_{q}\left(d, F_{s}\right)= \begin{cases}s^{1+\sum_{j=1}^{k-1} n\left(i_{j}\right)}\left(s^{n\left(i_{k}\right)}-1\right) & \text { when } d=l\left(i_{k}\right) \\ 0 & \text { other case }\end{cases}
$$

Example Let $q=5^{3}$. Determine all minimal value set polynomials with the value set F_{5} over F_{q}.

First, it is easy to compute that $S=\{25,26,27,28,29,30,31\}, R^{*} \cap S=$ $\{25,30,31\}, n(25)=n(30)=3$ and $n(31)=1$. Then Theorem 4.1 and Corollary 4.2 shows that the set of all minimal value set polynomials with the value set F_{5} is $M_{q}\left(25, F_{5}\right) \cup M_{q}\left(30, F_{5}\right) \cup M_{q}\left(31, F_{5}\right)$ and

$$
\begin{aligned}
M_{q}\left(25, F_{5}\right)= & \left\{c_{0}+\operatorname{Tr}_{F_{q} / F_{5}}\left(c_{1} x\right): c_{0} \in F_{5}, c_{1} \in F_{q}^{*}\right\}, N_{q}\left(25, F_{5}\right)=620 . \\
M_{q}\left(30, F_{5}\right)= & \left\{c_{0}+\operatorname{Tr}_{F_{q} / F_{5}}\left(c_{1} x+c_{2} x^{6}\right)\right. \\
& \left.: c_{0} \in F_{5}, c_{1} \in F_{q}, c_{2} \in F_{q}^{*}\right\}, N_{q}\left(30, F_{5}\right)=77500 . \\
M_{q}\left(31, F_{5}\right)= & \left\{c_{0}+\operatorname{Tr}_{F_{q} / F_{5}}\left(c_{1} x+c_{2} x^{6}\right)+c_{3} x^{31}\right) \\
& \left.: c_{0} \in F_{5}, c_{1}, c_{2} \in F_{q}, c_{3} \in F_{5}^{*}\right\}, N_{q}\left(31, F_{5}\right)=312500 .
\end{aligned}
$$

Remark 4.3. Informally speaking, minimal value set polynomials over prime fields (i.e., $q=p$) are few (see [2], [4], [6]). However in case $q=p^{n}>p$, minimal value set polynomials over F_{q} are rich.

5. Formula for $N_{q}(q-1,3)$

Definition 5.1. Let $f \in F_{q}[x]$ and $V_{f}=\left\{v_{1}, v_{2}, v_{3}\right\}$. Set $m_{i}=\left|f^{-1}\left(v_{i}\right)\right|=$ $\left|\left\{a \in F_{q}: f(a)=v_{i}\right\}\right|$ for $i=1,2,3$. We call $M_{f}=\left(m_{1}, m_{2}, m_{3}\right)$ the multiplicity vector of polynomial f.

Definition 5.2. Let $S=\left(m_{1}, m_{2}, m_{3}\right)$ be the multiplicity vector of a polynomial in $F_{q}[x]$. We define $N_{q}(d, S)$ as follows:

$$
N_{q}(d, S)=\mid\left\{f \in F_{q}[x]: \operatorname{deg}(f)=d \text { and } M_{f}=S\right\} \mid
$$

Note that $m_{1}+m_{2}+m_{3}=q$ and $N_{q}(d, 3)=\sum_{S} N_{q}(d, S)$, where the summation extends over all possible multiplicity vector S.

Theorem 5.3. Let $q \geq 3$ and $S=\left(m_{1}, m_{2}, m_{3}\right)$ as in the above. Set $N=\frac{q!q(q-1)(q-3)}{m_{1}!m_{2}!m_{3}!}$. We have
(1) If there exists m_{i} such that $p \mid m_{i}$, then $N_{q}(q-1, S)=0$.
(2) If $p \nmid m_{i}$ for $i=1,2,3$, then

$$
N_{q}(q-1, S)= \begin{cases}N & m_{1}, m_{2}, m_{3} \text { are different } \\ \frac{1}{6} N & m_{1}=m_{2}=m_{3} \\ \frac{1}{2} N & \text { other case }\end{cases}
$$

Proof. Suppose $f \in M_{q}(3)$ such that $M_{f}=\left(m_{1}, m_{2}, m_{3}\right)$ and $V_{f}=$ $\left\{v_{1}, v_{2}, v_{3}\right\}$.

By (2), the coefficient of x^{q-1} in $f(x)$ is $c_{q-1}=-\sum_{i=1}^{3} m_{i} v_{i}$. So $f \in M_{q}(q-$ $1, S)$ if and only if $m_{1} v_{1}+m_{2} v_{2}+m_{3} v_{3} \neq 0$.

Consider the equation

$$
\begin{equation*}
m_{1} x_{1}+m_{2} x_{2}+m_{3} x_{3}=0 \tag{6}
\end{equation*}
$$

over F_{q} with restriction $x_{i} \neq x_{j}$ if $i \neq j$.

Case 1. If there exists one m_{i}, for example m_{1}, such that $p \mid m_{1}$.
Since $m_{1}+m_{2}+m_{3}=q$, the equation (6) shows $p \mid m_{2}$ and $x_{2} \neq x_{3}$, in turn, $p \mid m_{3}$. Therefore, $c_{q-1}=0$. This proves (1) in the theorem.

Case 2. If $p \nmid m_{i}$ for $i=1,2,3$.
For any given $x_{2}, x_{3} \in F_{q}$ with $x_{2} \neq x_{3}$, there exists an unique $x_{1} \in F_{q}$ satisfying (6) and x_{1} not equals x_{2} or x_{3}, so the number of solutions in F_{q} of the equation (6) is $q(q-1)$. Our proof is then finished by Theorem 2.2 in [3].

Acknowledgment

The authors are grateful to the referee for the helpful suggestions.

References

1. A. Biro, On polynomials over prime fields taking only two values on the multiplicative group, Finite Fields Appl. 6 (2000), 302-308.
2. L. Carlitz, D. Jewis, W. H. Mills and E. G. Straus, Polynomials over finite fields with minimal value sets, Mathematika, 8 (1961), 121-130.
3. P. Das, The number of polynomials of a finite field with value sets of a given cardinality, Finite fields Appl., 9 (2003), 168-174.
4. J. Gomez-Calderon, Polynomials with small value set over finite fields, J. Number Theory, 28 (1988), 167-188.
5. R. Lidl and H. Niederreiter, Finite fields, Encyclopedia of Mathematics and its Applications, Vol. 20, Addision-Wesley, Reading, MA, 1983.
6. W. H. Mills, Polynomials with minimal value sets, Amer. Math. Soc., 4 (1963), 225-241.
[^0]
[^0]: Jiangmin Pan
 Department of Mathematics,
 Yunnan University,
 Kunming 650091,
 P. R. China

 E-mail: jmpan@ynu.edu.cn
 Kar-ping Shum
 Department of Mathematics,
 The Chinese University of Hong Kong,
 Hong Kong
 E-mail: kpshum@math.cnhk.edu.hk

