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MULTIPLICATIVE LINEAR FUNCTIONALS OF CONTINUOUS
FUNCTIONS ARE COUNTABLY EVALUATED

Z. Ercan and S. Önal

Abstract. We prove that each nonzero algebra homomorphism π : C(X) −→
R is countably evaluated. This is applied to give a simple and direct proof
(from the algebraic view) of the fact that each Lindelöf space is realcompact.

0. INTRODUCTION

We refer to standard books [1, 3, 7], for the notations and terminology for this
paper. Let X be a topological space. The algebra (under the pointwise operations)
of real valued continuous functions on X is denoted by C(X). An algebra A on
X means a subalgebra of C(X) containing the constant functions. Recall that X

is called a Lindelöf space if each open cover of X has a countable subcover. X is
called realcompact space if it is homeomorphic to a closed subspace of the product
space of real lines. In [4] by using very elementary arguments, it is proved that
a Tychonoff space X is a Lindelöf space if and only if each countably evaluated
(algebra) homomorphism π from any algebra A on X into R is point evaluated
(see also [2]). Without using of Axiom of Choice, a direct and easy proof of the
fact that a Tychonoff space X is realcompact if and only if each nonzero algebra
homomorphism π : C(X) −→ R is point evaluated, is given in [5]. Let A be an
algebra on X and π : A −→ R be an algebra homomorphism. Recall that π is
called point evaluated if there exists x ∈ X such that π(f) = f(x) for each f ∈ A.
Let α be a cardinal number. If for each subset B ⊂ A with card(B) ≤ α there
exists x in X such that π(f) = f(x) for each f ∈ B, then π is called α-evaluated.
In the case α = card(N) we call that π is countably evaluated.
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1. SOME REMARKS ON THE ALGEBRA HOMOMORPHISMS AND ITS CONSEQUENCES

Theorem 1. Let X be a topological space and π : C(X) −→ R be a nonzero
algebra homomorphism. Then π is countably evaluated.

Proof. It is clear that π is also a Riesz homomorphism, that is π(|f |) = |π(f)|
for each f ∈ C(X). Let us call a sequence (fn) point evaluated, if there exits
x ∈ X such that π(fn) = fn(x) for each n. Suppose that π is not countably
evaluated. Then there exists a sequence (fn) in C(X) which is not point evaluated.
For each n, let

gn := ((π(fn)1− fn))2 ∧ n−21.

That is, gn(x) = min{(π(fn) − fn(x))2, n−2}. Then it is clear that the sequence
(gn) is not point evaluated. Let g : X −→ R be defined by g(x) := Σngn(x). Then
g ∈ C(X) and g is the uniform limit of the sequence (Σn

i=1gn) in the subalgebra
Cb(X) on X of bounded functions in C(X). Let π0 be restriction of π into Cb(X).
Then as π0 is continuous (it is positive, that is, π(f) ≥ 0 whenever f(x) ≥ 0 for
each x ∈ X) and π0(gn) = 0 for each n, then π(g) = π0(g) = 0. Then there exists
x ∈ X such that g(x) = 0. Indeed, if g(x) �= 0 for each x ∈ X , then the inverse
g−1 exists. Then we have the following contradiction.

1 = π(1) = π(gg−1) = π(g)π(g−1) = 0.

Let x ∈ X with g(x) = 0. Then for each n, π(fn) = fn(x). This contradicts to
our assumption and completes the proof.

Let A be an Archemedean f-algebra with unit e and let B be an Archimedean
semiprime f-algebra. Then a Riesz homomorphism π from A into B is an algebra
homomorphism if and only if π(e) is idempotent (see [10], p. 98). This implies
that a map π between Archimedean f-algebras A and B with units eA and eB,
respectively, with π(eA) = eB is a Riesz homomorphism if and only if it is an
algebra homomorphisms, this is due to Putten [12]. Although the proof of this is
not very elementary, in the case A = C(K) and B = C(M), where K and M are
compact Hausdorff spaces, the proof is very elementary. By using this, to make the
paper is self contained we give the following lemma with a proof.

Lemma 2. Let K be an arbitrary topological space and π : C(K) −→ R

be a map with π(1) = 1. Then π is a Riesz homomorphism if and only if it is an
algebra homomorphism.

Proof. It is clear that π is Riesz homomorphism whenever it is an algebra
homomorphism. Suppose that π is a Riesz homomorphism. Let 0 ≤ f ∈ C(X) be
given. Let n ∈ N be given so that (π(f))2 < n. Then as the restriction π0 of π
into Cb(K) is a homomorphism we have

(π(f))2 = (π(f)∧ √
n1)2 = (π(f ∧ √

n1))2 = π((f ∧√
n1)2) = π(f2 ∧ n1)
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On the other hand π(f 2 ∧ n1) = π(f2) ∧ n. As (π(f))2 < n we have that
π(f2) = (π(f))2. Now from the fact that 4fg = ((f + g)2 − (f − g)2) that π is
an algebra homomorphism.

Corollary 3. Let X be a topological space and π : C(X) −→ R be a nonzero
Riesz homomorphism. Then π is countably evaluated.

Remarks 1.

1. A subalgebra A of C(X) is called inverse-closed if f ∈ A and f(x) �= 0 for
each x ∈ X , then f−1 ∈ A. A is called uniformly closed if f ∈ A whenever there
exists a sequence (fn) in A with supx|fn(x) − f(x)| −→ 0. Theorem 1 can be
generalized as follows: Every real valued nonzero algebra homomorphism π on a
uniformly closed, inverse closed algebra A is countably evaluated. Indeed, suppose
that it is not. Then there exits a sequence (fn) which is not countably evaluated.
Let

gn = 2−n(π(fn)1− fn))2(1 + ((π(fn)1− fn))2)−1.

Then (gn) is not countably evaluated. As A is uniformly closed g = Σngn in A.
From the fact gn ≤ (π(fn)1 − fn)2 we have π(gn) = 0. Then it is clear that
π(g) = 0. This implies that g(x) = 0 for some x ∈ X , because other wise g−1

exists and in A and this implies that 1 = π(gg−1)) = 0. This contradiction shows
that there exists x ∈ X such that π(fn) = fn(x) for each n.

2. It is well known that if A is inverse closed subalgebra of C(X) with unit
then for each nonzero algebra homomorphism π : A −→ R and finite subset F ⊂ A
there exits aF ∈ A such that π(f) = f(aF ) for each f ∈ F (see [7]).

Let X be a topological space. Then it is well known that X is compact if and
only if each nonzero algebra homomorphism on Cb(X) is point evaluated. By using
this and the above results we have the following corollary.

Corollary 4. Let X be a Lindelöf space. Then X is compact if and only if
each nonzero algebra homomorphism π : C b(X) −→ R is countably evaluated.

Corollary 4 shows that in remark 1 the condition “inverse-closed“ can not be
dropped. By combining the above arguments we have a re-proof of the following
well known important theorem which is more direct and easier than most of the the
well known proofs. (see [3], p. 216).

Theorem 2.2. (Hewitt, [6]) Every Lindelöf space is realcompact.

Proof. Let X be a Lindelöf space. Then for each algebra A on X , each
countable nonzero algebra homomorphism π : A −→ R is point evaluated (see
[2,4]). Then as from Theorem 1, any nonzero algebra homomorphism π : C(X) −→
R is countably evaluated π is point evaluated. So, X is realcompact space.
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An alternative proof of the above Theorem is also given in [12]. In [11] it is ob-
served that any ring homomorphism π : C(X) −→ R is an algebra homomorphism.
Now we have the following main result of the paper.

Theorem 6. Let X be a topological space and π : C(X) −→ R be a nonzero
map. Then the followings are equivalent.

(i) π is an algebra homomorphism
(ii) π is a Riesz homomorphism with π(1) = 1.
(iii) π is a ring homomorphism with π(1) = 1.
(iv) There exists a net (xα) in X such that π(f)= limf(xα) for each f ∈C(X).
(v) π is countably evaluated.
(vi) π is n-evaluated for each n ∈ N.
(vii) π is 3-evaluated.

Proof. (vii) =⇒ (i): Let f, g, h ∈ C(X) be given. As π is 3-evaluated there
exits a, b ∈ X such that

π(f + g) = (f + g)(a), π(f) = f(a) and π(g) = g(a)

and
π(fg) = (fg)(b), π(f) = f(b) and π(g) = g(b).

This shows that

π(f + g) = π(f) + π(g) and π(fg) = π(f)π(g).

It is also clear that π(λf) = λπ(f) for each λ ∈ R. That is, π is an algebra
homomorphism. Suppose that (i) holds. As there exists a realcompact space Y
with C(X) and C(Y ) are algebraic isomorphic (we can choose Y is the closure
of

∏
f∈C(X)f(X) in the product space

∏
f∈C(X)R) under the map α : C(Y ) −→

C(X), α(h)(x) = h(i(x)), where i(x) = (f(x))f∈C(X). (see Theorem 3.9 of [7]
and p. 218 of [3]), since each nonzero algebra homomorphism from C(Y ) into R

is point evaluated. This implies (iv). Rest of the proof is more or less clear.

Corollary 7. [14]) ( Let X be a realcompact space. Then each nonzero Riesz
homomorphism π from C(X) into R is point evaluated.

Remarks

1. Let X be a topological space and π : C(X) → R be a nonzero and 2-evaluated
map. Then it is clear that for each f ∈ C(X), λ ∈ R

π(f2) = π(f)2, π(λ + f) = λ + π(f) and π(λf) = λπ(f).
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Moreover, the referee suspects that π is an algebra homomorphism, by applying a
result of [9].

2. For each topological space X there exists a completely regular Hausdorff
space Y such that C(X) and C(Y ) are algebraic isomorphic (see [7]). So, when we
study the algebraic properties of C(X) without loss of the generality we can suppose
that X is a completely regular Hausdorff space. In this way, some arguments of the
paper may be simplified.
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