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EXISTENCE THEOREMS FOR GENERALIZED VECTOR
VARIATIONAL INEQUALITIES WITH PSEUDOMONOTONICITY

AND THEIR APPLICATIONS

L. C. Ceng∗, G. Y. Chen, X. X. Huang and Jen-Chih Yao∗∗

Abstract. The purpose of this paper is to study the solvability for a class of
generalized vector variational inequalities with pseudomonotonicity in reflexive
Banach spaces. Utilizing the KKM-Fan lemma and the Nadler’s result, we
derive the solvability results for this class of generalized vector variational
inequalities with pseudomonotonicity. Utilizing these results, we also establish
some existence theorems for zero points of pseudomonotone multifunctions
including the characterization of the existence of zero points.

1. INTRODUCTION AND PRELIMINARIES

Vector variational inequalities were initially studied by Giannessi [3] in the
setting of finite dimensional Euclidean spaces. Subsequently, vector variational in-
equality (VVI) theory appears to be an effective and powerful tool to study and
investigate a wide class of problems arising in pure and applied sciences includ-
ing differential equations, optimization, optimal control, mathematical programming,
economics and transportation. Vector variational inequalities have been widely stud-
ied and generalized in infinite dimensional spaces. The reader is refereed to [1, 4-8,
10, 22] and the references therein.

Let X and Y be two real Banach spaces, K ⊂ X be a nonempty, closed and
convex subset, and P ⊂ Y be a closed, convex and pointed cone with apex at the
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origin and intP �= ∅ where intP denotes the interior of P . The cone P is called
proper if P �= Y . Recall that P is said to be a closed, convex and pointed cone
with apex at the origin if P is closed and the following conditions hold:

(i) λP ⊂ P, ∀λ > 0;
(ii) P + P ⊂ P ;
(iii) P ∩ (−P ) = {0}.

Given a closed, convex and pointed cone P with apex at the origin in Y , we
can define relations “≤ P ” and “ �≤P ” as follows:

x ≤P y ⇔ y − x ∈ P

and
x �≤P y ⇔ y − x �∈ P.

Moreover, a �≤intP b means b − a �∈intP . Clearly, “≤P ” is a partial order. In
this case (Y,≤P ) is called an ordered Banach space ordered by P . Let L(X, Y )
denote the space of all continuous linear maps from X into Y . Let Lc(X, Y ) be the
subspace of L(X, Y ) which consists of all completely continuous linear maps from
X into Y . Recall that a mapping g : X → Y is said to be completely continuous
if the weak convergence of xn to x in X implies the strong convergence of g(xn)
to g(x) in Y .

Now we recall and define the following concepts and lemmas.

Definition 1.1. Let A : L(X, Y ) → L(X, Y ) and f : K → Y be two
mappings. Let T : K → 2L(X,Y ) be a nonempty valued multifunction. Then

(i) T is said to be pseudomonotone if for any x, y ∈ K, u ∈ Tx and v ∈ Ty,

〈u, y − x〉 �≤ intP 0 ⇒ 〈v, y − x〉 �≤ intP 0;

(ii) T is said to be pseudomonotone with respect to A if for any x, y ∈ K, u ∈ Tx
and v ∈ Ty,

〈Au, y − x〉 �≤ intP 0 ⇒ 〈Av, y − x〉 �≤ intP 0;

(iii) T is said to be pseudomonotone with respect to A and f if for any x, y ∈
K, u ∈ Tx and v ∈ Ty,

〈Au, y−x〉+ f(y)− f(x) �≤ intP 0 ⇒ 〈Av, y− x〉+ f(y)− f(x) �≤ intP 0;

(iv) T is said to be monotone with respect to A if for any x, y ∈ K, u ∈ Tx and
v ∈ Ty,

〈Au − Av, x− y〉 ≥ P 0;

in particular, a single-valued map T : K → L(X, Y ) is said to be monotone
if for any x, y ∈ K,
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〈Tx − Ty, x − y〉 ≥P 0.

Definition 1.2. A map f : K → Y is said to be convex if

f(tx + (1 − t)y) ≤ P tf(x) + (1− t)f(y), ∀x, y ∈ K, t ∈ [0, 1].

Lemma 1.1. (See Nadler [9]) Let (X, ‖ ·‖) be a normed vector space and H be
a Hausdorff metric on the collection CB(X) of all nonempty, closed and bounded
subsets of X , induced by a metric d in terms of d(u, v) = ‖u−v‖, which is defined
by

H(U, V ) = max{sup
u∈U

inf
v∈V

‖u − v‖, sup
v∈V

inf
u∈U

‖u− v‖},

for U and V in CB(X). If U and V lie in CB(X), then for arbitrary ε > 0 and
each u ∈ U there exists v ∈ V such that

‖u − v‖ ≤ (1 + ε)H(U, V ).

Definition 1.3.
(i) A single-valued map T : K → L(X, Y ) is said to be υ-hemicontinuous if for

any given x, y ∈ K, the mapping t → 〈T (x+ t(y −x)), y−x〉 is continuous
at 0+;

(ii) A nonempty compact valued multifunction T : K → 2L(X,Y ) is said to be
H-hemicontinuous if for any given x, y ∈ K, the mapping t → H(T (x +
t(y−x)), T (x)) is continuous at 0+ where H is the Hausdorff metric defined
on CB(L(X, Y ));

(iii) A nonempty weakly compact valued multifunction T : K → 2L(X,Y ) is
said to be H∗-hemicontinuous if for any given x, y ∈ K , the mapping t →
H(T (x + t(y − x)), T (x)) is continuous at 0+ where H is the Hausdorff
metric defined on CB(L(X, Y )).

It is clear that the H-hemicontinuity of T implies the H ∗-hemicontinuity of
T . Recently, Huang and Fang [6] considered and studied the solvability for a
class of vector variational inequalities in reflexive Banach spaces. They proved the
solvability for this class of vector variational inequalities with monotone mappings.

Theorem 1.1. (See [6, Theorem 3.1]) Let K be a nonempty, bounded, closed
and convex subset of a real reflexive Banach space X and Y be a real Banach
space ordered by a closed, convex and pointed cone C with apex at the origin and
intC �= ∅. Suppose that T : K → Lc(X, Y ) is a υ-hemicontinuous and monotone
map, and f : K → Y is a completely continuous and convex map. Then, there
exists x ∈ K such that

〈Tx, y − x〉 + f(y) − f(x) �≤ intP 0, ∀y ∈ K.
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Let T : K → 2L(X,Y ) be a vector multifunction. Given maps A : L(X, Y ) →
L(X, Y ) and f : K → Y , consider the following generalized vector variational
inequality problem (for short, GVVI): Find x ∈ K and u ∈ T (x) such that

〈Au, y − x〉 + f(y)− f(x) �≤ intP 0, ∀y ∈ K.

Inspired by Huang and Fang [6], Zeng and Yao [8] established the solvability
result for this class of GVVIs with monotone vector multifunctions.

Theorem 1.2. (See [8, Theorem 2.1]) Let K be a nonempty, bounded closed
and convex subset of a real reflexive Banach space X and Y be a real Banach
space ordered by a proper closed convex and pointed cone C with apex at the origin
and intC �= ∅. Let A : L(X, Y ) → Lc(X, Y ) be a continuous map, T : K →
2L(X,Y ) be a nonempty compact valued multifunction which is H-hemicontinuous
and monotone with respect to A, and f : K → Y be a completely continuous and
convex map. Then there exist x ∈ K and u ∈ T (x) such that

〈Au, y − x〉 + f(y)− f(x) �≤ intP 0, ∀y ∈ K.

Motivated by Theorems 1.1 and 1.2, we will continue the study of the solvability
for the above class of GVVIs in reflexive Banach spaces in this paper. Assume that
f : K → Y is a convex map which is completely continuous on some nonempty,
bounded, closed and convex subset C of K. Let A : L(X, Y ) → Lc(X, Y ) be
such that the map u �→ 〈Au, y〉 is completely continuous for each y ∈ X , and
T : K → 2L(X,Y ) be a nonempty weakly compact valued multifunction which is
H∗-hemicontinuous and pseudomonotone with respect to A and f . It is shown that
there hold the following:

(i) there exist x0 ∈ C and u0 ∈ T (x0) such that

〈Au0, y − x0〉 + f(y) − f(x0) �≤ intP 0, ∀y ∈ C;

(ii) if
−AT (x) ⊂ (NC(x) \ {0})c, ∀x ∈ C,

where NC(x) = {u ∈ L(X, Y ) : 〈u, x− y〉 + f(y) − f(x) �≤ intP 0, ∀y ∈ C} for
all x ∈ C, then (AT )−10 �= ∅.

On the other hand, if 0 ∈ K, f : K → Y is a convex map which is completely
continuous on K ∩ Br where Br = {x ∈ X : ‖x‖ ≤ r} for some r > 0, and there
holds the condition:

〈Av, y〉+ f(y) − f(0) ≥intP 0, ∀v ∈ T (y), y ∈ K with ‖y‖ = r,

then it is also shown that the following hold:
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(i) there exist x0 ∈ K and u0 ∈ T (x0) such that

〈Au0, y − x0〉 + f(y)− f(x0) �≤ intP 0, ∀y ∈ K.

(ii) if
−AT (x) ⊂ (NK(x) \ {0})c, ∀x ∈ K,

where NK(x) = {u ∈ L(X, Y ) : 〈u, x− y〉+ f(y) − f(x) �≤ intP 0, ∀y ∈ K} for
all x ∈ K, then (AT )−10 �= ∅.

Furthermore, we apply these results to study the existence of zero points of pseu-
domonotone multifunctions in reflexive Banach spaces. By virtue of these results,
we first derive two existence theorems for zero points of pseudomonotone multi-
functions in reflexive Banach spaces. It is worth while to point out that Matsushita
and Takahashi [20] obtained the similar theorem for zero points of pseudomonotone
multifunctions by using the techniques in Shih and Tan [14] and Yao [15, 16]. Also,
we apply our existence theorems for zero points to obtain an existence result with
a coercive condition which is related to Browder [12] and Minty [13]. Further we
characterize the existence of zero points of pseudomonotone multifunctions in reflex-
ive, strictly convex and smooth Banach spaces. Compared with the corresponding
results in Matsushita and Takahashi [20], our results remove the requirement that
T takes convex values. Moreover, the pseudomonotonicity of multifunctions in our
results is more general than that in Matsushita and Takahashi [20]. In addition,
our results are very different from those in Matsushita and Takahashi [21] because
they established the existence theorems of zeros of monotone operators in reflexive
Banach spaces.

2. SOLVABILITY OF THE GVVI WITH PSEUDOMONOTONICITY

In this section, we will prove the solvability for GVVIs with pseudomonotone
vector multifunctions in reflexive Banach spaces by using the KKM-Fan lemma and
Nadler’s theorem. First we recall some concepts and lemmas.

Let D be a nonempty subset of a topological vector space E . A multivalued map
G : D → 2E is called a KKM map if for each finite subset {x1, x2, ..., xn} ⊂ D,

conv{x1, x2, ..., xn} ⊂
n⋃

i=1

G(xi)

where conv{x1, x2, ..., xn} denotes the convex hull of {x1, x2, ..., xn}.

Lemma 2.1. (See Fan [2]). Let D be an arbitrary nonempty subset of a
Hausdorff topological vector space E . Let the multivalued mapping G : D → 2 E
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be a KKM map such that G(x) is closed for all x ∈ D and is compact for at least
one x ∈ D. Then ⋂

x∈D

G(x) �= ∅.

Lemma 2.2. (See Chen and Yang [1]). Let Y be a real Banach space ordered
by a closed, convex and pointed cone P with apex at the origin and intC �= ∅.
Then, for any a, b, c ∈ Y , the following hold:

(i) c �≤ intP a and a ≥P b imply that c �≤ intP b;
(ii) c �≥intP a and a ≤ P b imply that c �≥ intP b.

Remark 2.1. Utilizing Lemma 2.2, we conclude from Definition 1.1 that the
following relations hold:

(i) [T is pseudomonotone] ⇔ [T is pseudomonotone with respect to I], where
I is the identity mapping of L(X, Y );

(ii) [T is monotone with respect to A]⇒ [T is pseudomonotone with respect to A

and f ]
⇓

[T is pseudomonotone with respect to A].

Remark 2.2. If Y = (−∞,∞), then the definition of pseudomonotonicity for
multifunction T : K → 2L(X,Y ) reduces to the one of pseudomonotonicity for
multifunction T : K → 2X∗ (in the sense of Karamardian [11]); i.e., for any
x, y ∈ K, u ∈ T (x) and v ∈ T (y)

〈u, y − x〉 ≥ 0 ⇒ 〈v, y − x〉 ≥ 0.

Lemma 2.3. Let K be a nonempty, closed and convex subset of a real Banach
space X and Y be a real Banach space ordered by a closed, convex and pointed
cone P with apex at the origin and intC �= ∅. Let A : L(X, Y ) → L(X, Y )
be such that the map u �→ 〈Au, y〉 is completely continuous for each y ∈ X , and
T : K → 2L(X,Y ) be a nonempty weakly compact valued multifunction which is H ∗-
hemicontinuous and pseudomonotone with respect to A and f where f : K → Y

be a convex map. Then the following statements are equivalent:

(a) there exists x0 ∈ K and u0 ∈ T (x0) such that

〈Au0, y − x0〉 + f(y) − f(x0) �≤ intP 0, ∀y ∈ K;
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(b) there exists x0 ∈ K such that

〈Av, y − x0〉 + f(y) − f(x0) �≤ intP 0, ∀y ∈ K, v ∈ T (y).

Proof. Suppose that there exist x0 ∈ K and u0 ∈ T (x0) such that

〈Au0, y − x0〉 + f(y)− f(x0) �≤ intP 0, ∀y ∈ K.

Since T is pseudomonotone with respect to A and f ,

〈Av, y − x0〉+ f(y)− f(x0) �≤ intP 0, ∀y ∈ K, v ∈ T (y).

Conversely, suppose that there exists x0 ∈ K such that

〈Av, y − x0〉+ f(y)− f(x0) �≤ intP 0, ∀y ∈ K, v ∈ T (y).

Given any y ∈ K, we know that yt = ty + (1 − t)x0 ∈ K, ∀t ∈ (0, 1) since K is
convex. Replacing y by yt in the left-hand side of the last inequality, one derives
for each vt ∈ T (yt),

〈Avt, yt − x0〉 + f(yt) − f(x0)

= 〈Avt, ty + (1 − t)x0 − x0〉 + f(ty + (1 − t)x0) − f(x0)

≤ P 〈Avt, t(y − x0)〉+ tf(y) + (1− t)f(x0) − f(x0)

= t[〈Avt, y − x0〉+ f(y)− f(x0)].

By Lemma 2.2,

(1) 〈Avt, y − x0〉 + f(y)− f(x0) �≤ intP 0, ∀vt ∈ T (yt), t ∈ (0, 1).

Since T : K → 2L(X,Y ) be a nonempty weakly compact valued multifunction, T (yt)
and T (x0) are weakly compact and hence lie in CB(L(X, Y )). From Lemma 1.1 it
follows that for each t ∈ (0, 1) and each fixed vt ∈ T (yt) there exists an ut ∈ T (x0)
such that

‖vt − ut‖ ≤ (1 + t)H(T (yt), T (x0)).

Since T (x0) is weakly compact, without loss of generality, we may assume that
ut ⇀ u0 ∈ T (x0) as t → 0+. Since T is H∗-hemicontinuous, H(T (yt), T (x0)) →
0 as t → 0+. Thus one has for each � ∈ (L(X, Y ))∗,

〈�, vt − u0〉 = 〈�, vt − ut〉 + 〈�, ut − u0〉
≤ ‖�‖‖vt − ut‖ + 〈�, ut − u0〉
≤ ‖�‖(1 + t)H(T (yt), T (x0)) + 〈�, ut − u0〉 → 0 as t → 0+.
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This implies that vt ⇀ u0 as t → 0+. Note that the map u �→ 〈Au, y〉 is completely
continuous for each y ∈ X . Hence we deduce that for each y ∈ K

〈Avt, y − x0〉 → 〈Au0, y − x0〉 as t → 0+.

Also from (1) we know that

〈Avt, y − x0〉 + f(y) − f(x0) ∈ Y \ (−intP ).

Since Y \ (−intP ) is closed, we have

〈Au0, y − x0〉+ f(y)− f(x0) ∈ Y \ (−intP ),

and so
〈Au0, y − x0〉 + f(y) − f(x0) �≤ intP 0, ∀y ∈ K.

Finally, let us show that the vector u0 in the last inequality is not dependent on
y, that is,

〈Au0, z − x0〉+ f(z) − f(x0) �≤ intP 0, ∀z ∈ K.

Indeed, take a fixed z ∈ K arbitrarily and define zt = x+t(z−x) for all t ∈ (0, 1).
Utilizing Lemma 1.1, for each ut ∈ T (x0) where t ∈ (0, 1) there exists wt ∈ T (zt)
such that ‖ut − wt‖ ≤ (1 + t)H(T (x0), T (zt)). Since T is H∗-hemicontinuous,
H(T (x0), T (zt)) → 0 as t → 0+. Thus one has for each � ∈ (L(X, Y ))∗,

〈�, wt − u0〉 = 〈�, wt − ut〉 + 〈�, ut − u0〉
≤ ‖�‖‖ut − wt‖ + 〈�, ut − u0〉
≤ ‖�‖(1 + t)H(T (x0), T (zt)) + 〈�, ut − u0〉 → 0 as t → 0+.

This implies that wt ⇀ u0 as t → 0+. Note that the map u �→ 〈Au, y〉 is completely
continuous for each y ∈ X . Hence we deduce that for z ∈ K

〈Awt, z − x0〉 → 〈Au0, z − x0〉 as t → 0+.

Also from (1) we know that

〈Awt, z − x0〉 + f(z)− f(x0) ∈ Y \ (−intP ), ∀t ∈ (0, 1).

Since Y \ (−intP ) is closed, we have

〈Au0, z − x0〉+ f(z)− f(x0) ∈ Y \ (−intP ),

and so
〈Au0, z − x0〉+ f(z) − f(x0) �≤ intP 0, ∀z ∈ K.
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The proof is complete.

Theorem 2.1. Let K be a nonempty, closed and convex subset of a real reflexive
Banach space X and Y be a real Banach space ordered by a proper closed convex
and pointed cone P with apex at the origin and intP �= ∅. Assume that f : K → Y
is a convex map which is completely continuous on some nonempty, bounded, closed
and convex subset C of K. Let A : L(X, Y ) → Lc(X, Y ) be such that the map
u �→ 〈Au, y〉 is completely continuous for each y ∈ X , and T : K → 2L(X,Y ) be
a nonempty weakly compact valued multifunction which is H ∗-hemicontinuous and
pseudomonotone with respect to A and f . Then the following statements hold:

(i) there exist x0 ∈ C and u0 ∈ T (x0) such that

〈Au0, y − x0〉 + f(y) − f(x0) �≤ intP 0, ∀y ∈ C;

(ii) if

(2) −AT (x) ⊂ (NC(x) \ {0})c, ∀x ∈ C,

where NC(x) = {u ∈ L(X, Y ) : 〈u, x− y〉 + f(y) − f(x) �≤ intP 0, ∀y ∈ C} for
all x ∈ C, then (AT )−10 �= ∅.

Proof. We define two multivalued maps F, G : C → 2C as follows:

F (y) = {x ∈ C : 〈Au, y−x〉+f(y)−f(x) �≤ intP 0 for some u ∈ T (x)}, ∀y ∈ C

and

G(y) = {x ∈ C : 〈Av, y−x〉+f(y)−f(x) �≤ intP 0 for all v ∈ T (y)}, ∀y ∈ C.

Then F (y) and G(y) are nonempty due to y ∈ G(y) ∩ F (y). We claim that F is
a KKM mapping. If this is false, then there exist a finite set {x1, ..., xn} ⊂ C and
ti ≥ 0, i = 1, 2, ..., n with

∑n
i=1 ti = 1 such that

x =
n∑

i=1

tixi �∈
n⋃

i=1

F (xi).

Hence for any u ∈ T (x) one has

〈Au, xi − x〉 + f(xi) − f(x) ≤ intP 0, i = 1, 2, ..., n.

It follows that
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0 = 〈Au, x− x〉 + f(x) − f(x)

≥ P

n∑

i=1

ti〈Au, x− xi〉 + f(x) −
n∑

i=1

tif(xi)

=
n∑

i=1

ti[〈Au, x− xi〉 + f(x)− f(xi)]

≥ intP 0

which leads to a contradiction since P is proper. So F is a KMM mapping.
Furthermore we can prove that F (y) ⊂ G(y) for every y ∈ C. Indeed, let x ∈ F (y).
Then for some u ∈ T (x) one has

〈Au, y − x〉 + f(y) − f(x) �≤ intP 0.

Since T is pseudomonotone with respect to A and f , one has

〈Av, y − x〉 + f(y) − f(x) �≤ intP 0, ∀y ∈ C, v ∈ T (y).

Hence F (y) ⊂ G(y) for all y ∈ C, and so G is also a KMM mapping. Now we
claim that for each y ∈ C, G(y) ⊂ C is closed in the weak topology of X . Indeed,
suppose x̄ ∈ G(y)

w
, the weak closure of G(y). Then there exists a sequence {xn}

in G(y) such that {xn} converges weakly to x̄ ∈ C. So we derive for each v ∈ T (y)

〈Av, y − xn〉 + f(y)− f(xn) �≤ intP 0

which implies that

〈Av, y − xn〉 + f(y)− f(xn) ∈ Y \ (−intP ).

Since Av and f are completely continuous and Y \ (−intP ) is closed, so

〈Av, y − xn〉 + f(y) − f(xn) → 〈Av, y − x̄〉 + f(y)− f(x̄)

and 〈Av, y − x̄〉 + f(y) − f(x̄) ∈ Y \ (−intP ). Thus we get

〈Av, y − x̄〉 + f(y) − f(x̄) �≤ intP 0,

and so x̄ ∈ G(y). This shows that G(y) is weakly closed for each y ∈ C. Since X
is reflexive and C ⊂ K is nonempty, bounded, closed and convex, C is a weakly
compact subset of X and so G(y) is also weakly compact. According to Lemma
2.1, ⋂

y∈C

G(y) �= ∅.

This implies that there exists x0 ∈ C such that

〈Av, y − x0〉 + f(y) − f(x0) �≤ intP 0, ∀y ∈ C, v ∈ T (y).
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Therefore by applying Lemma 2.3, we conclude that there exist x0 ∈ C and u0 ∈
T (x0) such that

(3) 〈Au0, y − x0〉+ f(y)− f(x0) �≤ intP 0, ∀y ∈ C.

This shows that the conclusion (i) is valid.
Further, in terms of (3) and the definition of NC(x), i.e.,

NC(x) = {u ∈ L(X, Y ) : 〈u, x− y〉 + f(y)− f(x) �≤ intP 0, ∀y ∈ C}

for all x ∈ C, we conclude that

−Au0 ∈ NC(x0) = {u ∈ L(X, Y ) : 〈u, x0−y〉+f(y)−f(x0) �≤ intP 0, ∀y ∈ C}.
Suppose −Au0 �= 0. Then

−Au0 ∈ NC(x0) \ {0}.

This shows that there exists x0 ∈ C such that

(−AT (x0)) ∩ (NC(x0) \ {0}) �= ∅,
which hence contradicts (2). Consequently, Au0 = 0 and so (AT )−10 �= ∅. The
proof is complete.

Corollary 2.1. Let K be a nonempty, bounded, closed and convex subset of a
real reflexive Banach space X and Y be a real Banach space ordered by a proper
closed convex and pointed cone P with apex at the origin and intP �= ∅. Assume
that f : K → Y is a convex and completely continuous map. Let A : L(X, Y ) →
Lc(X, Y ) be such that the map u �→ 〈Au, y〉 is completely continuous for each
y ∈ X , and T : K → 2L(X,Y ) be a nonempty weakly compact valued multifunction
which is H ∗-hemicontinuous and pseudomonotone with respect to A and f . Then
there exist x0 ∈ K and u0 ∈ T (x0) such that

〈Au0, y − x0〉 + f(y)− f(x0) �≤ intP 0, ∀y ∈ K.

Proof. Putting K = C, by Theorem 2.1 we obtain the desired result.

Corollary 2.2. Let K be a nonempty, bounded, closed and convex subset of
X = Rn and Y be a real Banach space ordered by a proper closed convex and
pointed cone P with apex at the origin and intP �= ∅. Assume that f : K → Y is a
convex and continuous map. Let A : L(Rn, Y ) → L(Rn, Y ) be such that the map
u �→ 〈Au, y〉 is completely continuous for each y ∈ X , and T : K → 2L(Rn,Y ) be
a nonempty weakly compact valued multifunction which is H ∗-hemicontinuous and



162 L. C. Ceng, G. Y. Chen, X. X. Huang and Jen-Chih Yao

pseudomonotone with respect to A and f . Then there exist x 0 ∈ K and u0 ∈ T (x0)
such that

〈Au0, y − x0〉 + f(y) − f(x0) �≤ intP 0, ∀y ∈ K.

If the boundedness of K in Corollary 2.1 is dropped off, then we have the
following theorem under certain coercivity condition:

Theorem 2.2. Let K be a nonempty, closed and convex subset of a real reflexive
Banach space X with 0 ∈ K and Y be a real Banach space ordered by a proper
closed convex and pointed cone P with apex at the origin and intP �= ∅. Assume
that f : K → Y is a convex map which is completely continuous on K ∩B r where
Br = {x ∈ X : ‖x‖ ≤ r} for some r > 0. Let A : L(X, Y ) → Lc(X, Y ) be
such that the map u �→ 〈Au, y〉 is completely continuous for each y ∈ X , and
T : K → 2L(X,Y ) be a nonempty weakly compact valued multifunction which is
H∗-hemicontinuous and pseudomonotone with respect to A and f . Suppose there
holds the condition:

(4) 〈Av, y〉+ f(y) − f(0) ≥intP 0, ∀v ∈ T (y), y ∈ K with ‖y‖ = r.

Then the following statements hold:

(i) there exist x0 ∈ K and u0 ∈ T (x0) such that

〈Au0, y − x0〉 + f(y) − f(x0) �≤ intP 0, ∀y ∈ K.

(ii) if

−AT (x) ⊂ (NK(x) \ {0})c, ∀x ∈ K,

where NK(x) = {u ∈ L(X, Y ) : 〈u, x− y〉 + f(y) − f(x) �≤ intP 0, ∀y ∈ K} for
all x ∈ K, then (AT )−10 �= ∅.

Proof. Put C = K ∩ Br where Br = {x ∈ X : ‖x‖ ≤ r}. By Theorem 2.1,
there exist xr ∈ C and ur ∈ T (xr) such that

(5) 〈Aur, y − xr〉 + f(y) − f(xr) �≤ intP 0, ∀y ∈ C.

Putting y = 0 in the above inequality, one has

(6) 〈Aur, xr〉 + f(xr) − f(0) �≥intP 0.

Combining (4) with (6), we know that ‖xr‖ < r. For any z ∈ K choose t ∈ (0, 1)
enough small such that (1− t)xr + tz ∈ C. Putting y = (1− t)xr + tz in (5), one
has

〈Aur, (1− t)xr + tz − xr〉+ f((1− t)xr + tz) − f(xr) �≤ intP 0.
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Since f is convex,

〈Aur, (1− t)xr + tz − xr〉 + f((1 − t)xr + tz) − f(xr)

≤ Ct〈Aur, z − xr〉 + (1 − t)f(xr) + tf(z) − f(xr)

= t[〈Aur, z − xr〉+ f(z) − f(xr)].

By Lemma 2.2,

〈Aur, z − xr〉 + f(z)− f(xr) �≤ intP 0, ∀z ∈ K.

Further, in terms of the last inequality and the definition of NK(x), i.e.,

NK(x) = {u ∈ L(X, Y ) : 〈u, x− y〉+ f(y)− f(x) �≤ intP 0, ∀y ∈ K}
for all x ∈ K, we conclude that

−Aur ∈ NK(xr) = {u ∈ L(X, Y ) : 〈u, xr−y〉+f(y)−f(xr) �≤ intP 0, ∀y ∈ K}.
Suppose −Aur �= 0. Then

−Aur ∈ NK(xr) \ {0}.
This shows that there exists xr ∈ K such that

(−AT (xr)) ∩ (NK(xr) \ {0}) �= ∅,
which hence leads to a contradiction. Consequently, Aur = 0 and so (AT )−10 �= ∅.
The proof is complete.

Corollary 2.3. Let K be a nonempty, closed and convex subset of X = R n

with 0 ∈ K and Y be a real Banach space ordered by a proper closed convex and
pointed cone P with apex at the origin and intP �= ∅. Assume that f : K → Y is
a convex map which is continuous on K ∩ Br where Br = {x ∈ Rn : ‖x‖ ≤ r}
for some r > 0. Let A : L(Rn, Y ) → L(Rn, Y ) be such that the map u �→
〈Au, y〉 is completely continuous for each y ∈ X , and T : K → 2L(Rn,Y ) be a
nonempty weakly compact valued multifunction which is H ∗-hemicontinuous and
pseudomonotone with respect to A and f . If the following holds:

〈Av, y〉+ f(y)− f(0) ≥intP 0, ∀v ∈ T (y), y ∈ K with ‖y‖ = r,

then there exist x0 ∈ K and u0 ∈ T (x0) such that

〈Au0, y − x0〉 + f(y)− f(x0) �≤ intP 0, ∀y ∈ K.
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3. APPLICATIONS

Utilizing Theorems 2.1 and 2.2 in Section 2, we will derive some new results
on the existence of zero points of pseudomonotone multifunctions in real reflexive
Banach spaces.

Theorem 3.1. Let K be a nonempty, closed and convex subset of a real reflexive
Banach space X . Assume that f : K → (−∞,∞) is a convex function which
is weakly sequential continuous on some nonempty, bounded, closed and convex
subset C of K. Let A : X ∗ → X∗ be such that the map u �→ 〈Au, y〉 is weak∗
sequentially continuous for each y ∈ X , and T : K → 2 X∗ be a nonempty weak∗
compact valued multifunction which is H ∗-hemicontinuous and pseudomonotone
with respect to A and f . If

(7) −AT (x) ⊂ (NC(x) \ {0})c, ∀x ∈ C,

where NC(x) = {u ∈ X∗ : 〈u, x− y〉+ f(y)− f(x) ≥ 0, ∀y ∈ C} for all x ∈ C,
then (AT )−10 �= ∅.

Proof. Putting Y = (−∞,∞) and P = [0,∞), we know that intP = (0,∞),
L(X, Y ) = X∗ the dual of X and

Lc(X, Y ) = L(X, Y ) = X∗.

In this case, we also know that (L(X, Y ))∗ = X∗∗ = X and

σ(L(X, Y ), (L(X, Y ))∗) = σ(X∗, X) the weak∗ topology of X∗.

Obviously, it is easy to see that f : K → (−∞,∞) is a convex function which is
completely continuous on the nonempty, bounded, closed and convex subset C of K

and that A : X ∗ → X∗ is such that the map u �→ 〈Au, y〉 is completely continuous
for each y ∈ X . Therefore, by Theorem 2.1 we obtain the desired result.

Corollary 3.1. Let K be a nonempty, closed and convex subset of a real
reflexive Banach space X . Assume that f : K → (−∞,∞) is a convex function
which is weakly sequentially continuous on some nonempty, bounded, closed and
convex subset C of K. Let T : K → 2X∗ be a nonempty weak∗ compact valued
multifunction which is H ∗-hemicontinuous and pseudomonotone with respect to I
and f . If

−T (x) ⊂ (NC(x) \ {0})c, ∀x ∈ C,

where NC(x) = {u ∈ X∗ : 〈u, x− y〉+ f(y)− f(x) ≥ 0, ∀y ∈ C} for all x ∈ C,
then T−10 �= ∅.
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Proof. Put A = I the identity mapping of X ∗. Then it is clear that I : X ∗ →
X∗ is such that the map u �→ 〈I(u), y〉 is weak∗ sequentially continuous for each
y ∈ X . Hence by Theorem 3.1 we obtain the desired result.

Theorem 3.2. Let K be a nonempty, closed and convex subset of a real reflexive
Banach space X with 0 ∈ K. Assume that f : K → (−∞,∞) is a convex function
which is weakly sequential continuous on K ∩B r where Br = {x ∈ X : ‖x‖ ≤ r}
for some r > 0. Let A : X ∗ → X∗ be such that the map u �→ 〈Au, y〉 is weak∗
sequentially continuous for each y ∈ X , and T : K → 2 X∗ be a nonempty weak∗
compact valued multifunction which is H ∗-hemicontinuous and pseudomonotone
with respect to A and f . Suppose there holds the condition:

〈Av, y〉+ f(y)− f(0) > 0, ∀v ∈ T (y), y ∈ K with ‖y‖ = r.

If
−AT (x) ⊂ (NK(x) \ {0})c, ∀x ∈ K,

where NK(x) = {u ∈ L(X, Y ) : 〈u, x − y〉 + f(y) − f(x) ≥ 0, ∀y ∈ K} for all
x ∈ K, then (AT )−10 �= ∅.

Proof. Putting Y = (−∞,∞) and P = [0,∞), by Theorem 2.2 we obtain the
desired result.

Corollary 3.2. Let K be a nonempty, closed and convex subset of a real
reflexive Banach space X with 0 ∈ K . Assume that f : K → (−∞,∞) is a
convex function which is weakly sequential continuous on K ∩ B r where Br =
{x ∈ X : ‖x‖ ≤ r} for some r > 0. Let T : K → 2X∗ be a nonempty weak∗
compact valued multifunction which is H ∗-hemicontinuous and pseudomonotone
with respect to I and f . Suppose there holds the condition:

〈v, y〉+ f(y) − f(0) > 0, ∀v ∈ T (y), y ∈ K with ‖y‖ = r.

If
−T (x) ⊂ (NK(x) \ {0})c, ∀x ∈ K,

where NK(x) = {u ∈ L(X, Y ) : 〈u, x − y〉 + f(y) − f(x) ≥ 0, ∀y ∈ K} for all
x ∈ K, then T−10 �= ∅.

Let T : X → 2X∗ and f : X → (−∞,∞). For r > 0 and x0 ∈ X , we consider
the following generalized variational inequality (for short, GVI(T, f, Br[x0])): Find
x̂ ∈ Br[x0] and u∗ ∈ T (x̂) such that

〈u∗, y − x̂〉 + f(y)− f(x̂) ≥ 0, ∀y ∈ Br[x0],
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where Bδ[x0] = {x ∈ X : ‖x − x0‖ ≤ δ}. We say that the pair (x̂, u∗) solves
the GVI(T, f, Br[x0]). Next utilizing Theorem 3.1 we establish an existence result
under the assumptions that T satisfies coercivity condition and X is reflexive; for
related coercivity condition, see Yao [16].

Theorem 3.3. Let X be a real reflexive Banach space and let f : X →
(−∞,∞) be a convex and weakly sequentially continuous function. Let T :
X → 2X∗ be a nonempty weak∗ compact valued multifunction which is H ∗-
hemicontinuous and pseudomonotone with respect to I and f . Suppose there exists
x̂ ∈ X such that the following hold:

(i)

(8) lim
y→x̂

( inf
y∗∈T (y)

〈y∗, y − x̂〉 + f(y) − f(x̂)
‖y − x̂‖ ) > 0;

(ii) If for some r > 0 and some u∗ ∈ T (x̂), (x̂, u∗) solves the GVI(T, f, Br[x̂]),
then u∗ = 0.
Then T−10 �= ∅.

Proof. From condition (8), there exists δ > 0 such that

inf
y∗∈T (y)

〈y∗, y − x̂〉 + f(y)− f(x̂)
‖y − x̂‖ > 0, ∀y ∈ Bδ[x̂] \ {x̂}.

In particular,

inf
y∗∈T (y)

〈y∗, y − x̂〉+ f(y)− f(x̂) > 0, ∀y ∈ Bδ[x̂] \ {x̂}.

It follows that

(9) −T (y) ⊂ (NBδ[x̂](y) \ {0})c, ∀y ∈ Bδ[x̂] \ {x̂},
where NBδ[x̂](y) = {x∗ ∈ X∗ : 〈x∗, y − x〉 + f(x) − f(y) ≥ 0, ∀x ∈ Bδ [x̂]} for
all y ∈ Bδ [x̂].

On the other hand, let us show that

−T (x̂) ⊂ (NBδ[x̂](x̂) \ {0})c.

Indeed, if this is false, then

−T (x̂) ∩ (NBδ[x̂](x̂) \ {0}) �= ∅.
Hence there exists u∗ ∈ T (x̂) with u∗ �= 0 such that

〈−u∗, x̂− x〉+ f(x)− f(x̂) ≥ 0, ∀x ∈ Bδ [x̂],
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and hence
〈u∗, x− x̂〉 + f(x)− f(x̂) ≥ 0, ∀x ∈ Bδ[x̂].

Thus, (x̂, u∗) solves the GVI(T, f, Bδ[x̂]). From condition (ii) we conclude that
u∗ = 0. This leads to a contradiction. Consequently, from (9) we know that

−T (y) ⊂ (NBδ[x̂](y) \ {0})c, ∀y ∈ Bδ [x̂].

Note that X is reflexive and Bδ [x̂] is a nonempty, bounded, closed and convex
subset of X . Now, putting K = X and C = Bδ [x̂], by Theorem 3.1 we have
T−10 �= ∅. The proof is complete.

Remark 3.1. Motivated by Browder [12] and Minty [13], Matsushita and Taka-
hashi [20] considered the coercivity condition similar to (8) under the assumption
that T : X → 2X∗ is a pseudomonotone operator such that each Tx is a nonempty
weakly compact convex subset of X∗ as follows: There exists x̂ ∈ X such that

lim
‖y‖→∞

( inf
y∗∈T (y)

〈y∗, y − x̂〉
‖y‖ ) = ∞.

It is well known that Asplund [18] has shown that a reflexive Banach space X
has an equivalent norm such that X is a strictly convex and smooth Banach space.
A Banach space X is said to be smooth provided the limit

(10) lim
t→0+

‖x + ty‖ − ‖x‖
t

exists for each x, y ∈ X with ‖x‖ = ‖y‖ = 1. In this case, the norm of X is said
to be Gâteaux differentiable. X is said to be strictly convex if ‖(x + y)/2‖ < 1
for all x, y ∈ X with ‖x‖ = ‖y‖ = 1 and x �= y. The normalized duality mapping
J : X → 2X∗ is defined by

J(x) = {x∗ ∈ X∗ : 〈x∗, x〉 = ‖x∗‖‖x‖, ‖x∗‖ = ‖x‖}.

Without confusion, one understands that ‖x∗‖ is the X ∗-norm and ‖x‖ is the X-
norm. Many properties of the normalized duality mapping J have been studied. For
the details, one may see Takahashi [17]. We list some properties below for easy
reference:

(P1) for any x ∈ X , J(x) is nonempty, bounded, closed and convex;
(P2) for any x ∈ X and a real number α, J(αx) = αJ(x);
(P3) if X is reflexive, J is a mapping of X onto X∗;
(P4) if X is smooth, J is a single-valued continuous mapping on X ;
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(P5) if X is strictly convex, J is one-to-one.

Let C be a nonempty closed convex subset of a reflexive, strictly convex and
smooth Banach space. For any x ∈ X , there exists a unique point x0 ∈ C such that

‖x0 − x‖ = min
y∈C

‖y − x‖.

The mapping PC : X → C defined by PCx = x0 is called the metric projection
from X onto C. For each x ∈ X , PCx satisfies

(11) 〈J(x − PCx), PCx − y〉 ≥ 0, ∀y ∈ C.

(see [17, 19] for more details).

Further we characterize the existence of zero points of a pseudomonotone mul-
tifunction under the assumptions that K = X and X is reflexive, strictly convex
and smooth.

Theorem 3.4. Let X be a real reflexive, strictly convex and smooth Banach
space. Let A : X∗ → X∗ be such that the map u �→ 〈Au, y〉 is weak∗ sequentially
continuous for each y ∈ X , and let T : X → 2X∗ be a nonempty weak∗ compact
valued multifunction which is H ∗-hemicontinuous and pseudomonotone with respect
to A. Then the following statements are equivalent:

(i) (AT )−10 �= ∅;
(ii) there exists a nonempty, bounded, closed and convex subset C of X such that

−AT (x) ⊂ (NC(x) \ {0})c, ∀x ∈ C

where NC(x) = {x∗ ∈ X∗ : 〈x∗, x − y〉 ≥ 0, ∀y ∈ C} for all x ∈ C.

Proof. First, let us show that (i) ⇒ (ii). Indeed, take a fixed x0 ∈ (AT )−10
and r > 0. Assume that there exists z ∈ Br [x0] such that

−AT (z) ∩ (NBr[x0](z) \ {0}) �= ∅,
that is, there exists ū ∈ T (z) such that

(12) −Aū ∈ NBr[x0](z) \ {0},
Since NBr[x0](x) \ {0} = ∅ whenever ‖x‖ < r, we may assume z ∈ ∂Br [x0]
without loss of generality.

From (12),

−Aū �= 0 and 〈−Aū, z − y〉 ≥ 0, ∀y ∈ Br[x0],
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and hence

−Aū �= 0 and 〈J(z − J−1Aū − z), z − y〉 ≥ 0, ∀y ∈ Br[x0], .

It follows from (11) that

z = PBr[x0](z − J−1Aū).

In particular, z − J−1Aū �∈ Br[x0]. Indeed, if z − J−1Aū ∈ Br[x0], then

z = PBr[x0](z − J−1Aū) = z − J−1Aū,

and hence −Aū = 0, which leads to a contradiction.
Let t = r

‖z−J−1Aū−x0‖ and w0 = t(z −J−1Aū−x0)+ x0 ∈ ∂Br[x0]. We next
show that

w0 = PBr[x0](z − J−1Aū).

For each y ∈ Br [x0], we have

〈J(z − J−1Aū − w0), w0 − y〉 = 〈J(z − J−1Aū − x0 + x0 − w0), w0 − y〉

= 〈J(
1
t
(w0 − x0) + x0 − w0), w0 − y〉

=
1 − t

t
〈J(w0 − x0), w0 − x0 + x0 − y〉

=
1 − t

t
(‖w0 − x0‖2 + 〈J(w0 − x0), x0 − y〉)

≥ 1 − t

t
(r2 − ‖w0 − x0‖‖x0 − y‖)

=
1 − t

t
r(r − ‖y − x0‖) ≥ 0.

This together with (11) implies that w0 = PBr [x0](z − J−1Aū). Consequently,

t(z − J−1Aū − x0) + x0 = w0 = PBr[x0](z − J−1Aū) = z,

and hence
Aū =

1 − t

t
J(x0 − z).

Since T is pseudomonotone with respect to A, from ū ∈ Tz and x0 ∈ (AT )−10,
we have

0 ≤ 〈Aū, z − x0〉 =
1 − t

t
〈J(x0 − z), z − x0〉 = −1 − t

t
‖z − x0‖2 < 0,

which is a contradiction. Therefore, we deduce that

−AT (x) ⊂ (NBr[x0](x) \ {0})c, ∀x ∈ Br [x0].
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Second, we claim that (ii) ⇒ (i). Indeed, it follows from Theorem 3.1 that (ii)
implies (i).

Corollary 3.3. Let X be a real reflexive, strictly convex and smooth Banach
space and let T : X → 2X∗ be a nonempty weak∗ compact valued multifunc-
tion which is H ∗-hemicontinuous and pseudomonotone. Then the following are
equivalent:

(i) T−10 �= ∅;
(ii) there exists a nonempty, bounded, closed and convex subset C of X such that

−T (x) ⊂ (NC(x) \ {0})c, ∀x ∈ C

where NC(x) = {x∗ ∈ X∗ : 〈x∗, x − y〉 ≥ 0, ∀y ∈ C} for all x ∈ C.

Proof. Put A = I the identity mapping of X ∗. Then it is obvious that
I : X∗ → X∗ is such that the map u �→ 〈Au, y〉 is weak∗ sequentially continuous
for each y ∈ X . By Theorem 3.4 we obtain the desired result.
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