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POLYNOMIALS OVER FINITE FIELDS WITH A GIVEN VALUE SET

Jiangmin Pan* and Kar-Ping Shum

Abstract. We study polynomials over finite fields with a given value set.
By constructing relations among the coefficients of Lagrange Interpolation
Formula of these polynomials, we obtain its new kind of expression. Using this
we find some characterizations for the set and the number of such polynomials.

1. INTRODUCTION

Definition 1.1. Let Fq be the finite field of q = pn elements, where p is a
prime and n is a positive integer. Let f ∈ Fq[x], the value set Vf of polynomial f
is defined to be the set {f(a) : a ∈ Fq}.

It is well known that every function (map) f : Fq → Fq can be uniquely
expressed by a polynomial with degree ≤ q − 1 (since f and g induce the same
function on Fq if and only if f(x) ≡ g(x)(mod xq−x)). In fact, using well known
Lagrange Interpolation Formula, see [5, p. 348], f can be expressed as follows:

(1) f(x) =
∑
a∈Fq

f(a)(1− (x − a)q−1)

Henceforth, it is enough to restrict our attention on polynomials with degree ≤ q−1.
Throughout the paper, we adopt following definitions and notations.

Definition 1.2. For 0 ≤ d ≤ q − 1, 1 ≤ k ≤ q, we define Mq(k), Nq(k),
Mq(d, k), Nq(d, k) as follows:

Mq(k) = {f ∈ Fq[x] : |Vf | = k}
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Mq(d, k) = {f ∈ Fq[x] : deg(f) = d and |Vf | = k}
and

Nq(k) = |Mq(k)|, Nq(d, k) = |Mq(d, k)|.
Definition 1.3. Let M = {a1, · · · , ak} be a subset of Fq. We define

Mq(d, M) = Mq(d, {a1, · · · , ak}) as follows:

Mq(d, M) = {f ∈ Fq[x] : deg(f) = d and Vf = M}
and Nq(d, M) = |Mq(d, M)|.

Proposition 1.4.

Mq(k) =
q−1⋃
d=0

Mq(d, k), Mq(d, k) =
⋃
M

Mq(d, M),

Nq(k) =
q−1∑
d=0

Nq(d, k), Nq(d, k) =
∑
M

Nq(d, M),

where M extends over all k-elements subsets of Fq.

Nq(d, 2) = Nq(d, M)
(
q
2

)
for each 2-elements subset M of Fq.

Proof. Note that ϕ : f(x) → c1+(c2−c1)f(x) is an one-to-one correspondence
between Mq(d, {0, 1}) and Mq(d, {c1, c2}), the second statement follows. The first
statement is trivial.

Among the notions defined above, the number Nq(k) is not difficult to determine
(see [2, p. 173]). However, the others, in general, are difficult to characterise even
in a simple case: Fq is prime and k = 2 or 3 (see [1], [4]). Recently, [3] studied the
number of polynomials of a given degree over a finite field with value sets of a given
cardinality. By observing that the coefficient cq−1 of xq−1 (we use ck to denote the
coefficient of xk) of f(x) in (1) = −∑

a∈Fq
f(a), the author related these numbers

to the solutions of a class of equation over Fq, and, for prime fields, obtained
a explicit formula for Np(p − 1, M). In the present paper, we study Mq(d, M)
and Nq(d, M) without the restriction d = q − 1. In section 2, we give a new
expression of polynomials over finite field with a given value set by analyzing the
relations among c1, c2, · · · , cq−1. In section 3, we obtain a specific characterization
of polynomials over F2n with value set of cardinality 2. Precisely, we give a formula
to count the number N2n(d, 2) and determine the explicit form of polynomials in
M2n(d, 2) for every d. In section 4, The number of minimal value set polynomials
with cardinality pt is determined. In final section, we obtain a formula to count the
number Nq(q − 1, 3).
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2. EXPRESSIONS OF POLYNOMIALS OVER Fq WITH GIVEN VALUE SET

Let q = pn, s = pt, where t ≤ n is a positive integer. Let T = {0, 1, · · · , q−1}.
We define a relation “∼” over T as follows:

0 ∼ 0,
i ∼ j iff i ≡ srj(mod q − 1) for some integer r ≥ 0 when 1 ≤ i, j ≤ q − 1.

It is not difficult to prove that the relation “∼” is an equivalence relation over
T , so it can determine a partition of T . Write

[i] : the equivalent class of number i.

n(i) : the cardinality of the set [i].

l(i) : the largest number of the set [i].

k̄ : the smallest positive integer of k mod( q − 1).

R : the representative set consisting of the largest integer in each equivalent
class of T and R∗ = R\{0}.

The next proposition is obvious.

Proposition 2.1.

(1) [i] = {i, si, · · · , sn(i)−1i} for 1 ≤ i ≤ q − 1.
(2) n(i) = min{j > 0 : sj i ≡ i(mod q−1)}. Particularly, n(0) = n(q−1) = 1.

As a direct consequence of Lemma 2.1, it follows from (1) that

(2) ck = (−1)q
∑
a∈Fq

f(a)aq−k−1 (k = 1, 2, · · · , q − 1)

Theorem 2.2. Let f ∈ Fq[x]. If as = a for each a ∈ Vf , then f can be
uniquely expressed in the following form:

(3) f(x) = c0 +
∑
i∈R∗

n(i)−1∑
j=0

csj

i xisj

Where ci satisfying c
n(i)
i = ci for each i ∈ R∗.

Proof. To prove the theorem, by Proposition 2.1, it suffices to prove

c
isj = csj

i for i = 1, 2, · · · , q − 1.
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Note that if k, l are positive integers, then xk and xl express the same function over
Fq if and only if k ≡ l(mod q − 1). So, for 1 ≤ i ≤ q − 1, a(q−i−1)sj

= aq−isj−1

for each a ∈ Fq. Then (2) gives

csj

i = (−1)qsj ∑
a∈Fq

f(a)sj
a(q−i−1)sj

= (−1)q
∑
a∈Fq

f(a)aq−isj−1

= c
isj

The uniqueness of the expression is obvious.

Remark 2.3. In a special case t | n, i.e., Vf is in the subfield Fs of Fq, f(x)
can be expressed in form (3) with ci ∈ Fpn(i) for all i ∈ R∗.

Corollary 2.4. Let M be a subset of Fq. If as = a for each a ∈ M , then
Nq(d, M) = 0 if d �∈ R∗.

3. CHARACTERIZATION OF POLYNOMIALS OVER F2n

WITH VALUE SET OF CARDINALITY 2

In this section, we always suppose that q = 2n.
The following Theorem 3.1 and Corollary 3.2 give a specific characterization

for polynomials with a value set of cardinality 2 over Fq.

Theorem 3.1.

(4)
Mq(2) =

{
a + b

∑
i∈R∗

n(i)−1∑
j=0

c2j

i xi2j

: a ∈ Fq, b ∈ F ∗
q , ci ∈ F2n(i) not all zero

}

Proof. By Proposition 1.4, each polynomial f(x) ∈ Mq(2) has the form:

f(x) = a + bg(x)

where g(x) ∈ Fq[x] with the value set Vg = {0, 1}. Theorem 2.3 now implies that
the set in left-hand side of (4) is contained in the set in right-hand side.

Conversely, for every i ∈ R∗, since c2n(i)

i = ci and i2n(i) = i, one can check
that

∑
i∈R∗

∑n(i)−1
j=0 c2j

i xi2j (denoted by h(x)) satisfies

h(x)2 ≡ h(x)(mod xq − x)
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So Vh ⊆ {0, 1}. Our proof is then finished by noting that these polynomials have
degrees ∈ {1, 2, · · · , q − 1}.

Corollary 3.2. Write R∗ = {l(i1), l(i2), · · · , l(ir)} with l(ij) ordered such
that l(i1) < l(i2) < · · · < l(ir), where r =| R∗ |. Then

Nq(d, 2) =

{
21+

∑k−1
j=1 n(ij )(2n(ik) − 1)

(
q
2

)
when d = l(ik)

0 other case

The “even” property of degrees of polynomials in Mq(2) is revealed as follows.

Theorem 3.3. Let f ∈ Fq[x] and |Vf | = 2. Then deg(f) is always an even
integer ≥ 2n−1 except deg(f) = q − 1.

Proof. The inequality is trivial. If deg(f) �= q − 1, by Corollary 2.4, it is
suffices to prove that l(i) are even for all i �= q − 1, equivalently, following claim:

Claim: If 2r+1i is odd, then 2ri > 2r+1i.

Suppose 2r+1i = 2k + 1 < q − 1, then 2ri > 2n−1. Otherwise, 2r+1i = 22ri is
even, a contradiction. So 2ri−2r+1i = 2ri− (22ri− (q−1)) = q−1−2ri > 0.

Corollary 3.4. Mq(2n−1, 2) = {a + bTrFq/F2
(cx) : a ∈ Fq, b, c ∈ F ∗

q }, and
Nq(2n−1, 2) = (2n+1 − 2)

(
q
2

)
.

Proof. It is easy to see that l(1) = 2n−1, n(1) = n, l(i) > l(1) for 1 < i ≤ q−1
and each polynomial f ∈ Mq(2n−1, 2) can be expressed as follows:

f(x) = a + b(cx + c2x2 + · · ·+ c2n−1
x2n−1

) = a + bTrFq/F2
(cx)

where a ∈ Fq, b, c ∈ F∗
q . The second result is then obvious.

Corollary 3.5. Nq(q − 1, 2) = 2q−1
(q
2

)
.

Proof. For each polynomial f ∈ ⋃
d<q−1 Mq(d, {0, 1}), by Theorem 3.1,

xq−1 + f(x) ∈ Mq(q − 1, {0, 1}), and each polynomial in Mq(q − 1, {0, 1}) can
be obtained in this way, so Nq(q − 1, {0, 1}) =

∑
d<q−1 Nq(d, {0, 1}). Therefore,

Nq(q − 1, 2) =
∑

d<q−1 Nq(d, 2). The result now follows by Nq(2) = 2q
(q
2

)
.

Corollary 3.6. If q − 1 is a (Mersenne) prime, with notations as in Theorem
3.2, we have

Mq(2) =
{
a + b

(
cq−1x

q−1 + TrFq/F2
(ci1x

i1 + ci2x
i2 + · · ·+ cir−1x

ir−1)
)}
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where a ∈ Fq, b ∈ F ∗
q , ci1, · · · , cir−1 ∈ Fq, cq−1 ∈ F2 and ci not all zero.

Proof. First, n(q − 1) = 1. For 1 ≤ i ≤ q − 2, we have n(i) = n, the result
now follows by Theorem 3.1 and the additivity of traces.

4. MINIMAL VALUE SET POLYNOMIALS WITH GIVEN CARDINALITY OVER FINITE FIELDS

If f ∈ Fq[x] has degree d, since every polynomial cannot have zeroes more than
its degree in any field, it is easy to see that

(5)
⌊q − 1

d

⌋
+ 1 ≤ |Vf | ≤ q

(We use 	k
 to denote the integer part of k). Polynomials achieving the lower bound
are said to be minimal value set polynomials, and polynomials achieving the
upper bound q (i.e., Vf = Fq) are known as permutation polynomials (see [5,
Chapter 7]).

Let q = pn, s = pt, where t is a positive divisor of n. Set λ = 	q−1
s−1 
. Then it

is easy to see that f(x) ∈ Mq(s) is a minimal value set polynomial if and only if
pn−t ≤ deg(f) ≤ λ.

The following theorem give the expression of minimal value set polynomials
with cardinality s over Fq.

Theorem 4.2. Set S = {pn−t, pn−t + 1, · · · , λ}. Then the set of all minimal
value set polynomials with the value set F s is as follows:

{
c0 +

∑
i∈R∗ ⋂

S

n(i)−1∑
j=0

csj

i xisj
: c0 ∈ Fs, ci ∈ Fsn(i) not all zero

}
.

Proof. Similar to the proof of Theorem 3.1.

Corollary 4.2. Write R∗ ⋂
S = {l(i1), l(i2), · · · , l(im)} with l(i1) < l(i2) <

· · · < l(im). Then for pn−t ≤ d ≤ λ, we have

Nq(d, Fs) =

{
s1+

∑k−1
j=1 n(ij )(sn(ik) − 1) when d = l(ik)

0 other case

Example Let q = 53. Determine all minimal value set polynomials with the
value set F5 over Fq.
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First, it is easy to compute that S = {25, 26, 27, 28, 29, 30, 31}, R∗ ⋂
S =

{25, 30, 31}, n(25) = n(30) = 3 and n(31) = 1. Then Theorem 4.1 and Corollary
4.2 shows that the set of all minimal value set polynomials with the value set F5 is
Mq(25, F5)

⋃
Mq(30, F5)

⋃
Mq(31, F5) and

Mq(25, F5) = {c0 + TrFq/F5
(c1x) : c0 ∈ F5, c1 ∈ F ∗

q }, Nq(25, F5) = 620.

Mq(30, F5) = {c0 + TrFq/F5
(c1x + c2x

6)

: c0 ∈ F5, c1 ∈ Fq, c2 ∈ F ∗
q }, Nq(30, F5) = 77500.

Mq(31, F5) = {c0 + TrFq/F5
(c1x + c2x

6) + c3x
31)

: c0 ∈ F5, c1, c2 ∈ Fq, c3 ∈ F ∗
5 }, Nq(31, F5) = 312500.

Remark 4.3. Informally speaking, minimal value set polynomials over prime
fields (i.e., q = p) are few (see [2], [4], [6]). However in case q = pn > p, minimal
value set polynomials over Fq are rich.

5. FORMULA FOR Nq(q − 1, 3)

Definition 5.1. Let f ∈ Fq[x] and Vf = {v1, v2, v3}. Set mi = |f−1(vi)| =
|{a ∈ Fq : f(a) = vi}| for i = 1, 2, 3. We call Mf = (m1, m2, m3) the
multiplicity vector of polynomial f .

Definition 5.2. Let S = (m1, m2, m3) be the multiplicity vector of a polyno-
mial in Fq[x]. We define Nq(d, S) as follows:

Nq(d, S) = |{f ∈ Fq[x] : deg(f) = d and Mf = S}|

Note that m1 +m2 +m3 = q and Nq(d, 3) =
∑

S Nq(d, S), where the summa-
tion extends over all possible multiplicity vector S.

Theorem 5.3. Let q ≥ 3 and S = (m1, m2, m3) as in the above. Set
N = q!q(q−1)(q−3)

m1!m2!m3!
. We have

(1) If there exists mi such that p | mi, then Nq(q − 1, S) = 0.
(2) If p � mi for i = 1, 2, 3, then

Nq(q − 1, S) =




N m1, m2, m3 are different
1
6N m1 = m2 = m3

1
2N other case
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Proof. Suppose f ∈ Mq(3) such that Mf = (m1, m2, m3) and Vf =
{v1, v2, v3}.

By (2), the coefficient of xq−1 in f(x) is cq−1 = −∑3
i=1 mivi. So f ∈ Mq(q−

1, S) if and only if m1v1 + m2v2 + m3v3 �= 0.
Consider the equation

(6) m1x1 + m2x2 + m3x3 = 0

over Fq with restriction xi �= xj if i �= j.

Case 1. If there exists one mi, for example m1, such that p | m1.
Since m1 + m2 + m3 = q, the equation (6) shows p | m2 and x2 �= x3, in turn,

p | m3. Therefore, cq−1 = 0. This proves (1) in the theorem.

Case 2. If p � mi for i = 1, 2, 3.
For any given x2, x3 ∈ Fq with x2 �= x3, there exists an unique x1 ∈ Fq

satisfying (6) and x1 not equals x2 or x3, so the number of solutions in Fq of the
equation (6) is q(q − 1). Our proof is then finished by Theorem 2.2 in [3].
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1. A. Biró, On polynomials over prime fields taking only two values on the multiplicative
group, Finite Fields Appl. 6 (2000), 302-308.

2. L. Carlitz, D. Jewis, W. H. Mills and E. G. Straus, Polynomials over finite fields
with minimal value sets, Mathematika, 8 (1961), 121-130.

3. P. Das, The number of polynomials of a finite field with value sets of a given
cardinality, Finite fields Appl., 9 (2003), 168-174.

4. J. Gomez-Calderon, Polynomials with small value set over finite fields, J. Number
Theory, 28 (1988), 167-188.

5. R. Lidl and H. Niederreiter, Finite fields, Encyclopedia of Mathematics and its Ap-
plications, Vol. 20, Addision-Wesley, Reading, MA, 1983.

6. W. H. Mills, Polynomials with minimal value sets, Amer. Math. Soc., 4 (1963),
225-241.



Polynomials over Finite Fields with a Given Value Set 253

Jiangmin Pan
Department of Mathematics,
Yunnan University,
Kunming 650091,
P. R. China
E-mail: jmpan@ynu.edu.cn

Kar-ping Shum
Department of Mathematics,
The Chinese University of Hong Kong,
Hong Kong
E-mail: kpshum@math.cnhk.edu.hk


