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CHARACTERIZATIONS OF BOUNDED
APPROXIMATION PROPERTIES

Ju Myung Kim

Abstract. New necessary and sufficient conditions for Banach spaces to have
bounded approximation properties are established, which are easier to check
than known ones. Also using these it is shown that for a Banach space X,
the dual X∗ has the bounded approximation property if and only if X has the
bounded approximation property approximated by the weak adjoint operator
topology, and if X∗ has the bounded weak approximation property, then X has
the bounded weak approximation property approximated by the weak adjoint
operator topology.

1. IINTRODUCTION AND MAIN RESULTS

There are known characterizations of bounded approximation properties. The
purpose of this paper is to develop other characterizations and to obtain applications
of these characterizations.

Let X , Y be Banach spaces and λ > 0. Throughout this paper, we use the
following notations:

T ∗ The adjoint of an operator T

B(X, Y ) The space of bounded linear operators from X into Y .
F (X, Y ) The space of bounded and finite rank linear operators fromX into Y .
K(X, Y ) The space of compact operators from X into Y .
K(X, Y, λ) The collection of compact operators T from X into Y satisfying

‖T‖ ≤ λ.
K∗(X, Y ) = {T ∗ : T ∈ K(X, Y )}.
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K∗(X, Y, λ) = {T ∗ : T ∈ K(X, Y, λ)}.

We similarly define F (X, Y, λ),F∗(X, Y ), F∗(X, Y, λ), B(X, Y, λ),B∗(X, Y ),
and B∗(X, Y, λ). For convenience we denote B(X, X), · · · by B(X), · · · .

Notice that B∗(X, Y ) is the space of w∗-to-w∗ continuous and bounded linear
operators from Y ∗ into X∗, where w∗ is the weak∗ topology on X∗ and Y ∗.

A Banach space X is said to have the λ-bounded approximation property (in
short, λ-BAP) if for every compact K ⊂ X and ε > 0, there is a T ∈ F(X, λ) such
that ‖Tx − x‖ < ε for all x ∈ K. If X has the λ-bounded approximation property
for some λ > 0, then we say that X has the bounded approximation property (in
short, BAP). For some results of the BAP one may see Casazza [1, Section 3] and
Lindenstrauss and Tzafriri [6, Section 1,e].

We now have the following characterizations of a Banach space to have the BAP,
which are easier to check than those in Lindenstrauss and Tzafriri [6, Proposition
1.e.14].

Theorem 1.1. Let X be a Banach space. Then the following are equivalent.

(a) X has the λ-BAP.
(b) There is a net (Tα) in F (X, λ) such that x∗Tαx −→ x∗x for each x ∈ X

and x∗ ∈ X∗.
(c) F (X, λ) is wo-dense in B(X, 1).
(d) For every Banach space Y , F (Y, X, λ) is wo-dense in B(Y, X, 1).
(e) For every Banach space Y , F (X, Y, λ) is wo-dense in B(X, Y, 1).
(f) For every (xn)m

n=1 ⊂ X and (x∗
n)m

n=1 ⊂ X∗, if |
∑m

n=1 x∗
n(Sxn)| ≤ 1 for all

S in F (X, λ), then |
∑m

n=1 x∗
nxn| ≤ 1.

(g) For every (xn)m
n=1 ⊂ X and (x∗

n)m
n=1 ⊂ X∗, if |

∑m
n=1

∑l
k=1 x∗

n(zk)z∗k(xn)|≤
1 for all (zk)l

k=1⊂X and (z∗k)l
k=1⊂X∗ satisfying sup‖x‖=1 ‖

∑l
k=1 z∗k(x)zk‖

≤ λ, then |
∑m

n=1 x∗
nxn| ≤ 1.

In Section 2, we introduce the weak operator topology (in short, wo) on B(X, Y )
and in Section 3, we prove the main theorems.

For the dual X∗ of a Banach space X we have some different characterizations
from Theorem 1.1. The following characterizations say that if X∗ has the BAP,
then X∗ has some stronger properties than those in Theorem 1.1.

Theorem 1.2. Let X be a Banach space. Then the following are equivalent.

(a) X∗ has the λ-BAP.
(b) There is a net (T ∗

α) in F ∗(X, λ) such that x∗∗T ∗
αx∗ −→ x∗∗x∗ for each

x∗ ∈ X∗ and x∗∗ ∈ X∗∗.
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(c) F ∗(X, λ) is wo-dense in B∗(X, 1).
(d) For every Banach space Y , F ∗(Y, X, λ) is wo-dense in B∗(Y, X, 1).
(e) For every Banach space Y , F ∗(X, Y, λ) is wo-dense in B∗(X, Y, 1).
(f) For every (x∗

n)m
n=1 ⊂ X∗ and (x∗∗

n )m
n=1 ⊂ X∗∗, if |

∑m
n=1 x∗∗

n (S∗x∗
n)| ≤ 1

for all S∗ in F ∗(X, λ), then |
∑m

n=1 x∗∗
n x∗

n| ≤ 1.

(g) For every (x∗
n)m

n=1 ⊂ X∗ and (x∗∗
n )m

n=1 ⊂ X∗∗, if |
∑m

n=1

∑l
k=1 x∗∗

n (z∗k)x∗
n

(zk)| ≤ 1 for all (zk)l
k=1⊂X and (z∗k)l

k=1⊂X∗ satisfying sup‖x∗‖=1 ‖
∑l

k=1

x∗(zk)z∗k‖ ≤ λ, then |
∑m

n=1 x∗∗
n x∗

n| ≤ 1.

A Banach space X is said to have the λ-commuting bounded approximation
property (in short, λ-CBAP) if there is a net (Tα) in F (X, λ) satisfying for all α, β
TαTβ=TβTα such that Tαx −→ x for each x ∈ X . If X has the λ-commuting
bounded approximation property for some λ > 0, then we say that X has the
commuting bounded approximation property (in short, CBAP). For some sesults of
the CBAP one may see [1, Section 4].

For the CBAP we have the following characterizations. The following charac-
terization (b) means that the pointwise convergence in the above definition can be
replaced by some weaker convergence than the convergence.

Theorem 1.3. Let X be a Banach space. Then the following are equivalent.

(a) X has the λ-CBAP.
(b) There is a net (Tα) in F (X, λ) satisfying for all α, β TαTβ=TβTα such that

x∗Tαx −→ x∗x for each x ∈ X and x∗ ∈ X∗.
(c) There is a balanced convex set C in F (X, λ) satisfying for all S, T ∈ C

TS=ST such that for every (xn)m
n=1 ⊂ X and (x∗

n)m
n=1 ⊂ X∗, if |

∑m
n=1 x∗

n

(Sxn)| ≤ 1 for all S in C, then |
∑m

n=1 x∗
nxn| ≤ 1.

A Banach space X is said to have the λ-bounded compact approximation prop-
erty (in short, λ-BCAP) if for every compact K ⊂ X and ε > 0, there is a
T ∈ K(X, λ) such that ‖Tx−x‖ < ε for all x ∈ K . If X has the λ-bounded com-
pact approximation property for some λ > 0, then we say that X has the bounded
compact approximation property (in short, BCAP). For some results of the BCAP
one may see [1, Section 8].

For the BCAP we have the following characterizations.

Theorem 1.4. Let X be a Banach space. Then the following are equivalent.

(a) X has the λ-BCAP.
(b) There is a net (Tα) in K(X, λ) such that x∗Tαx −→ x∗x for each x ∈ X

and x∗ ∈ X∗.
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(c) K(X, λ) is wo-dense in B(X, 1).

(d) For every Banach space Y , K(Y, X, λ) is wo-dense in B(Y, X, 1).
(e) For every Banach space Y , K(X, Y, λ) is wo-dense in B(X, Y, 1).
(f) For every (xn)m

n=1 ⊂ X and (x∗
n)m

n=1 ⊂ X∗ if |
∑m

n=1 x∗
n(Sxn)| ≤ 1 for all

S in K(X, λ), then |
∑m

n=1 x∗
nxn| ≤ 1.

A Banach space X is said to have the bounded weak approximation property
(in short, BWAP) if for every T ∈ K(X), there exists a λT > 0 such that for
every compact K ⊂ X and ε > 0, there is a T0 ∈ F(X, λT) such that ‖T0x −
Tx‖ < ε for all x ∈ K. Recently Choi and Kim [2] introduced the BWAP and
the weak approximation property (in short, WAP), which are weak versions of the
approximation property.

We now have the following characterizations of a Banach space to have the
BWAP, which are easier to check than those in [2, Theorem 3.9].

Theorem 1.5. Let X be a Banach space. Then the following are equivalent.

(a) X has the BWAP.

(b) For every T ∈ K(X), there exists a λT > 0 such that there is a net (Tα) in
F (X, λT) such that x∗Tαx −→ x∗Tx for each x ∈ X and x∗ ∈ X∗.

(c) For every T ∈ K(X), there exists a λT > 0 such that for every (xn)m
n=1 ⊂ X

and (x∗
n)m

n=1 ⊂ X∗ , if |
∑m

n=1 x∗
n(Sxn)| ≤ 1 for all S in F (X, λT), then

|
∑m

n=1 x∗
n(Txn)| ≤ 1.

(d) For every T ∈ K(X), there exists a λT > 0 such that for every (xn)m
n=1 ⊂ X

and (x∗
n)m

n=1 ⊂ X∗, if |
∑m

n=1

∑l
k=1 x∗

n(zk)z∗k(xn)| ≤ 1 for all (zk)l
k=1 ⊂

X and (z∗k)
l
k=1 ⊂ X∗ satisfying sup‖x‖=1 ‖

∑l
k=1 z∗k(x)zk‖ ≤ λT , then

|
∑m

n=1 x∗
n(Txn)| ≤ 1.

For X∗ we have the following.

Theorem 1.6. Let X be a Banach space. Then the following are equivalent.

(a) X∗ has the BWAP.
(b) For every T ∈ K(X∗), there exists a λT > 0 such that there is a net

(T ∗
α) in F ∗(X, λT ) such that x∗∗T ∗

αx∗ −→ x∗∗Tx∗ for each x∗ ∈ X∗ and
x∗∗ ∈ X∗∗.

(c) For every T ∈ K(X∗), there exists a λT > 0 such that for every (x∗
n)m

n=1 ⊂
X∗ and (x∗∗

n )m
n=1 ⊂ X∗∗ , if |

∑m
n=1 x∗∗

n (S∗x∗
n)| ≤ 1 for all S∗ in F ∗(X, λT ),

then |
∑m

n=1 x∗∗
n (Tx∗

n)| ≤ 1.
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(d) For every T ∈ K(X∗), there exists a λT > 0 such that for every (x∗
n)m

n=1 ⊂
X∗ and (x∗∗

n )m
n=1 ⊂ X∗∗, if |

∑m
n=1

∑l
k=1 x∗∗

n (z∗k)x∗
n(zk)| ≤ 1 for all (zk)l

k=1

⊂ X and (z∗k)
l
k=1 ⊂ X∗ satisfying sup‖x∗‖=1 ‖

∑l
k=1 x∗ (zk)z∗k‖ ≤ λT , then

|
∑m

n=1 x∗∗
n (Tx∗

n)| ≤ 1.

A Banach space X is said to have the commuting bounded weak approximation
property (in short, CBWAP) if for every T ∈ K(X), there exists a λT > 0 such
that there is a net (Tα) in F (X, λT) satisfying for all α, β TαTβ=TβTα such that
Tαx −→ Tx for each x ∈ X .

We now have the following characterizations of a Banach space to have the
CBWAP.

Theorem 1.7. Let X be a Banach space. Then the following are equivalent.
(a) X has the CBWAP.
(b) For every T ∈ K(X), there exists a λT > 0 such that there is a net (Tα)

in F (X, λT) satisfying for all α, β TαTβ=TβTα such that x∗Tαx −→ x∗Tx

for each x ∈ X and x∗ ∈ X∗.
(c) For every T ∈ K(X), there exists a λT > 0 such that there is a balanced

convex set C in F (X, λT) satisfying for all S, T ∈ C TS=ST such that for
every (xn)m

n=1 ⊂ X and (x∗
n)m

n=1 ⊂ X∗, if |
∑m

n=1 x∗
n(Sxn)| ≤ 1 for all S

in C, then |
∑m

n=1 x∗
n(Txn)| ≤ 1.

2. THREE IMPORTANT TOPOLOGIES ON B(X, Y ) AND THEIR RELATIONS

At first, we introduce two topologies on B(X, Y ) generated by some subbases.
Grothendieck [4] initiated the study of the approximation properties and the

relations between them. One important tool he used was the following topology
which is also called the topology of compact convergence.

Definition 2.1. Let X and Y be Banach spaces. For compact K ⊂ X , ε > 0,
and T ∈ B(X, Y ) we put

N (T, K, ε) = {R ∈ B(X, Y ) : sup
x∈K

‖Rx− Tx‖ < ε}.

Let S be the collection of all such N (T, K, ε)’s. Then the τ -topology (in short, τ )
on B(X, Y ) is the topology generated by S .

We can check that τ is a locally convex topology and for a net (Tα) ⊂ B(X, Y )
and T ∈ B(X, Y )

(2.1)
Tα −→ T in (B(X, Y ), τ) ⇐⇒ for every compact

K ⊂ X supx∈K ‖Tαx − Tx‖ −→ 0.
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By the definitions of BAP, BCAP, and BWAP, we see the following :

(2.2) X has the λ − BAP ⇐⇒ I ∈ F (X, λ)
τ
.

(2.3) X has the λ − BCAP ⇐⇒ I ∈ K(X, λ)
τ
.

(2.4)
X has the BWAP ⇐⇒ for every T ∈ K(X),

there exists a λT > 0 such that T ∈ F (X, λT)
τ
.

Here I is the identity in B(X).
The following topology is also called the topology of pointwise convergence.

Definition 2.2. Let X and Y be Banach spaces. For x ∈ X , ε > 0, and
T ∈ B(X, Y ) we put

N (T, x, ε) = {R ∈ B(X, Y ) : ‖Rx − Tx‖ < ε}.

Let S be the collection of all such N (T, x, ε)’s. Then the strong operator topology
(in short, sto) on B(X, Y ) is the topology generated by S .

We can check that sto is a locally convex topology and for a net (Tα) ⊂ B(X, Y )
and T ∈ B(X, Y )

(2.5) Tα −→ T in (B(X, Y ), sto) ⇐⇒ for every x ∈ X ‖Tαx−Tx‖ −→ 0.

Now we introduce another topology on B(X, Y ) generated by a subspace of the
vector space of all linear functionals on B(X, Y ).

Definition 2.3. Let X and Y be Banach spaces. Let Z be the linear span
of all linear functionals f on B(X, Y ) of the form f(T ) = y∗Tx for x ∈ X and
y∗ ∈ Y ∗. Then the weak operator topology (in short, wo) on B(X, Y ) is the
topology generated by Z .

We see that the wo is a locally convex topology (See Megginson [7, Proposition
2.4.4 and Theorem 2.4.11]) and for a net (Tα) ⊂ B(X, Y ) and T ∈ B(X, Y )

(2.6)
Tα −→ T in (B(X, Y ), wo) ⇐⇒ for

each x ∈ X and y∗ ∈ Y ∗ y∗Tαx −→ y∗Tx.

From (2.1), (2.5), and (2.6), τ is stronger than sto and sto is stronger than wo.
Now we obtain the following theorem which is an essential tool to prove char-

acterizations of bounded approximation properties.

Theorem 2.4. Let X be a Banach space. Then the following statements hold.
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(a) X has the λ-BAP if and only if I ∈ F (X, λ)
wo.

(b) X has the λ-BCAP if and only if I ∈ K(X, λ)
wo.

(c) X has the BWAP if and only if for every T ∈ K(X), there exists a λ T > 0
such that T ∈ F (X, λT)

wo.

To prove Theorem 2.4, we need the following relations between τ, sto, and wo.

Proposition 2.5. Let X and Y be Banach spaces. If A is a bounded set in
B(X, Y ), then τ=sto on A.

Proof. It is enough to show τ ≤ sto on A. Since A is bounded, A ⊂
B(X, Y, λ) for some λ > 0. Let (Tα) ⊂ A be a net and T ∈ A with Tα −→ T
in (B(X, Y ), sto). Let compact K ⊂ X and ε > 0. Then there is a finite F ⊂ K

such that whenever x ∈ K we have

‖x − y‖ <
ε

3λ

for some y ∈ F . Since Tα −→ T in (B(X, Y ), sto), there is a β such that α � β

implies ‖Tαy − Ty‖ < ε/3 for every y ∈ F . Now let x ∈ K. Then by the triangle
inequality α � β implies

‖Tαx − Tx‖ < ε.

Hence Tα −→ T in (B(X, Y ), τ). This completes the proof.

Lemma 2.6. [3, p. 447, Theorem 4] Let X and Y be Banach spaces.
Then (B(X, Y ), sto)∗=(B(X, Y ), wo)∗ and the form of the bounded linear func-

tionals f on B(X, Y ) is f(T )=
∑m

n=1 y∗n(Txn), (xn)m
n=1⊂X and (y∗

n)m
n=1⊂Y ∗.

Lemma 2.7. [7, Corollary 2.2.29] Suppose that a vector space X has two
locally convex topologies T1 and T2 such that the dual spaces of X under the two
topologies are the same. Let C be a convex subset of X . Then the T 1-closure of
C is the same as its T2-closure.

From Lemma 2.6 and Lemma 2.7, we have the following proposition.

Proposition 2.8. Let X and Y be Banach spaces. If C is a convex set in
B(X, Y ), then Csto=Cwo.

From Proposition 2.5 and Proposition 2.8, we have the following conclusion.

Corollary 2.9. Let X and Y be Banach spaces. If C is a bounded convex set
in B(X, Y ), then Cτ =Cwo.
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Now we can prove Theorem 2.4.

Proof of Theorem 2.4. Since F (X, λ) and K(X, λ) are bounded and convex
for λ > 0, Theorem 2.4 follows from Corollary 2.9, (2.2), (2.3), and (2.4).

3. PROOFS OF THE MAIN THEOREMS

To prove characterizations of bounded approximation properties, we need the
following two lemmas.

Lemma 3.1. Let X be a Banach space. Suppose that C is a balanced convex
subset of B(X). Let T ∈ B(X). Then the following are equivalent.

(a) T belongs to the wo-closure of C.
(b) For every f ∈ (B(X), wo)∗ such that |f(S)| ≤ 1 for all S ∈ C, we have

|f(T )| ≤ 1.

Proof. (a)=⇒(b). By continuity.
(b)=⇒(a). Suppose that T dose not belongs to the wo-closure of C.
By an application of the separation theorem (See [7, Theorem 2.2.28]), there is

a f ∈ (B(X), wo)∗ such that for all S in the wo-closure of C we have

Ref(S) ≤ 1 < Ref(T ).

Observe that |f(S)|≤1 for all S in C because C is balanced. This contradicts (b).

The following lemma is due to Johnson [5, Lemma 1]. A concrete proof is in
[2, Lemma 3.11].

Lemma 3.2. Let X be a Banach space and λ > 0. Then F (X ∗, λ)
τ =

F ∗(X, λ)
τ .

Since for λ > 0 F∗(X, λ) is bounded and convex, by Corollary 2.9 and Lemma
3.2 we have the following conclusion.

Corollary 3.3. Let X be a Banach space and λ > 0. Then F (X ∗, λ)
τ =

F ∗(X, λ)
wo.

Now we are ready for the proof of characterizations of bounded approximation
properties

Proof of Theorem 1.1. Recall Theorem 2.4(a). Then (a)⇐⇒(b) follows.
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(a)=⇒(d). Let T ∈ B(Y, X, 1). Then there is a net (Tα) in F (X, λ) such that
x∗TαTy −→ x∗Ty for each y ∈ Y and x∗ ∈ X∗. Since each TαT ∈ F(Y, X, λ)
and TαT −→ T in (B(Y, X), wo), we have the conclusion (d).

(a)=⇒(e). Let T ∈ B(X, Y, 1). Then there is a net (Tα) in F (X, λ) such that
y∗TTαx −→ y∗Tx for each x ∈ X and y∗ ∈ Y ∗ because y∗T ∈ X∗. Since each
TTα ∈ F(X, Y, λ) and TTα −→ T in (B(X, Y ), wo), we have the conclusion (e).
(d)=⇒(a) and (e)=⇒(a) are clear.

(a)⇐⇒(c). By (d)=⇒(c)=⇒(a)=⇒(d).
(a)⇐⇒(f). Since F (X, λ) is balanced and convex for λ > 0, Lemma 2.6 and

Lemma 3.1 prove the equivalence.
(f)⇐⇒(g). For each S ∈ F(X), the form of S is Sx =

∑l
k=1 z∗k(x)zk for some

(zk)l
k=1 ⊂ X and (z∗k)l

k=1 ⊂ X∗. This proves the equivalence.

Proof of Theorem 1.2. Notice that X ∗ has the λ-BAP if and only if I ∈
F ∗(X, λ)

wo
by (2.2) and Corollary 3.3, where I is the identity in B(X∗).

From this (a)⇐⇒(b) follows.
(a)=⇒(d). Let T ∗ ∈ B∗(Y, X, 1). Then there is a net (T ∗

α) in F ∗(X, λ) such
that

y∗∗(TαT )∗x∗ = y∗∗T ∗T ∗
αx∗ −→ y∗∗T ∗x∗

for each x∗ ∈ X∗ and y∗∗ ∈ Y ∗∗ because y∗∗T ∗ ∈ X∗∗. Since each (TαT )∗ ∈
F ∗(Y, X, λ) and (TαT )∗ −→ T ∗ in (B(X∗, Y ∗), wo), we have the conclusion (d).

(a)=⇒(e). Let T ∗ ∈ B∗(X, Y, 1). Then there is a net (T ∗
α) in F ∗(X, λ) such

that
x∗∗(TTα)∗y∗ = x∗∗T ∗

αT ∗y∗ −→ x∗∗T ∗y∗

for each y∗ ∈ Y ∗ and x∗∗ ∈ X∗. Since each (TTα)∗ ∈ F ∗(X, Y, λ) and (TTα)∗ −→
T ∗ in (B(Y ∗, X∗), wo), we have the conclusion (e). (d)=⇒(a) and (e)=⇒(a) are
clear.

(a)⇐⇒(c). By (d)=⇒(c)=⇒(a)=⇒(d).
(a)⇐⇒(f). Since F∗(X, λ) is balanced and convex for λ > 0, Lemma 2.6 and

Lemma 3.1 prove the equivalence.
(f)⇐⇒(g). For each S∗ ∈ F ∗(X), the form of S∗ is S∗x∗ =

∑l
k=1 x∗(zk)z∗k

for some (zk)l
k=1 ⊂ X and (z∗k)l

k=1 ⊂ X∗. This proves the equivalence.

Proof of Theorem 1.3. (a)=⇒(b). By sto ≥ wo.
(b)=⇒(a). Let (Tα) be a net satisfying (b). Consider co({Tα}). Then by

Proposition 2.8 costo({Tα})=cowo({Tα}). Since I ∈ cowo({Tα}), there is a net
(Sα) in co({Tα}) such that

Sαx −→ x

for each x ∈ X . We can check that SαSβ=SβSα for every Sα, Sβ ∈ {Sα} and
(Sα) ⊂ F (X, λ). Hence (Sα) is a desired net which proves the conclusion.
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(b)=⇒(c). Let (Tα) be a net satisfying (b). Consider co(
⋃

|δ|≤1{δTα}). Then
we can check that co(

⋃
|δ|≤1{δTα}) is a balanced convex set in F (X, λ) and

TS=ST for every T, S ∈ co(
⋃

|δ|≤1{δTα}). Since I ∈ cowo(
⋃

|δ|≤1{δTα}), by
Lemma 2.6 and Lemma 3.1 we have the conclusion.

(c)=⇒(b). Let C be a set satisfying (c). By Lemma 2.6 and Lemma 3.1 I ∈ Cwo.
Then there is a net (Tα) in C such that

Tα −→ I

in (B(X), wo). By the property of C (Tα) ⊂ F (X, λ) and TαTβ=TβTα for every
Tα, Tβ ∈ {Tα}. Hence (Tα) is a desired net which proves the conclusion.

Proof of Theorem 1.4. See the proof of Theorem 1.1.

Proof of Theorem 1.5. Recall Theorem 2.4(c). Then (a)⇐⇒(b) follows.
(a)⇐⇒(c). Since F (X, λ) is balanced and convex for λ > 0, Lemma 2.6 and

Lemma 3.1 prove the equivalence.
(c)⇐⇒(d). See the proof of Theorem 1.1 (f)⇐⇒(g).

Proof of Theorem 1.6. Notice that X ∗ has the BWAP if and only if for every
T ∈ K(X∗), there exists a λT > 0 such that T ∈ F ∗(X, λT )

wo
by (2.4) and

Corollary 3.3.
From this (a)⇐⇒(b) follows.
(a)⇐⇒(c). Since F∗(X, λ) is balanced and convex for λ > 0, Lemma 2.6 and

Lemma 3.1 prove the equivalence.
(c)⇐⇒(d). See the proof of Theorem 1.2 (f)⇐⇒(g).

Proof of Theorem 1.7. See the proof of Theorem 1.3.

4. APPLICATIONS

At first, we introduce one more topology on B(X, Y ) generated by a subspace
of the vector space of all linear functionals on B(X, Y ).

Definition 4.1. Let X and Y be Banach spaces. Let Z be the linear span of
all linear functionals f on B(X, Y ) of the form f(T ) = x∗∗T ∗y∗ for x∗∗ ∈ X∗∗

and y∗ ∈ Y ∗. Then the weak adjoint operator topology (in short, wao) on B(X, Y )
is the topology generated by Z .

We see that the wao is a locally convex topology (See [7, Proposition 2.4.4 and
Theorem 2.4.11]) and for a net (Tα) ⊂ B(X, Y ) and T ∈ B(X, Y )

Tα −→ T in (B(X, Y ), wao) ⇐⇒ for each x∗∗ ∈ X∗∗
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and y∗ ∈ Y ∗ x∗∗T ∗
αy∗ −→ x∗∗T ∗y∗.

From (2.6) we see that wao is stronger than wo.
It is well-known that for a Banach space X , if X∗ has the λ-BAP, then X has

the λ-BAP but the converse is not true in general (See [1]). Roughly speaking, the
following theorem means that if we give B(X) the weak adjoint operator topology,
then λ-BAP of X and X∗ are equivalent.

Theorem 4.2. Let X be a Banach space. Then X∗ has the λ-BAP if and only
if X has the λ-BAP approximated by wao.

Proof. Suppose that X ∗ has the λ-BAP. Then by Theorem 1.2 there is a net
(T ∗

α) in F ∗(X, λ) such that x∗∗T ∗
αx∗ −→ x∗∗x∗ for each x∗ ∈ X∗ and x∗∗ ∈ X∗∗.

It follows that Sα −→ I in (B(X), wao), where I is the identity in B(X). Hence
X has the λ-BAP approximated by wao.

Suppose the converse. Then there is a net (Tα) in F (X, λ) such that Tα −→ I
in (B(X), wao), that is, x∗∗T ∗

αx∗ −→ x∗∗I∗x∗ for each x∗ ∈ X∗ and x∗∗ ∈ X∗∗.
Since I∗ is the identity in B(X ∗) and (T ∗

α) ⊂ F (X∗, λ), by Theorem 1.1 X∗ has
the λ-BAP.

Since wao ≥ wo, from Theorem 4.2 and Theorem 1.1 we have the following
well-known conclusion as a corollary of Theorem 4.2.

Corollary 4.3. Let X be a Banach space. If X ∗ has the λ-BAP, then X has
the λ-BAP.

For BWAP we have the following.

Theorem 4.4. Let X be a Banach space. If X ∗ has the BWAP, then X has
the BWAP approximated by wao.

Proof. Suppose that X ∗ has the BWAP. Let T ∈ K(X). Then T ∗ ∈ K(X∗).
Thus by Theorem 1.6 there exists a λT > 0 such that there is a net (T ∗

α) in
F ∗(X, λT ) such that x∗∗T ∗

αx∗ −→ x∗∗T ∗x∗ for each x∗ ∈ X∗ and x∗∗ ∈ X∗∗. It
follows that Tα −→ T in (B(X), wao). Hence X has the BWAP approximated by
wao.

In [2] it was shown that for a Banach space X , if X ∗ has the BWAP, then
X has the BWAP. In view of Theorem 1.5 and wao ≥ wo, this is a corollary of
Theorem 4.4.

Corollary 4.5. Let X be a Banach space. If X ∗ has the BWAP, then X has
the BWAP.
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