TAIWANESE JOURNAL OF MATHEMATICS Vol. 12, No. 1, pp. 137-149, February 2008 This paper is available online at http://www.tjm.nsysu.edu.tw/

K-CYCLIC EVEN CYCLE SYSTEMS OF THE COMPLETE GRAPH

Shung-Liang Wu and Dung-Ming Lee

Abstract. An (m_1, \ldots, m_r) -cycle is the union of edge-disjoint m_i -cycles for $1 \le i \le r$. An (m_1, \ldots, m_r) -cycle system of the complete graph K_v , (V, C), is said to be k-cyclic if $V = Z_v$ and for $k \in Z_v$, $C + k \in C$ whenever $C \in C$.

Let m_i $(1 \le i \le r)$ be even integers (> 2) and let $\sum_{i=1}^r m_i = m = ks$ with gcd(k,s) = 1 and k odd. Suppose v is the least positive integer such that $v(v-1) \equiv 0 \pmod{2m}$ and gcd(v,m) = k. In this paper, it is proved that if there is a k-cyclic (m_1, \ldots, m_r) -cycle system of order v, then for any positive integer p, a k-cyclic (m_1, \ldots, m_r) cycle system of order 2pm + vexists.

As the main consequence of this paper, the necessary and sufficient conditions for the existence of a k-cyclic (m_1, \ldots, m_r) -cycle system of order v with m_i even and $\sum_{i=1}^r m_i \leq 20$ are given.

1. INTRODUCTION

An *m*-cycle, written $(c_0, c_1, \ldots, c_{m-1})$, consists of *m* distinct vertices $c_0, c_1, \ldots, c_{m-1}$, and *m* edges $\{c_i, c_{i+1}\}, 0 \le i \le m-2$, and $\{c_0, c_{m-1}\}$. Let m_1, \ldots, m_r be integers greater than 2. An (m_1, \ldots, m_r) -cycle is the union of edge-disjoint m_i -cycles for $1 \le i \le r$. An (m_1, \ldots, m_r) -cycle system of a graph *G* is a pair (V, C), where *V* is the vertex set of *G* and *C* is a collection of (m_1, \ldots, m_r) -cycles whose edges partition the edges of *G*.

If $G = K_v$, the complete graph with v vertices, then such an (m_1, \ldots, m_r) -cycle system is called an (m_1, \ldots, m_r) -cycle system of order v. In particular, If $m_1 = \cdots = m_r = m$, it is known as an *m*-cycle system.

Given an *m*-cycle $C_m = (c_0, c_1, \ldots, c_{m-1})$, by $C_m + j$ we mean $(c_0 + j, c_1 + j, \ldots, c_{m-1} + j)$, where $j \in Z_v$. Analogously, if $C = \{C_{m_1}, \ldots, C_{m_r}\}$ is an (m_1, \ldots, m_r) -cycle, we use C + j instead of $\{C_{m_1} + j, \ldots, C_{m_r} + j\}$.

Communicated by Xuding Zhu.

2000 Mathematics Subject Classification: 05C70.

Received December 13, 2004, accepted May 18, 2006.

Key words and phrases: Cyclic, Cycle system.

An (m_1, \ldots, m_r) -cycle system of order v, (\mathbf{V}, \mathbf{C}) , is said to be *k*-cyclic if $\mathbf{V} = Z_v$ and for $k \in Z_v$, $C + k \in \mathbf{C}$ whenever $C \in \mathbf{C}$. In particular, if k = 1, then it is simply called cyclic. A cyclic (m_1, \ldots, m_r) -cycle system, of course, is also a *k*-cyclic (m_1, \ldots, m_r) -cycle system for $k \in Z_v$.

The study of *m*-cycle systems of the complete graph has been one of the most interesting problems in graph decomposition. The existence question for *m*-cycle systems of the complete graph has been completely settled by Alspach and Gavlas [1] in the case of *m* odd and by Šajna [10] in the even case.

The existence question for cyclic *m*-cycle systems of order *v* has been completely solved for m = 3 [7], 5 and 7 [9]. For *m* even and $v \equiv 1 \pmod{2m}$, cyclic *m*cycle systems of order *v* was proved for $m \equiv 0 \pmod{4}$ [6] and for $m \equiv 2 \pmod{4}$ [8]. Recently, it has been shown in [2, 4, 5] that for each pair of integers (m, n), there exists a cyclic *m*-cycle system of order 2mn + 1, and in particular, for each odd prime *p*, there exists a cyclic *p*-cycle system [2, 5]. For $v \equiv m \pmod{2m}$, cyclic *m*-cycle systems of order *v* are presented for $m \notin M$ [3], where $M = \{p^{\alpha} \mid p \text{ is prime, } \alpha > 1\} \cup \{15\}$, and in [11] for $m \in M$. More recently, combining the known results, it has also been proved in [12] that for $3 \le m \le 32$, there exists a cyclic *m*-cycle system and there exists a cyclic 2q-cycle system with *q* a prime power. Moreover, Fu and Wu [5] proved the following result.

Theorem 1.1. [5] *JIf* m_1, \ldots, m_r are integers with $\sum_{i=1}^r m_i = m$, then there exists a cyclic (m_1, \ldots, m_r) -cycle system of order 2m + 1.

The main result of this article is the following.

Theorem 1.2. Let m_i $(1 \le i \le r)$ be even integers (>2) and let $\sum_{i=1}^r m_i = ks \le 20$ with gcd(k, s) = 1 and k odd. Then for each admissible value v such that $v(v-1) \equiv 0 \pmod{2m}$ and gcd(v,m) = k, there exists a k-cyclic (m_1, \ldots, m_r) -cycle system of order v with the exception that $(v; m_1, \ldots, m_r) = (9; 4, 6, 8)$ and (9; 4, 4, 4, 6).

2. The Necessary Conditions

All graphs considered here have vertices in Z_v . In what follows, assume $3 \le m_1 \le \cdots \le m_r$ and $\sum_{i=1}^r m_i = m$. The necessary conditions for the existence of an (m_1, \ldots, m_r) -cycle system of order v is that $v \ge m_r$, m divides v(v-1)/2, and the degree of each vertex is even. Obviously, v must be odd.

Given any positive integers m_1, \ldots, m_r with $\sum_{i=1}^r m_i = m$, it is not easy to find each admissible value v such that an (m_1, \ldots, m_r) -cycle system of order v exists. However, if we fix an odd factor of m, say k, so that m = ks with gcd(k, s) = 1 and suppose gcd(v, m) = k, then it turns out to be a simpler work.

A method to find out each admissible value v will be given. First, we need one basic fact from number theory.

Fact. The linear congruence $ax \equiv 1 \pmod{m}$ has a unique integral solution modulo m if and only if gcd(a, m) = 1.

Throughout this paper, let $\sum_{i=1}^{r} m_i = m = ks$ with k odd and gcd(k, s) = 1.

Proposition 2.1. Let m and v be positive integers with gcd(m, v) = k and let c be the least positive integral solution of the linear congruence $kx \equiv 1 \pmod{2s}$ satisfying $kc \geq m_r$. If v is any admissible value of an (m_1, \ldots, m_r) -cycle system, then

$$v = 2pm + kc$$

for some integer $p \ge 0$.

Proof. Since the value of v is admissible, we have 2m|v(v-1), and since m = ks and gcd(m, v) = k, it implies that 2s|v - 1 or, equivalently, $v \equiv 1 \pmod{2s}$ or, equivalently, $kx \equiv 1 \pmod{2s}$ for some positive integer x. Note that x is odd and gcd(x, 2s) = 1. Now, by the fact stated above, the linear congruence $kx \equiv 1 \pmod{2s}$ has a unique least positive integral solution c, that is, v = 2pm + kc for some integer $p \geq 0$ because gcd(m, v) = k.

As usual, we use Spec(m) to denote the set of all admissible values v. By Proposition 2.1, if m has n distinct odd factors then the number of residue classes (modulo 2m) in Spec(m) is 2^n . Consider, for instance, the m-cycle system with m = 180. It is clear that all possible values of k are 1, 3^2 , 5, or $3^2 \cdot 5$ and we have four residue classes modulo 360. An easy verification shows that Spec(180) = $\{v | v \equiv 1, 81, 145, \text{ or } 225 \pmod{360}\}$.

As a consequence of Proposition 2.1, which will be used later, we have Spec(m) for $m = 6, 2^k$ ($k \ge 2$), 10, 12, 14, 18, and 20.

Corollary 2.2.

- (1) $Spec(6) = \{v | v \equiv 1, 9 \pmod{12}\}.$
- (2) $Spec(2^k) = \{v | v \equiv 1 \pmod{2^{k+1}}\}$ for $k \ge 2$.
- (3) $Spec(10) = \{v | v \equiv 1, 5 \pmod{20}\}.$
- (4) $Spec(12) = \{v | v \equiv 1, 9 \pmod{24}\}.$
- (5) $Spec(14) = \{v | v \equiv 1, 21 \pmod{28}\}.$
- (6) $Spec(18) = \{v | v \equiv 1, 9 \pmod{36}\}.$
- (7) $Spec(20) = \{v | v \equiv 1, 25 \pmod{40}\}.$

For any cycle with vertices in Z_v , it is proved in [13] that the sum of absolute differences of edges in C must be even.

Lemma 2.3. [13] Let $C = (c_0, c_1, \ldots, c_{m-1})$ be an m-cycle with $c_i \in Z_v$ where $0 \le i \le m-1$ and v is any positive integer. Then the sum of absolute differences of edges in C is even.

Proof. The proof follows immediately from the fact that

$$\sum_{i=1}^{m} |c_i - c_{i-1}| \equiv \sum_{i=1}^{m} (c_i - c_{i-1}) \equiv 0 \pmod{2}$$

3. DEFINITIONS AND PRELIMINARIES

Assume $\{a, b\}$ to be any edge in K_v , we shall use $\pm |a - b|$ to denote the *difference* of the edge $\{a, b\}$.

Given a subset Ω of $Z_v \setminus \{0\}$ with $\Omega = -\Omega$, let $G_v[\Omega]$ denote the subgraph of K_v which contains the edges $\{a, a + b\}$ with $a \in Z_v$ and $b \in \Omega$. Where it is clear what v is, the subscript will be omitted and just write $G[\Omega]$.

Let C be an (m_1, \ldots, m_r) -cycle in a k-cyclic (m_1, \ldots, m_r) -cycle system of order v. The (m_1, \ldots, m_r) -cycle orbit Ò of C is defined as the set of distinct (m_1, \ldots, m_r) -cycles $\{C + ik | i \in Z_v\}$. The length of an (m_1, \ldots, m_r) -cycle orbit is its cardinality, i.e., the minimum positive integer p such that C + pk = C. An (m_1, \ldots, m_r) -cycle orbit of length v is called *full*, otherwise *short*. A base (m_1, \ldots, m_r) -cycle of an (m_1, \ldots, m_r) -cycle orbit Ò is an (m_1, \ldots, m_r) -cycle $C \in O$ that is chosen arbitrarily. A base (m_1, \ldots, m_r) -cycle corresponding to an (m_1, \ldots, m_r) -cycle orbit Ò is said to be *full* (resp. *short*) if Ò is full (resp. *short*). An (m_1, \ldots, m_r) -cycle orbit Ò is full if and only if the differences of edges of any base (m_1, \ldots, m_r) -cycle in Ò are distinct. Any k-cyclic (m_1, \ldots, m_r) -cycle system of order v could be generated from full or short base (m_1, \ldots, m_r) -cycles.

Throughout this paper, we will restrict our attention to the case where m_i $(1 \le i \le r)$ are all even (> 3).

Lemma 3.1. Let $G[\Omega]$ be a subgraph of K_{2pm+kc} with $\Omega = \pm \{a_1, \ldots, a_t\}$ and m even. If there exists a k-cyclic (m_1, \ldots, m_r) -cycle system of $G[\Omega]$, then tis even and m divides kt.

Proof. Let $\{a, b\}$ be any edge of $G[\Omega]$. Note that the edges $\{a, b\}$ and $\{a + i, b + i\}$ in $G[\Omega]$ with $i \in \mathbb{Z}_{2pm+kc}$ have the same difference. Since $G[\Omega]$ has a k-cyclic (m_1, \ldots, m_r) -cycle system, this means that the number of edges with the same difference occurring in the union of base (m_1, \ldots, m_r) -cycles, say C, is

140

precisely k, and so the number of edges in C is equal to kt, which is a multiple of m. It follows that t must be even since m is even.

A set of integers is said to be a *complete residue system modulo* k if every integer is congruent modulo k to exactly one integer of the set. For instance, the set $\{0, 1, 7, 8, 4\}$ is a complete residue system of modulo 5.

Given a subgraph H of $G[\Omega]$ with ks edges, gcd(k, s) = 1, and k odd, the graph H is called *modulo k-complete* on $G[\Omega]$ if the following conditions hold:

- (1) The edge set of H can be partitioned into s subsets such that each subset contains k edges;
- (2) All k edges in each subset have the same difference;
- (3) If $\{a_1, b_1\}, \ldots, \{a_k, b_k\}$ with $a_i < b_i$ are distinct edges in a subset, then both of the sets $\{a_1, \ldots, a_k\}$ and $\{b_1, \ldots, b_k\}$ are complete residue systems modulo k; and
- (4) For each edge $\{a, b\}$ in H, the absolute difference of a and b is less than or equal to |(v+1)/2|.

Example 1. Consider a (4, 8)-cycle $C = \{(1, 2, 3, 5), (0, 1, 4, 6, 2, 5, 7, 3)\}$, which is a subgraph of K_9 with $3 \cdot 4$ edges. It is easy to check that the (4, 8)-cycle C is modulo 3-complete on K_9 , and by virtue of the fact that C is modulo 3-complete on K_9 , it follows that there exists a 3-cyclic (4, 8)-cycle system of order 9.

The following consequence plays a crucial role for the construction of a k-cyclic (m_1, \ldots, m_r) -cycle system and its proof follows immediately from the definition of modulo k-completeness on $G[\Omega]$.

Proposition 3.2. Let C be the union of (m_1, \ldots, m_r) -cycles with ks edges, gcd(k, s) = 1, and k odd. If C is modulo k-complete on $G_{kc}[\Omega]$, then there exists a k-cyclic (m_1, \ldots, m_r) -cycle system of $G_{kc}[\Omega]$.

By D we mean the difference set in an (m_1, \ldots, m_r) -cycle. The following consequences can be found in [14].

Lemma 3.3. [14] For any positive integers s and t, there exists a 4s-cycle with $D = \pm \{t, t+1, \ldots, t+4s-1\}$ in K_v where v is odd with $v \ge 2(t+4s-1)+1$.

Note that, by Lemma 2.3, there does not exist a (4s + 2)-cycle with $D = \pm \{t, t+1, \ldots, t+4s+1\}$ for any positive integer t.

Lemma 3.4. [14] Let s and t be any positive integers.

- (1) There exists a (4s+2)-cycle with $D = \pm \{t, t+1, ..., t+4s, t+4s+2\}$ in K_v where v is odd with $v \ge 2(t+4s+2)+1$.
- (2) There exists a (4s + 2)-cycle with $D = \pm \{t, t + 2, ..., t + 4s + 2\}$ in K_v where v is odd with $v \ge 2(t + 4s + 2) + 1$.

In order to construct cycles of even length with consecutive differences, one may utilize cycles of length congruent to 0 modulo 4 and/or an even number of cycles of length congruent to 2 modulo 4.

As immediate consequences of Lemmas 3.3 and 3.4, we have the following two preliminary results.

Corollary 3.5. If $m_i \equiv 0 \pmod{4}$ for $1 \leq i \leq r$, then for any positive integer t, there exists an (m_1, \ldots, m_r) -cycle with $D = \pm \{t, t+1, \ldots, t+m-1\}$ in K_v where v is odd with $v \geq 2(t+m-1)+1$.

Corollary 3.6. Let t be any positive integer.

- (1) If r is even and $m_i \equiv 2 \pmod{4}$ for $1 \leq i \leq r$, then there exists an (m_1, \ldots, m_r) -cycle with $D = \pm \{t, t+1, \ldots, t+m-1\}$ in K_v where v is odd with $v \geq 2(t+m-1)+1$.
- (2) If r is even and $m_i \equiv 2 \pmod{4}$ for $1 \leq i \leq r$, then there exists an (m_1, \ldots, m_r) -cycle with $D = \pm \{t, t+2, \ldots, t+m-1, t+m+1\}$ in K_v where v is odd with $v \geq 2(t+m+1)+1$.
- (3) If r is odd and $m_i \equiv 2 \pmod{4}$ for $1 \leq i \leq r$, then there exists an (m_1, \ldots, m_r) -cycle with $D = \pm \{t, t+1, \ldots, t+m-2, t+m\}$ in K_v where v is odd with $v \geq 2(t+m) + 1$.
- (4) If r is odd and $m_i \equiv 2 \pmod{4}$ for $1 \leq i \leq r$, then there exists an (m_1, \ldots, m_r) -cycle with $D = \pm \{t, t+2, \ldots, t+m\}$ in K_v where v is odd with $v \geq 2(t+m) + 1$.

By N we mean the number of cycles in an (m_1, \ldots, m_r) -cycle with length congruent to 2 modulo 4.

Proposition 3.7. If there exists a k-cyclic (m_1, \ldots, m_r) -cycle system of order kc, then for any positive integer p, there exists a k-cyclic (m_1, \ldots, m_r) -cycle system of order 2pm + kc.

Proof. Set $q = \lfloor kc/2 \rfloor$. Note that by Lemma 3.1, q is congruent to 0 or 2 (mod 4). Let $\Omega_1 = \pm \{1, 2, \ldots, q\}$, $\Omega_2 = \pm \{q + 1, q + 2, \ldots, pm + q\}$, $\Omega_3 = \pm \{1, 2, \ldots, q - 1, q + 1\}$, and $\Omega_4 = \pm \{q, q + 2, \ldots, pm + q\}$. It is clear that K_{2pm+kc} is isomorphic to the union of $G[\Omega_1]$ and $G[\Omega_2]$ or $G[\Omega_3]$ and $G[\Omega_4]$. Since there exists a k-cyclic (m_1, \ldots, m_r) -cycle system of order kc, it suffices to

142

show that there exists a cyclic (m_1, \ldots, m_r) -cycle system of $G[\Omega_2]$ or $G[\Omega_4]$ with full base (m_1, \ldots, m_r) -cycles. Without loss of generality, we may assume $m_i \equiv 0 \pmod{4}$ for $1 \leq i \leq w$ and $m_i \equiv 2 \pmod{4}$ for $w+1 \leq i \leq r$, where $0 \leq w \leq r$. Let us set N = r - w. We divide the proof into two cases depending on whether $q \equiv 0$ or $2 \pmod{4}$.

Case 1. $q \equiv 0 \pmod{4}$.

If N is even or if N is odd and p is even, then by Corollaries 3.5 and 3.6-(1), we obtain the graph C, the union of p edge-disjoint (m_1, \ldots, m_r) -cycles, with $D = \pm \{q+1, q+2, \ldots, pm+q\}$; if N is odd and p is odd, by Corollaries 3.5 and 3.6-(3), we also have the graph C with $D = \pm \{q+1, q+2, \ldots, pm+q\}$.

Case 2. $q \equiv 2 \pmod{4}$.

If N is even or if N is odd and p is even, then by Corollaries 3.5 and 3.6-(2), the graph C with $D = \pm \{q, q + 2, q + 3, \dots, pm + q\}$ is given; if N is odd and p is odd, by Corollaries 3.5 and 3.6-(4), we obtain the graph C with $D = \pm \{q, q + 2, q + 3, \dots, pm + q\}$.

Then use the graph C constructed in each case as the base (m_1, \ldots, m_r) -cycles and the desired (m_1, \ldots, m_r) -cycle system follows.

For clarity, we give some examples to demonstrate the construction of a k-cyclic (m_1, \ldots, m_r) -cycle system stated above.

Example 2. Consider the (4, 8)-cycle C in Example 1. Use C as the base (4, 8)-cycle and a 3-cyclic (4, 8)-cycle system of $G_9[\Omega]$ with $\Omega = \pm \{1, 2, 3, 4\}$ then follows. Since the absolute difference of each edge $\{a, b\}$ in C is less than or equal to 4, it means that the (4, 8)-cycle C can also be used as the base (4, 8)-cycle of a 3-cyclic (4, 8)-cycle system of $G_{24p+9}[\Omega]$ and hence, a 3-cyclic (4, 8)-cycle system of $G_{24p+9}[\Omega]$ does exist for $p \ge 0$.

Example 3. For $1 \le i \le 5$, let C_i be (4, 10)-cycles with $7 \cdot 2$ edges given as $C_1 = \{(4, 5, 8, 10), (2, 8, 16, 9, 17, 6, 10, 7, 14, 3)\};$ $C_2 = \{(8, 17, 10, 19), (1, 2, 4, 3, 6, 14, 5, 9, 18, 7)\};$ $C_3 = \{(5, 10, 18, 11), (1, 6, 12, 20, 13, 9, 7, 3, 8, 4)\};$ $C_4 = \{(5, 7, 8, 6), (0, 5, 16, 7, 11, 19, 12, 8, 15, 6)\};$ and $C_5 = \{(4, 7, 6, 9), (2, 5, 3, 9, 20, 11, 6, 4, 15, 7)\}.$

Assume C to be the union of (4, 10)-cycles C_1, \ldots, C_5 and let $v = 21 = 7 \cdot 3$. An easy verification shows that C is modulo 7-complete on K_{21} and a 7-cyclic (4, 10)-cycle system of order 28t + 21 exist for each $t \ge 0$.

4. PROOF OF THE MAIN RESULT

We are now in a position to prove the main result in this paper.

Proof of Theorem 1.2. By virtue of Theorem 1.1, it follows that there exists a cyclic (m_1, \ldots, m_r) -cycle system of order 2pm + 1 for $p \ge 1$. So, we need only consider the remaining case. By Propositions 2.1 and 3.7, it is enough to show that there exists a k-cyclic (m_1, \ldots, m_r) -cycle system of order kc if kc < 2m+1, or that there exists a k-cyclic (m_1, \ldots, m_r) -cycle system of $G_{kc}[\Omega]$ if $kc \ge 2m+1$, where $\Omega = \pm\{1, 2, \ldots, \lfloor kc/2 \rfloor - m\}$ or $\pm\{1, 2, \ldots, \lfloor kc/2 \rfloor - m - 1, \lfloor kc/2 \rfloor - m + 1\}$.

In order to accomplish this objective, by Proposition 3.2, it suffices to prove that C, the union of (m_1, \ldots, m_r) -cycles, is modulo k-complete on $G_{kc}[\Omega]$. For the convenience of notation, by $(G_{kc}[\Omega]; C_{m_1}, \ldots, C_{m_r}; k)$ -CS we mean the union of (m_1, \ldots, m_r) -cycles which is modulo k-complete on $G_{kc}[\Omega]$. The proof is split into 6 cases depending on m = 6, 10, 12, 14, 18, or 20. We recall that for each m, the Spec(m) is given in Corollary 2.2.

Case 1. Suppose that $\sum_{i=1}^{r} m_i = 6$.

 $(K_9; C_6; 3)$ -CS = {(0, 1, 2, 5, 7, 3), (1, 5, 3, 2, 6, 4)}.

Case 2. Suppose that $\sum_{i=1}^{r} m_i = 10.$ $(G_{25}[\pm\{1,3\}]; C_{10}; 5)$ -CS = {(0,3,6,9,8,7,4,5,2,1)}. $(G_{25}[\pm\{1,3\}]; C_4, C_6; 5)$ -CS = {(0,1,2,3), (3,4,7,10,9,6)}.

Case 3. Suppose that $\sum_{i=1}^{r} m_i = 12$.

 $(G_{33}[\pm\{1,2,3,4\}]; C_{12}; 3) \cdot \mathbf{CS} = \{(1,5,8,9,12,14,16,15,11,10,7,3)\}.$ $(K_9; C_4, C_8; 3) \cdot \mathbf{CS} = \{(1,2,3,5), (0,1,4,6,2,5,7,3)\}.$ $(K_9; C_6, C_6; 3) \cdot \mathbf{CS} = \{(0,3,5,8,4,1), (1,2,6,5,7,3)\}.$ $(K_9; C_4, C_4, C_4; 3) \cdot \mathbf{CS} = \{(0,1,5,2), (1,2,6,3), (2,3,7,4)\}.$

Case 4. Suppose that $\sum_{i=1}^{r} m_i = 14$. $(K_{21}; C_{14}; 7)$ -**CS** = {(2, 3, 5, 4, 15, 7, 9, 17, 6, 11, 18, 10, 19, 8), (1, 2, 4, 3, 8, 10, 6, 14, 5, 11, 20, 9, 18, 7), (3, 14, 13, 12, 19, 11, 7, 10, 5, 9, 16, 8, 4, 6), (0, 5, 2, 7, 3, 9, 13, 16, 11, 14, 15, 8, 12, 6),

144

$$(1, 4, 10, 17, 8, 5, 16, 7, 14, 12, 20, 13, 15, 6)\}.$$

$$(K_{21}; C_4, C_{10}; 7)\text{-}\mathbf{CS} = \{\{(4, 5, 8, 10), (2, 8, 16, 9, 17, 6, 10, 7, 14, 3)\}\cup \{(8, 17, 10, 19), (1, 2, 4, 3, 6, 14, 5, 9, 18, 7)\}\cup \{(5, 10, 18, 11), (1, 6, 12, 20, 13, 9, 7, 3, 8, 4)\}\cup \{(5, 7, 8, 6), (0, 5, 16, 7, 11, 19, 12, 8, 15, 6)\}\cup \{(4, 7, 6, 9), (2, 5, 3, 9, 20, 11, 6, 4, 15, 7)\}\}.$$

$$(K_{21}; C_6, C_8; 7)\text{-}\mathbf{CS} = \{\{(6, 10, 7, 18, 9, 17), (3, 8, 4, 15, 6, 11, 20, 9)\}\cup \{(7, 11, 19, 12, 8, 15), (0, 6, 1, 4, 10, 19, 8, 5)\}\cup \{(6, 12, 20, 13, 9, 7), (2, 5, 4, 3, 14, 6, 8, 7)\}\cup \{(1, 10, 5, 14, 7, 3), (2, 3, 5, 9, 4, 7, 16, 8)\}\cup \{(3, 10, 18, 11, 5, 6), (1, 2, 4, 6, 9, 16, 5, 7)\}\}$$

$$(K_{21}; C_4, C_4, C_6; 7)\text{-}\mathbf{CS} = \{\{(1, 4, 15, 6), (6, 9, 20, 11), (2, 8, 16, 9, 5, 3)\}\cup \{(2, 5, 16, 7), (0, 5, 14, 6), (6, 10, 7, 18, 9, 17)\}\cup \{(4, 5, 8, 10), (5, 7, 8, 6), (7, 11, 19, 12, 8, 15)\}\cup \{(4, 5, 10, 18, 11), (3, 4, 7, 14), (1, 2, 4, 6, 3, 7)\}\}.$$

Case 5. Suppose that $\sum_{i=1}^{r} m_i = 18$. It follows from Lemma 3.1 that there does not exist 3-cyclic (4, 6, 8)- and (4, 4, 4, 6)- cycle systems of order 9

 $(G_{45}[\pm\{1,2,3,4\}]; C_{18}; 9)$ -CS =

 $\{(1, 2, 5, 3, 7, 6, 9, 10, 12, 15, 19, 17, 16, 14, 13, 11, 8, 4),\$

(7, 11, 9, 12, 13, 15, 17, 21, 20, 24, 23, 26, 27, 25, 22, 18, 14, 10)

 $(G_{45}[\pm\{1,2,3,4\}]; C_4, C_{14}; 9)$ -CS =

 $\{\{(8, 9, 10, 12), (1, 2, 3, 7, 10, 14, 12, 13, 17, 15, 11, 9, 6, 4)\}\cup$

 $\{(4, 5, 8, 7), (5, 6, 10, 8, 11, 14, 18, 22, 20, 16, 15, 12, 9, 7)\}.$

 $(G_{45}[\pm \{1, 2, 3, 4\}]; C_6, C_{12}; 9)$ -CS =

 $\{\{(5, 7, 10, 9, 8, 6), (1, 5, 9, 12, 14, 17, 13, 10, 8, 7, 6, 2)\}\cup$

 $\{(3,7,11,9,6,4), (2,5,4,7,9,13,11,8,12,10,6,3)\}\}$

 $(G_{45}[\pm\{1,2,3,4\}]; C_8, C_{10}; 9)$ -CS =

 $\{\{(9, 10, 14, 12, 13, 17, 15, 11), (4, 5, 8, 12, 10, 6, 9, 13, 11, 7)\} \cup \\ \{(7, 8, 11, 14, 16, 15, 12, 9), (1, 2, 3, 7, 10, 8, 9, 5, 6, 4)\}\}.$ $(G_{45}[\pm\{1, 2, 3, 4\}]; C_4, C_4, C_{10}; 9) \cdot \mathbf{CS} = \\ \{\{(0, 1, 5, 3), (3, 4, 8, 6), (4, 5, 8, 12, 10, 6, 9, 13, 11, 7)\} \cup \\ \{(7, 9, 11, 8), (2, 6, 7, 5), (1, 2, 3, 7, 10, 8, 9, 5, 6, 4)\}\}.$ $(G_{45}[\pm\{1, 2, 3, 4\}]; C_4, C_6, C_8; 9) \cdot \mathbf{CS} = \\ \{\{(0, 1, 5, 3), (6, 7, 10, 12, 8, 9), (1, 2, 5, 7, 8, 6, 3, 4)\} \cup \\ \{(5, 6, 10, 8), (4, 5, 9, 13, 11, 7), (2, 3, 7, 9, 11, 8, 4, 6)\}\}.$ $(G_{45}[\pm\{1, 2, 3, 4\}]; C_4, C_4, C_4, C_6; 9) \cdot \mathbf{CS} = \\ \{\{(0, 1, 5, 3), (1, 2, 6, 4), (2, 3, 7, 5), (6, 7, 10, 12, 8, 9)\} \cup \\ \{(3, 4, 8, 6), (5, 6, 10, 8), (7, 9, 11, 8), (4, 5, 9, 13, 11, 7)\}\}.$

Case 6. Suppose that $\sum_{i=1}^{r} = 20$.

 $(K_{25}; C_{20}; 5)$ -CS =

 $\{(1, 6, 15, 9, 8, 4, 14, 19, 22, 11, 17, 20, 21, 18, 13, 5, 16, 7, 12, 2),\$

(0, 4, 2, 13, 11, 9, 16, 8, 15, 10, 20, 18, 12, 24, 17, 5, 7, 3, 14, 6),

(2, 3, 12, 5, 4, 16, 6, 18, 11, 15, 24, 21, 17, 9, 20, 8, 14, 23, 13, 10).

$(K_{25}; C_4, C_{16}; 5)$ -CS =

 $\{\{(4,11,16,12),(2,12,7,16,17,11,22,19,14,4,8,9,15,6,18,13)\}\cup \\ \{(0,6,5,4),(2,4,16,5,7,3,14,8,20,18,12,24,15,11,13,10)\}\cup$

 $\{(2,3,12,5),(0,8,18,9,1,11,3,10,5,15,4,6,13,16,19,12)\}\}.$

 $(K_{25}; C_6, C_{14}; 5)$ -CS =

 $\{(2,3,7,5,16,4),(2,12,3,11,22,19,14,8,9,15,6,18,13,10)\}\}.$

$(K_{25}; C_8, C_{12}; 5)$ -CS =

 $\{\{(1,13,4,9,6,12,3,5),(0,12,2,3,1,6,7,9,8,4,16,5)\}\cup$

 $\{(1, 12, 4, 5, 2, 10, 3, 9), (0, 8, 2, 9, 15, 3, 6, 4, 14, 5, 12, 10)\} \cup$

 $\{(0, 1, 11, 2, 14, 3, 13, 6), (2, 6, 15, 4, 11, 3, 7, 12, 9, 5, 8, 13)\}\}.$

 $(K_{25}; C_{10}, C_{10}; 5)$ -CS = $\{\{(0, 5, 16, 4, 9, 7, 6, 1, 3, 12), (2, 11, 3, 7, 12, 9, 5, 8, 13, 6)\}\cup$ $\{(0, 10, 12, 5, 4, 6, 3, 9, 2, 8), (1, 9, 15, 3, 10, 2, 5, 14, 4, 12)\} \cup$ $\{(0, 1, 5, 3, 14, 2, 13, 4, 15, 6), (1, 11, 4, 8, 9, 6, 12, 2, 3, 13)\}\}.$ $(K_{25}; C_4, C_4, C_{12}; 5)$ -CS = $\{\{(3, 12, 4, 9), (1, 5, 2, 3), (0, 12, 2, 11, 1, 6, 7, 9, 8, 4, 16, 5)\}\cup$ $\{(2, 10, 3, 14), (1, 9, 6, 12), (0, 8, 2, 9, 15, 3, 6, 4, 14, 5, 12, 10)\} \cup$ $\{(0, 1, 13, 6), (3, 5, 4, 13), (2, 6, 15, 4, 11, 3, 7, 12, 9, 5, 8, 13)\}\}.$ $(K_{25}; C_4, C_6, C_{10}; 5)$ -CS = $\{\{(3, 11, 4, 15), (2, 12, 7, 6, 4, 13), (0, 10, 12, 4, 5, 9, 7, 3, 13, 6)\} \cup$ $\{(1, 9, 2, 5), (0, 1, 6, 2, 3, 12), (0, 8, 2, 11, 1, 3, 9, 4, 16, 5)\} \cup$ $\{(2, 10, 3, 14), (5, 12, 6, 15, 9, 8), (1, 12, 9, 6, 3, 5, 14, 4, 8, 13)\}\}.$ $(K_{25}; C_4, C_8, C_8; 5)$ -CS = $\{\{(3, 11, 4, 15), (0, 8, 2, 11, 1, 9, 3, 12), (0, 5, 16, 4, 9, 2, 6, 1)\} \cup$ $\{(1, 5, 2, 3), (0, 6, 7, 3, 13, 4, 12, 10), (4, 8, 9, 15, 6, 12, 5, 14)\} \cup$ $\{(2, 10, 3, 14), (1, 12, 9, 6, 3, 5, 8, 13), (2, 13, 6, 4, 5, 9, 7, 12)\}\}.$ $(K_{25}; C_6, C_6, C_8; 5)$ -CS = $\{\{(1, 9, 5, 4, 8, 13), (2, 9, 7, 3, 14, 5), (0, 10, 12, 4, 15, 3, 13, 6)\}\cup$ $\{(2, 12, 7, 6, 4, 13), (0, 1, 6, 2, 3, 12), (5, 12, 6, 8, 14, 9, 21, 10)\} \cup$ $\{(1, 12, 9, 6, 3, 5), (2, 10, 3, 11, 4, 14), (5, 13, 7, 16, 6, 15, 9, 8)\}\}.$ $(K_{25}; C_4, C_4, C_4, C_8; 5)$ -CS = $\{\{(4, 14, 5, 8), (3, 11, 4, 15), (0, 4, 2, 7), (0, 8, 2, 11, 1, 9, 3, 12)\}\cup$ $\{(1, 5, 2, 3), (1, 4, 3, 8), (1, 12, 2, 13), (0, 5, 16, 4, 9, 2, 6, 1)\} \cup$ $\{(3, 5, 4, 6), (2, 10, 3, 14), (1, 7, 4, 10), (0, 6, 7, 3, 13, 4, 12, 10)\}\}.$ $(K_{25}; C_4, C_4, C_6, C_6; 5)$ -CS = $\{\{(4, 14, 5, 8), (1, 5, 2, 3), (1, 9, 3, 15, 4, 11), (0, 8, 2, 11, 3, 12)\}\cup$ $\{(1, 4, 3, 8), (1, 12, 2, 13), (0, 5, 16, 4, 6, 1), (2, 6, 3, 5, 4, 9)\} \cup$ $\{(2, 10, 3, 14), (1, 7, 4, 10), (0, 6, 7, 3, 13, 4), (0, 10, 12, 4, 2, 7)\}\}.$

5. CONCLUDING REMARK

So far, for each even m_i with $\sum_{i=1}^r m_i \leq 20$, a k-cyclic (m_1, \ldots, m_r) -cycle system is given, but we can not find out an ingenious method to construct a k-cyclic (m_1, \ldots, m_r) -cycle in general. It is natural, however, to pose the following problem.

Conjecture. Suppose $\sum_{i=1}^{r} m_i = ks$ with m_i even, gcd(k, s) = 1, and k odd and let c be the least positive integral solution of $kx \equiv 1 \pmod{2s}$ satisfying $kc \geq m_r$. Then there exists a k-cyclic (m_1, \ldots, m_r) -cycle system of order kc.

Moreover, we may ask whether the values of m_i 's in an (m_1, \ldots, m_r) -cycle could be odd. In fact, we believe that the existence problem for k-cyclic (m_1, \ldots, m_r) -cycle system is still correct even though some of m_i 's in an (m_1, \ldots, m_r) -cycle are odd. It turns out, however, a much more difficult problem. We conclude this paper with an example.

Let C be a (3, 4, 5)-cycle with $3 \cdot 4$ edges and $v = 33 = 3 \cdot 11$. The base (3, 4, 5)-cycles of the 3-cyclic (3, 4, 5)-cycle system of order 33 are:

 $(G_{33}[\pm\{1,2,3,4\}]; C_3, C_4, C_5; 3)$ -CS = {(0,1,2), (1,5,2,3), (2,4,7,3,6)}, and $(G_{33}[\pm\{5,6,\ldots,16\}]; C_3, C_4, C_5; 1)$ -CS = {(0,5,11), (0,12,28,13), (0,7,15,24,10)}.

ACKNOWLEDGMENT

The authors are very grateful to the referee for his/her patience and valuable comments to improve the readability of this paper.

REFERENCES

- 1. B. Alspach and H. Gavlas, Cycle decompositions of K_n and $K_n I$, J. Combin. Theory, Ser., **B 81** (2001), 77-99.
- 2. M. Buratti and A. Del Fra, Existence of cyclic *k*-cycle systems of the complete graph, *Discrete Math.*, **261** (2003), 113-125.
- 3. M. Buratti and A. Del Fra, Cyclic Hamiltonian cycle systems of the complete graph, *Discrete Math.*, **279** (2004), 107-119.
- 4. D. Bryant, H. Gavlas, and A. Ling, Skolem-type difference sets for cycle systems, *The Electronic Journal of Combinatorics*, **10** (2003), 1-12.
- 5. H.-L. Fu and S.-L. Wu, Cyclically decomposing the complete graph into cycles, *Discrete Math.*, **282** (2004), 267-273.

- 6. A. Kotzig, Decompositions of a complete graph into 4k-gons. (Russian) Mat.-Fyz. Casopis Sloven. Akad. Vied, 15 (1965), 229-233.
- R. Peltesohn, Eine Löung der beiden Heffterschen Differenzenprobleme, *Compositio Math.*, 6 (1938), 251-257.
- 8. A. Rosa, On cyclic decompositions of the complete graph into (4m + 2)-gons, *Mat. Fyz. Casopis Sloven. Akad. Vied*, **16** (1966), 349-352.
- 9. A. Rosa, On cyclic decompositions of the complete graph into polygons with odd number of edges (Slovak), *Casopis Pest. Mat.*, **91** (1966), 53-63.
- 10. M. Šajna, Cycle decompositions III: Complete graphs and fixed length cycles, J. Combin. Des., 10 (2002), 27-78
- 11. A. Vietri, Cyclic k-cycle system of order 2km + k; a solution of the last open cases, *J. Combin. Des.*, **12** (2004), 299-310.
- 12. S.-L. Wu and H.-L. Fu, Cyclic *m*-cycle systems with $m \leq 32$ or m = 2q with q a prime power, J. Combin. Des., 14 (2006), 66-81.
- 13. S.-L. Wu and H.-L. Fu, Maximum cyclic 4-cycle packings of the complete multipartite graph, *J. Combin. Optimization*, to appear.
- 14. S.-L.Wu, Even (m_1, m_2, \ldots, m_r) -cycle systems of the complete graph, Ars Combin., **70** (2004), 89-96.

Shung-Liang Wu and Dung-Ming Lee Department of Mathematics, National United University, Miaoli, Taiwan, R.O.C. E-mail: slwu@nuu.edu.tw