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K-CYCLIC EVEN CYCLE SYSTEMS OF THE COMPLETE GRAPH

Shung-Liang Wu and Dung-Ming Lee

Abstract. An (m1, . . . , mr)-cycle is the union of edge-disjoint mi-cycles for
1 ≤ i ≤ r. An (m1 , . . . , mr)-cycle system of the complete graph Kv , (VVV ,CCC),
is said to be k-cyclic if VVV = Zv and for k ∈ Zv , C +k ∈ CCC whenever C ∈ CCC .

Let mi (1 ≤ i ≤ r ) be even integers (> 2) and let
∑r

i=1 mi = m = ks
with gcd(k, s) = 1 and k odd. Suppose v is the least positive integer such
that v(v − 1) ≡ 0 (mod 2m) and gcd(v, m) = k. In this paper, it is proved
that if there is a k-cyclic (m1, . . . , mr)-cycle system of order v, then for any
positive integer p, a k-cyclic (m1, . . . , mr) cycle system of order 2pm + v
exists.

As the main consequence of this paper, the necessary and sufficient con-
ditions for the existence of a k-cyclic (m1 , . . . , mr)-cycle system of order v
with mi even and

∑r
i=1 mi ≤ 20 are given.

1. INTRODUCTION

An m-cycle, written (c0, c1, . . . , cm−1), consists of m distinct vertices c0, c1,
. . ., cm−1, and m edges {ci, ci+1}, 0 ≤ i ≤ m−2, and {c0, cm−1}. Let m1, . . ., mr

be integers greater than 2. An (m1, . . . , mr)-cycle is the union of edge-disjoint mi-
cycles for 1 ≤ i ≤ r. An (m1, . . . , mr)-cycle system of a graph G is a pair (VVV ,CCC),
where VVV is the vertex set of G and CCC is a collection of (m1, . . . , mr)-cycles whose
edges partition the edges of G.

If G = Kv, the complete graph with v vertices, then such an (m1, . . . , mr)-
cycle system is called an (m1, . . . , mr)-cycle system of order v. In particular, If
m1 = · · · = mr = m, it is known as an m-cycle system.

Given an m-cycle Cm = (c0, c1, . . . , cm−1), by Cm + j we mean (c0 + j, c1 +
j, . . . , cm−1 + j), where j ∈ Zv . Analogously, if C = {Cm1 , . . . , Cmr} is an
(m1, ..., mr)-cycle, we use C + j instead of {Cm1 + j, . . . , Cmr + j}.
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An (m1, . . . , mr)-cycle system of order v, (VVV ,CCC), is said to be k-cyclic if
VVV = Zv and for k ∈ Zv , C + k ∈ CCC whenever C ∈ CCC . In particular, if k = 1, then
it is simply called cyclic. A cyclic (m1, . . . , mr)-cycle system, of course, is also a
k-cyclic (m1, . . . , mr)-cycle system for k ∈ Zv.

The study of m-cycle systems of the complete graph has been one of the most
interesting problems in graph decomposition. The existence question for m-cycle
systems of the complete graph has been completely settled by Alspach and Gavlas
[1] in the case of m odd and by Šajna [10] in the even case.

The existence question for cyclic m-cycle systems of order v has been completely
solved for m = 3 [7], 5 and 7 [9]. For m even and v ≡ 1 (mod 2m), cyclic m-
cycle systems of order v was proved for m ≡ 0 (mod 4) [6] and for m ≡ 2
(mod 4) [8]. Recently, it has been shown in [2, 4, 5] that for each pair of integers
(m, n), there exists a cyclic m-cycle system of order 2mn + 1, and in particular,
for each odd prime p, there exists a cyclic p-cycle system [2, 5]. For v ≡ m

(mod 2m), cyclic m-cycle systems of order v are presented for m /∈ M [3], where
M = {pα | p is prime, α > 1} ∪ {15}, and in [11] for m ∈ M . More recently,
combining the known results, it has also been proved in [12] that for 3 ≤ m ≤ 32,
there exists a cyclic m-cycle system and there exists a cyclic 2q-cycle system with
q a prime power. Moreover, Fu and Wu [5] proved the following result.

Theorem 1.1. [5] ]If m1, . . . , mr are integers with
∑r

i=1 mi = m, then there
exists a cyclic (m1, . . . , mr)-cycle system of order 2m + 1.

The main result of this article is the following.

Theorem 1.2. Let mi (1 ≤ i ≤ r) be even integers (> 2) and let
∑r

i=1 mi =
ks ≤ 20 with gcd(k, s) = 1 and k odd. Then for each admissible value v such that
v(v−1) ≡ 0 (mod 2m) and gcd(v, m) = k, there exists a k-cyclic (m1, . . . , mr)-
cycle system of order v with the exception that (v; m 1, . . . , mr) = (9; 4, 6, 8) and
(9; 4, 4, 4, 6).

2. THE NECESSARY CONDITIONS

All graphs considered here have vertices in Zv. In what follows, assume 3 ≤
m1 ≤ · · · ≤ mr and

∑r
i=1 mi = m. The necessary conditions for the existence of

an (m1, . . . , mr)-cycle system of order v is that v ≥ mr, m divides v(v − 1)/2,
and the degree of each vertex is even. Obviously, v must be odd.

Given any positive integers m1, . . . , mr with
∑r

i=1 mi = m, it is not easy
to find each admissible value v such that an (m1, . . . , mr)-cycle system of order
v exists. However, if we fix an odd factor of m, say k, so that m = ks with
gcd(k, s) = 1 and suppose gcd(v, m) = k, then it turns out to be a simpler work.
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A method to find out each admissible value v will be given. First, we need one
basic fact from number theory.

Fact. The linear congruence ax ≡ 1 (mod m) has a unique integral solution
modulo m if and only if gcd(a, m) = 1.

Throughout this paper, let
∑r

i=1 mi = m = ks with k odd and gcd(k, s) = 1.

Proposition 2.1. Let m and v be positive integers with gcd(m, v) = k and let
c be the least positive integral solution of the linear congruence kx ≡ 1 (mod 2s)
satisfying kc ≥ mr. If v is any admissible value of an (m 1, . . . , mr)-cycle system,
then

v = 2pm + kc

for some integer p ≥ 0.

Proof. Since the value of v is admissible, we have 2m|v(v−1), and since m =
ks and gcd(m, v) = k, it implies that 2s|v − 1 or, equivalently, v ≡ 1 (mod 2s)
or, equivalently, kx ≡ 1 (mod 2s) for some positive integer x. Note that x is odd
and gcd(x, 2s) = 1. Now, by the fact stated above, the linear congruence kx ≡ 1
(mod 2s) has a unique least positive integral solution c, that is, v = 2pm + kc for
some integer p ≥ 0 because gcd(m, v) = k.

As usual, we use Spec(m) to denote the set of all admissible values v. By
Proposition 2.1, if m has n distinct odd factors then the number of residue classes
(modulo 2m) in Spec(m) is 2n. Consider, for instance, the m-cycle system with
m = 180. It is clear that all possible values of k are 1, 32, 5, or 32 · 5 and we have
four residue classes modulo 360. An easy verification shows that Spec(180) =
{v|v ≡ 1, 81, 145, or 225 (mod 360)}.

As a consequence of Proposition 2.1, which will be used later, we have Spec(m)
for m = 6, 2k (k ≥ 2), 10, 12, 14, 18, and 20.

Corollary 2.2.

(1) Spec(6) = {v|v ≡ 1, 9 (mod 12)}.
(2) Spec(2k) = {v|v ≡ 1 (mod 2k+1)} for k ≥ 2.
(3) Spec(10) = {v|v ≡ 1, 5 (mod 20)}.
(4) Spec(12) = {v|v ≡ 1, 9 (mod 24)}.
(5) Spec(14) = {v|v ≡ 1, 21 (mod 28)}.
(6) Spec(18) = {v|v ≡ 1, 9 (mod 36)}.
(7) Spec(20) = {v|v ≡ 1, 25 (mod 40)}.
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For any cycle with vertices in Zv, it is proved in [13] that the sum of absolute
differences of edges in C must be even.

Lemma 2.3. [13] Let C = (c0, c1, . . . , cm−1) be an m-cycle with ci ∈ Zv

where 0 ≤ i ≤ m − 1 and v is any positive integer. Then the sum of absolute
differences of edges in C is even.

Proof. The proof follows immediately from the fact that

m∑

i=1

|ci − ci−1| ≡
m∑

i=1

(ci − ci−1) ≡ 0 (mod 2)

3. DEFINITIONS AND PRELIMINARIES

Assume {a, b} to be any edge in Kv, we shall use ±|a − b| to denote the
difference of the edge {a, b}.

Given a subset Ω of Zv \ {0} with Ω = −Ω, let Gv[Ω] denote the subgraph of
Kv which contains the edges {a, a + b} with a ∈ Zv and b ∈ Ω. Where it is clear
what v is, the subscript will be omitted and just write G[Ω].

Let C be an (m1, . . . , mr)-cycle in a k-cyclic (m1, . . . , mr)-cycle system of
order v. The (m1, . . . , mr)-cycle orbit Ò of C is defined as the set of distinct
(m1, . . . , mr)-cycles {C + ik|i ∈ Zv}. The length of an (m1, . . . , mr)-cycle orbit
is its cardinality, i.e., the minimum positive integer p such that C + pk = C.
An (m1, . . . , mr)-cycle orbit of length v is called full, otherwise short. A base
(m1, . . . , mr)-cycle of an (m1, . . . , mr)-cycle orbit Ò is an (m1, . . . , mr)-cycle
C ∈ Ò that is chosen arbitrarily. A base (m1, . . . , mr)-cycle corresponding to an
(m1, . . . , mr)-cycle orbit Ò is said to be full (resp. short) if Ò is full (resp. short).
An (m1, . . . , mr)-cycle orbit Ò is full if and only if the differences of edges of
any base (m1, . . . , mr)-cycle in Ò are distinct. Any k-cyclic (m1, . . . , mr)-cycle
system of order v could be generated from full or short base (m1, . . . , mr)-cycles.

Throughout this paper, we will restrict our attention to the case where mi (1 ≤
i ≤ r) are all even (> 3 ).

Lemma 3.1. Let G[Ω] be a subgraph of K2pm+kc with Ω = ±{a1, . . . , at}
and m even. If there exists a k-cyclic (m1, . . . , mr)-cycle system of G[Ω], then t
is even and m divides kt.

Proof. Let {a, b} be any edge of G[Ω]. Note that the edges {a, b} and {a +
i, b + i} in G[Ω] with i ∈ Z2pm+kc have the same difference. Since G[Ω] has
a k-cyclic (m1, . . . , mr)-cycle system, this means that the number of edges with
the same difference occurring in the union of base (m1, . . . , mr)-cycles, say C, is
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precisely k, and so the number of edges in C is equal to kt, which is a multiple of
m. It follows that t must be even since m is even.

A set of integers is said to be a complete residue system modulo k if every
integer is congruent modulo k to exactly one integer of the set. For instance, the
set {0, 1, 7, 8, 4} is a complete residue system of modulo 5.

Given a subgraph H of G[Ω] with ks edges, gcd(k, s) = 1, and k odd, the
graph H is called modulo k-complete on G[Ω] if the following conditions hold:

(1) The edge set of H can be partitioned into s subsets such that each subset
contains k edges;

(2) All k edges in each subset have the same difference;
(3) If {a1, b1}, . . . , {ak, bk} with ai < bi are distinct edges in a subset, then

both of the sets {a1, . . . , ak} and {b1, . . . , bk} are complete residue systems
modulo k; and

(4) For each edge {a, b} in H , the absolute difference of a and b is less than or
equal to �(v + 1)/2�.

Example 1. Consider a (4, 8)-cycle C = {(1, 2, 3, 5), (0, 1, 4, 6, 2, 5, 7, 3)},
which is a subgraph of K9 with 3 · 4 edges. It is easy to check that the (4, 8)-
cycle C is modulo 3-complete on K9, and by virtue of the fact that C is modulo
3-complete on K9, it follows that there exists a 3-cyclic (4, 8)-cycle system of order
9.

The following consequence plays a crucial role for the construction of a k-cyclic
(m1, . . . , mr)-cycle system and its proof follows immediately from the definition
of modulo k-completeness on G[Ω].

Proposition 3.2. Let C be the union of (m1, . . . , mr)-cycles with ks edges,
gcd(k, s) = 1, and k odd. If C is modulo k-complete on Gkc[Ω], then there exists
a k-cyclic (m1, . . . , mr)-cycle system of Gkc[Ω].

By D we mean the difference set in an (m1, . . . , mr)-cycle. The following
consequences can be found in [14].

Lemma 3.3. [14] For any positive integers s and t, there exists a 4s-cycle with
D = ±{t, t+1, . . . , t+4s−1} in Kv where v is odd with v ≥ 2(t+4s−1)+1.

Note that, by Lemma 2.3, there does not exist a (4s + 2)-cycle with D =
±{t, t + 1, . . . , t + 4s + 1} for any positive integer t.

Lemma 3.4. [14] Let s and t be any positive integers.
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(1) There exists a (4s + 2)-cycle with D = ±{t, t + 1, . . . , t+ 4s, t + 4s + 2} in
Kv where v is odd with v ≥ 2(t + 4s + 2) + 1.

(2) There exists a (4s + 2)-cycle with D = ±{t, t + 2, . . . , t + 4s + 2} in Kv

where v is odd with v ≥ 2(t + 4s + 2) + 1.

In order to construct cycles of even length with consecutive differences, one may
utilize cycles of length congruent to 0 modulo 4 and/or an even number of cycles
of length congruent to 2 modulo 4.

As immediate consequences of Lemmas 3.3 and 3.4, we have the following two
preliminary results.

Corollary 3.5. If mi ≡ 0 (mod 4) for 1 ≤ i ≤ r, then for any positive integer
t, there exists an (m1, . . . , mr)-cycle with D = ±{t, t + 1, . . . , t + m − 1} in Kv

where v is odd with v ≥ 2(t + m − 1) + 1.

Corollary 3.6. Let t be any positive integer.

(1) If r is even and mi ≡ 2 (mod 4) for 1 ≤ i ≤ r, then there exists an
(m1, . . . , mr)-cycle with D = ±{t, t + 1, ..., t + m − 1} in Kv where v is
odd with v ≥ 2(t + m − 1) + 1.

(2) If r is even and mi ≡ 2 (mod 4) for 1 ≤ i ≤ r, then there exists an
(m1, . . . , mr)-cycle with D = ±{t, t + 2, . . . , t + m − 1, t + m + 1} in Kv

where v is odd with v ≥ 2(t + m + 1) + 1.
(3) If r is odd and mi ≡ 2 (mod 4) for 1 ≤ i ≤ r, then there exists an

(m1, . . . , mr)-cycle with D = ±{t, t+1, . . . , t+m−2, t+m} in Kv where
v is odd with v ≥ 2(t + m) + 1.

(4) If r is odd and mi ≡ 2 (mod 4) for 1 ≤ i ≤ r, then there exists an
(m1, . . . , mr)-cycle with D = ±{t, t + 2, . . . , t + m} in Kv where v is odd
with v ≥ 2(t + m) + 1.

By N we mean the number of cycles in an (m1, . . . , mr)-cycle with length
congruent to 2 modulo 4.

Proposition 3.7. If there exists a k-cyclic (m1, . . . , mr)-cycle system of order
kc, then for any positive integer p, there exists a k-cyclic (m 1, . . . , mr)-cycle system
of order 2pm + kc.

Proof. Set q = �kc/2�. Note that by Lemma 3.1, q is congruent to 0 or 2
(mod 4). Let Ω1 = ±{1, 2, . . . , q}, Ω2 = ±{q + 1, q + 2, . . . , pm + q}, Ω3 =
±{1, 2, . . . , q − 1, q + 1}, and Ω4 = ±{q, q + 2, . . . , pm + q}. It is clear that
K2pm+kc is isomorphic to the union of G[Ω1] and G[Ω2] or G[Ω3] and G[Ω4].
Since there exists a k−cyclic (m1, . . . , mr)-cycle system of order kc, it suffices to
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show that there exists a cyclic (m1, . . . , mr)-cycle system of G[Ω2] or G[Ω4] with
full base (m1, . . . , mr)-cycles. Without loss of generality, we may assume mi ≡ 0
(mod 4) for 1 ≤ i ≤ w and mi ≡ 2 (mod 4) for w+1 ≤ i ≤ r, where 0 ≤ w ≤ r.
Let us set N = r − w. We divide the proof into two cases depending on whether
q ≡ 0 or 2 (mod 4).

Case 1. q ≡ 0 (mod 4).
If N is even or if N is odd and p is even, then by Corollaries 3.5 and 3.6-

(1), we obtain the graph C, the union of p edge-disjoint (m1, . . . , mr)-cycles, with
D = ±{q +1, q +2, . . . , pm+ q}; if N is odd and p is odd, by Corollaries 3.5 and
3.6-(3), we also have the graph C with D = ±{q + 1, q + 2, . . . , pm + q}.

Case 2. q ≡ 2 (mod 4).
If N is even or if N is odd and p is even, then by Corollaries 3.5 and 3.6-

(2), the graph C with D = ±{q, q + 2, q + 3, . . . , pm + q} is given; if N is
odd and p is odd, by Corollaries 3.5 and 3.6-(4), we obtain the graph C with
D = ±{q, q + 2, q + 3, . . . , pm + q}.

Then use the graph C constructed in each case as the base (m1, . . . , mr)-cycles
and the desired (m1, . . . , mr)-cycle system follows.

For clarity, we give some examples to demonstrate the construction of a k-cyclic
(m1, . . . , mr)-cycle system stated above.

Example 2. Consider the (4, 8)-cycle C in Example 1. Use C as the base
(4, 8)-cycle and a 3-cyclic (4, 8)-cycle system of G9[Ω] with Ω = ±{1, 2, 3, 4} then
follows. Since the absolute difference of each edge {a, b} in C is less than or equal
to 4, it means that the (4, 8)-cycle C can also be used as the base (4, 8)-cycle of a
3-cyclic (4, 8)-cycle system of G24p+9[Ω] and hence, a 3-cyclic (4, 8)-cycle system
of G24p+9[Ω] does exist for p ≥ 0.

Example 3. For 1 ≤ i ≤ 5, let Ci be (4, 10)-cycles with 7 · 2 edges given as

C1 = {(4, 5, 8, 10), (2, 8, 16, 9, 17, 6, 10, 7, 14, 3)};

C2 = {(8, 17, 10, 19), (1, 2, 4, 3, 6, 14, 5, 9, 18, 7)};

C3 = {(5, 10, 18, 11), (1, 6, 12, 20, 13, 9, 7, 3, 8, 4)};

C4 = {(5, 7, 8, 6), (0, 5, 16, 7, 11, 19, 12, 8, 15, 6)}; and

C5 = {(4, 7, 6, 9), (2, 5, 3, 9, 20, 11, 6, 4, 15, 7)}.

Assume C to be the union of (4, 10)-cycles C1,. . . , C5 and let v = 21 = 7 · 3.
An easy verification shows that C is modulo 7-complete on K21 and a 7-cyclic
(4, 10)-cycle system of order 28t + 21 exist for each t ≥ 0.



144 Shung-Liang Wu and Dung-Ming Lee

4. PROOF OF THE MAIN RESULT

We are now in a position to prove the main result in this paper.

Proof of Theorem 1.2. By virtue of Theorem 1.1, it follows that there exists a
cyclic (m1, . . . , mr)-cycle system of order 2pm + 1 for p ≥ 1. So, we need only
consider the remaining case. By Propositions 2.1 and 3.7, it is enough to show that
there exists a k-cyclic (m1, . . . , mr)-cycle system of order kc if kc < 2m+1, or that
there exists a k-cyclic (m1, . . . , mr)-cycle system of Gkc[Ω] if kc ≥ 2m+1, where
Ω = ±{1, 2, . . . , �kc/2� − m} or ±{1, 2, . . . , �kc/2� − m − 1, �kc/2� − m + 1}.

In order to accomplish this objective, by Proposition 3.2, it suffices to prove
that C, the union of (m1, . . . , mr)-cycles, is modulo k-complete on Gkc[Ω]. For
the convenience of notation, by (Gkc[Ω]; Cm1, . . . , Cmr ; k)-CS we mean the union
of (m1, . . . , mr)-cycles which is modulo k-complete on Gkc[Ω]. The proof is split
into 6 cases depending on m = 6, 10, 12, 14, 18, or 20. We recall that for each m,
the Spec(m) is given in Corollary 2.2.

Case 1. Suppose that
∑r

i=1 mi = 6.

(K9; C6; 3)-CS = {(0, 1, 2, 5, 7, 3), (1, 5, 3, 2, 6, 4)}.

Case 2. Suppose that
∑r

i=1 mi = 10.

(G25[±{1, 3}]; C10; 5)-CS = {(0, 3, 6, 9, 8, 7, 4, 5, 2, 1)}.

(G25[±{1, 3}]; C4, C6; 5)-CS = {(0, 1, 2, 3), (3, 4, 7, 10, 9, 6)}.

Case 3. Suppose that
∑r

i=1 mi = 12.

(G33[±{1, 2, 3, 4}];C12; 3)-CS = {(1, 5, 8, 9, 12, 14, 16, 15, 11, 10, 7, 3)}.

(K9; C4, C8; 3)-CS = {(1, 2, 3, 5), (0, 1, 4, 6, 2, 5, 7, 3)}.

(K9; C6, C6; 3)-CS = {(0, 3, 5, 8, 4, 1), (1, 2, 6, 5, 7, 3)}.

(K9; C4, C4, C4; 3)-CS = {(0, 1, 5, 2), (1, 2, 6, 3), (2, 3, 7, 4)}.

Case 4. Suppose that
∑r

i=1 mi = 14.

(K21; C14; 7)-CS = {(2, 3, 5, 4, 15, 7, 9, 17, 6, 11, 18, 10, 19, 8),

(1, 2, 4, 3, 8, 10, 6, 14, 5, 11, 20, 9, 18, 7),

(3, 14, 13, 12, 19, 11, 7, 10, 5, 9, 16, 8, 4, 6),

(0, 5, 2, 7, 3, 9, 13, 16, 11, 14, 15, 8, 12, 6),
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(1, 4, 10, 17, 8, 5, 16, 7, 14, 12, 20, 13, 15, 6)}.

(K21; C4, C10; 7)-CS = {{(4, 5, 8, 10), (2, 8, 16, 9, 17, 6, 10, 7, 14, 3)}∪
{(8, 17, 10, 19), (1, 2, 4, 3, 6, 14, 5, 9, 18, 7)}∪
{(5, 10, 18, 11), (1, 6, 12, 20, 13, 9, 7, 3, 8, 4)}∪
{(5, 7, 8, 6), (0, 5, 16, 7, 11, 19, 12, 8, 15, 6)}∪
{(4, 7, 6, 9), (2, 5, 3, 9, 20, 11, 6, 4, 15, 7)}}.

(K21; C6, C8; 7)-CS = {{(6, 10, 7, 18, 9, 17), (3, 8, 4, 15, 6, 11, 20, 9)}∪
{(7, 11, 19, 12, 8, 15), (0, 6, 1, 4, 10, 19, 8, 5)}∪
{(6, 12, 20, 13, 9, 7), (2, 5, 4, 3, 14, 6, 8, 7)}∪
{(1, 10, 5, 14, 7, 3), (2, 3, 5, 9, 4, 7, 16, 8)}∪
{(3, 10, 18, 11, 5, 6), (1, 2, 4, 6, 9, 16, 5, 7)}}

(K21; C4, C4, C6; 7)-CS = {{(1, 4, 15, 6), (6, 9, 20, 11), (2, 8, 16, 9, 5, 3)}∪
{(2, 5, 16, 7), (0, 5, 14, 6), (6, 10, 7, 18, 9, 17)}∪
{(4, 5, 8, 10), (5, 7, 8, 6), (7, 11, 19, 12, 8, 15)}∪
{(8, 17, 10, 19), (3, 9, 4, 8), (6, 12, 20, 13, 9, 7)}∪
{(5, 10, 18, 11), (3, 4, 7, 14), (1, 2, 4, 6, 3, 7)}}.

Case 5. Suppose that
∑r

i=1 mi = 18.
It follows from Lemma 3.1 that there does not exist 3-cyclic (4, 6, 8)- and (4, 4, 4, 6)-
cycle systems of order 9

(G45[±{1, 2, 3, 4}];C18; 9)-CS =

{(1, 2, 5, 3, 7, 6, 9, 10, 12, 15, 19, 17, 16, 14, 13, 11, 8, 4),

(7, 11, 9, 12, 13, 15, 17, 21, 20, 24, 23, 26, 27, 25, 22, 18, 14, 10)}
(G45[±{1, 2, 3, 4}];C4, C14; 9)-CS =

{{(8, 9, 10, 12), (1, 2, 3, 7, 10, 14, 12, 13, 17, 15, 11, 9, 6, 4)}∪
{(4, 5, 8, 7), (5, 6, 10, 8, 11, 14, 18, 22, 20, 16, 15, 12, 9, 7)}.

(G45[±{1, 2, 3, 4}];C6, C12; 9)-CS =

{{(5, 7, 10, 9, 8, 6), (1, 5, 9, 12, 14, 17, 13, 10, 8, 7, 6, 2)}∪
{(3, 7, 11, 9, 6, 4), (2, 5, 4, 7, 9, 13, 11, 8, 12, 10, 6, 3)}}

(G45[±{1, 2, 3, 4}]; C8, C10; 9)-CS =
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{{(9, 10, 14, 12, 13, 17, 15, 11), (4, 5, 8, 12, 10, 6, 9, 13, 11, 7)}∪
{(7, 8, 11, 14, 16, 15, 12, 9), (1, 2, 3, 7, 10, 8, 9, 5, 6, 4)}}.

(G45[±{1, 2, 3, 4}];C4, C4, C10; 9)-CS =

{{(0, 1, 5, 3), (3, 4, 8, 6), (4, 5, 8, 12, 10, 6, 9, 13, 11, 7)}∪
{(7, 9, 11, 8), (2, 6, 7, 5), (1, 2, 3, 7, 10, 8, 9, 5, 6, 4)}}.

(G45[±{1, 2, 3, 4}];C4, C6, C8; 9)-CS =

{{(0, 1, 5, 3), (6, 7, 10, 12, 8, 9), (1, 2, 5, 7, 8, 6, 3, 4)}∪
{(5, 6, 10, 8), (4, 5, 9, 13, 11, 7), (2, 3, 7, 9, 11, 8, 4, 6)}}.

(G45[±{1, 2, 3, 4}];C4, C4, C4, C6; 9)-CS =

{{(0, 1, 5, 3), (1, 2, 6, 4), (2, 3, 7, 5), (6, 7, 10, 12, 8, 9)}∪
{(3, 4, 8, 6), (5, 6, 10, 8), (7, 9, 11, 8), (4, 5, 9, 13, 11, 7)}}.

Case 6. Suppose that
∑r

i=1 = 20.

(K25; C20; 5)-CS =

{(1, 6, 15, 9, 8, 4, 14, 19, 22, 11, 17, 20, 21, 18, 13, 5, 16, 7, 12, 2),

(0, 4, 2, 13, 11, 9, 16, 8, 15, 10, 20, 18, 12, 24, 17, 5, 7, 3, 14, 6),

(2, 3, 12, 5, 4, 16, 6, 18, 11, 15, 24, 21, 17, 9, 20, 8, 14, 23, 13, 10)}.

(K25; C4, C16; 5)-CS =

{{(4, 11, 16, 12), (2, 12, 7, 16, 17, 11, 22, 19, 14, 4, 8, 9, 15, 6, 18, 13)}∪
{(0, 6, 5, 4), (2, 4, 16, 5, 7, 3, 14, 8, 20, 18, 12, 24, 15, 11, 13, 10)}∪
{(2, 3, 12, 5), (0, 8, 18, 9, 1, 11, 3, 10, 5, 15, 4, 6, 13, 16, 19, 12)}}.

(K25; C6, C14; 5)-CS =

{{(4, 5, 6, 12, 16, 11), (0, 8, 18, 9, 1, 11, 5, 15, 4, 6, 13, 16, 19, 12)}∪
{(5, 9, 17, 16, 7, 12), (2, 5, 10, 3, 14, 4, 8, 20, 18, 12, 24, 15, 11, 13)}∪
{(2, 3, 7, 5, 16, 4), (2, 12, 3, 11, 22, 19, 14, 8, 9, 15, 6, 18, 13, 10)}}.

(K25; C8, C12; 5)-CS =

{{(1, 13, 4, 9, 6, 12, 3, 5), (0, 12, 2, 3, 1, 6, 7, 9, 8, 4, 16, 5)}∪
{(1, 12, 4, 5, 2, 10, 3, 9), (0, 8, 2, 9, 15, 3, 6, 4, 14, 5, 12, 10)}∪
{(0, 1, 11, 2, 14, 3, 13, 6), (2, 6, 15, 4, 11, 3, 7, 12, 9, 5, 8, 13)}}.
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(K25; C10, C10; 5)-CS =

{{(0, 5, 16, 4, 9, 7, 6, 1, 3, 12), (2, 11, 3, 7, 12, 9, 5, 8, 13, 6)}∪
{(0, 10, 12, 5, 4, 6, 3, 9, 2, 8), (1, 9, 15, 3, 10, 2, 5, 14, 4, 12)}∪
{(0, 1, 5, 3, 14, 2, 13, 4, 15, 6), (1, 11, 4, 8, 9, 6, 12, 2, 3, 13)}}.

(K25; C4, C4, C12; 5)-CS =

{{(3, 12, 4, 9), (1, 5, 2, 3), (0, 12, 2, 11, 1, 6, 7, 9, 8, 4, 16, 5)}∪
{(2, 10, 3, 14), (1, 9, 6, 12), (0, 8, 2, 9, 15, 3, 6, 4, 14, 5, 12, 10)}∪
{(0, 1, 13, 6), (3, 5, 4, 13), (2, 6, 15, 4, 11, 3, 7, 12, 9, 5, 8, 13)}}.

(K25; C4, C6, C10; 5)-CS =

{{(3, 11, 4, 15), (2, 12, 7, 6, 4, 13), (0, 10, 12, 4, 5, 9, 7, 3, 13, 6)}∪
{(1, 9, 2, 5), (0, 1, 6, 2, 3, 12), (0, 8, 2, 11, 1, 3, 9, 4, 16, 5)}∪
{(2, 10, 3, 14), (5, 12, 6, 15, 9, 8), (1, 12, 9, 6, 3, 5, 14, 4, 8, 13)}}.

(K25; C4, C8, C8; 5)-CS =

{{(3, 11, 4, 15), (0, 8, 2, 11, 1, 9, 3, 12), (0, 5, 16, 4, 9, 2, 6, 1)}∪
{(1, 5, 2, 3), (0, 6, 7, 3, 13, 4, 12, 10), (4, 8, 9, 15, 6, 12, 5, 14)}∪
{(2, 10, 3, 14), (1, 12, 9, 6, 3, 5, 8, 13), (2, 13, 6, 4, 5, 9, 7, 12)}}.

(K25; C6, C6, C8; 5)-CS =

{{(1, 9, 5, 4, 8, 13), (2, 9, 7, 3, 14, 5), (0, 10, 12, 4, 15, 3, 13, 6)}∪
{(2, 12, 7, 6, 4, 13), (0, 1, 6, 2, 3, 12), (5, 12, 6, 8, 14, 9, 21, 10)}∪
{(1, 12, 9, 6, 3, 5), (2, 10, 3, 11, 4, 14), (5, 13, 7, 16, 6, 15, 9, 8)}}.

(K25; C4, C4, C4, C8; 5)-CS =

{{(4, 14, 5, 8), (3, 11, 4, 15), (0, 4, 2, 7), (0, 8, 2, 11, 1, 9, 3, 12)}∪
{(1, 5, 2, 3), (1, 4, 3, 8), (1, 12, 2, 13), (0, 5, 16, 4, 9, 2, 6, 1)}∪
{(3, 5, 4, 6), (2, 10, 3, 14), (1, 7, 4, 10), (0, 6, 7, 3, 13, 4, 12, 10)}}.

(K25; C4, C4, C6, C6; 5)-CS =

{{(4, 14, 5, 8), (1, 5, 2, 3), (1, 9, 3, 15, 4, 11), (0, 8, 2, 11, 3, 12)}∪
{(1, 4, 3, 8), (1, 12, 2, 13), (0, 5, 16, 4, 6, 1), (2, 6, 3, 5, 4, 9)}∪
{(2, 10, 3, 14), (1, 7, 4, 10), (0, 6, 7, 3, 13, 4), (0, 10, 12, 4, 2, 7)}}.
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5. CONCLUDING REMARK

So far, for each even mi with
∑r

i=1 mi ≤ 20, a k-cyclic (m1, . . . , mr)-cycle
system is given, but we can not find out an ingenious method to construct a k-
cyclic (m1, . . . , mr)-cycle in general. It is natural, however, to pose the following
problem.

Conjecture. Suppose
∑r

i=1 mi = ks with mi even, gcd(k, s) = 1, and k

odd and let c be the least positive integral solution of kx ≡ 1 (mod 2s) satisfying
kc ≥ mr. Then there exists a k-cyclic (m1, . . . , mr)-cycle system of order kc.

Moreover, we may ask whether the values of mi’s in an (m1, . . . , mr)-cycle
could be odd. In fact, we believe that the existence problem for k-cyclic (m1, . . . , mr)-
cycle system is still correct even though some of mi’s in an (m1, . . . , mr)-cycle are
odd. It turns out, however, a much more difficult problem. We conclude this paper
with an example.

Let C be a (3, 4, 5)-cycle with 3 · 4 edges and v = 33 = 3 · 11. The base
(3, 4, 5)-cycles of the 3-cyclic (3, 4, 5)-cycle system of order 33 are:

(G33[±{1, 2, 3, 4}]; C3, C4, C5; 3)-CS = {(0, 1, 2), (1, 5, 2, 3), (2, 4, 7, 3, 6)}, and

(G33[±{5, 6, . . . , 16}]; C3, C4, C5; 1)-CS = {(0, 5, 11), (0, 12, 28, 13), (0, 7, 15, 24,

10)}.
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