K-CYCLIC EVEN CYCLE SYSTEMS OF THE COMPLETE GRAPH

Shung-Liang Wu and Dung-Ming Lee

Abstract

An $\left(m_{1}, \ldots, m_{r}\right)$-cycle is the union of edge-disjoint m_{i}-cycles for $1 \leq i \leq r$. An $\left(m_{1}, \ldots, m_{r}\right)$-cycle system of the complete graph $K_{v},(\boldsymbol{V}, \boldsymbol{C})$, is said to be k-cyclic if $V=Z_{v}$ and for $k \in Z_{v}, C+k \in C$ whenever $C \in C$.

Let $m_{i}(1 \leq i \leq r)$ be even integers (>2) and let $\sum_{i=1}^{r} m_{i}=m=k s$ with $\operatorname{gcd}(k, s)=1$ and k odd. Suppose v is the least positive integer such that $v(v-1) \equiv 0(\bmod 2 m)$ and $\operatorname{gcd}(v, m)=k$. In this paper, it is proved that if there is a k-cyclic $\left(m_{1}, \ldots, m_{r}\right)$-cycle system of order v, then for any positive integer p, a k-cyclic $\left(m_{1}, \ldots, m_{r}\right)$ cycle system of order $2 p m+v$ exists.

As the main consequence of this paper, the necessary and sufficient conditions for the existence of a k-cyclic $\left(m_{1}, \ldots, m_{r}\right)$-cycle system of order v with m_{i} even and $\sum_{i=1}^{r} m_{i} \leq 20$ are given.

1. Introduction

An m-cycle, written $\left(c_{0}, c_{1}, \ldots, c_{m-1}\right)$, consists of m distinct vertices c_{0}, c_{1}, \ldots. c_{m-1}, and m edges $\left\{c_{i}, c_{i+1}\right\}, 0 \leq i \leq m-2$, and $\left\{c_{0}, c_{m-1}\right\}$. Let m_{1}, \ldots, m_{r} be integers greater than 2 . An $\left(m_{1}, \ldots, m_{r}\right)$-cycle is the union of edge-disjoint m_{i} cycles for $1 \leq i \leq r$. An $\left(m_{1}, \ldots, m_{r}\right)$-cycle system of a graph G is a pair $(\boldsymbol{V}, \boldsymbol{C})$, where \boldsymbol{V} is the vertex set of G and \boldsymbol{C} is a collection of $\left(m_{1}, \ldots, m_{r}\right)$-cycles whose edges partition the edges of G.

If $G=K_{v}$, the complete graph with v vertices, then such an $\left(m_{1}, \ldots, m_{r}\right)$ cycle system is called an $\left(m_{1}, \ldots, m_{r}\right)$-cycle system of order v. In particular, If $m_{1}=\cdots=m_{r}=m$, it is known as an m-cycle system.

Given an m-cycle $C_{m}=\left(c_{0}, c_{1}, \ldots, c_{m-1}\right)$, by $C_{m}+j$ we mean $\left(c_{0}+j, c_{1}+\right.$ $j, \ldots, c_{m-1}+j$), where $j \in Z_{v}$. Analogously, if $C=\left\{C_{m_{1}}, \ldots, C_{m_{r}}\right\}$ is an $\left(m_{1}, \ldots, m_{r}\right)$-cycle, we use $C+j$ instead of $\left\{C_{m_{1}}+j, \ldots, C_{m_{r}}+j\right\}$.

Received December 13, 2004, accepted May 18, 2006.
Communicated by Xuding Zhu.
2000 Mathematics Subject Classification: 05C70.
Key words and phrases: Cyclic, Cycle system.

An $\left(m_{1}, \ldots, m_{r}\right)$-cycle system of order $v,(\boldsymbol{V}, \boldsymbol{C})$, is said to be k-cyclic if $\boldsymbol{V}=Z_{v}$ and for $k \in Z_{v}, C+k \in C$ whenever $C \in C$. In particular, if $k=1$, then it is simply called cyclic. A cyclic $\left(m_{1}, \ldots, m_{r}\right)$-cycle system, of course, is also a k-cyclic (m_{1}, \ldots, m_{r})-cycle system for $k \in Z_{v}$.

The study of m-cycle systems of the complete graph has been one of the most interesting problems in graph decomposition. The existence question for m-cycle systems of the complete graph has been completely settled by Alspach and Gavlas [1] in the case of m odd and by Šajna [10] in the even case.

The existence question for cyclic m-cycle systems of order v has been completely solved for $m=3$ [7], 5 and 7 [9]. For m even and $v \equiv 1(\bmod 2 m)$, cyclic m cycle systems of order v was proved for $m \equiv 0(\bmod 4)[6]$ and for $m \equiv 2$ $(\bmod 4)[8]$. Recently, it has been shown in $[2,4,5]$ that for each pair of integers (m, n), there exists a cyclic m-cycle system of order $2 m n+1$, and in particular, for each odd prime p, there exists a cyclic p-cycle system [2, 5]. For $v \equiv m$ $(\bmod 2 m)$, cyclic m-cycle systems of order v are presented for $m \notin M$ [3], where $M=\left\{p^{\alpha} \mid p\right.$ is prime, $\left.\alpha>1\right\} \cup\{15\}$, and in [11] for $m \in M$. More recently, combining the known results, it has also been proved in [12] that for $3 \leq m \leq 32$, there exists a cyclic m-cycle system and there exists a cyclic $2 q$-cycle system with q a prime power. Moreover, Fu and $\mathrm{Wu}[5]$ proved the following result.

Theorem 1.1. [5]]lf m_{1}, \ldots, m_{r} are integers with $\sum_{i=1}^{r} m_{i}=m$, then there exists a cyclic $\left(m_{1}, \ldots, m_{r}\right)$-cycle system of order $2 m+1$.

The main result of this article is the following.
Theorem 1.2. Let $m_{i}(1 \leq i \leq r)$ be even integers (>2) and let $\sum_{i=1}^{r} m_{i}=$ $k s \leq 20$ with $\operatorname{gcd}(k, s)=1$ and k odd. Then for each admissible value v such that $v(v-1) \equiv 0(\bmod 2 m)$ and $\operatorname{gcd}(v, m)=k$, there exists a k-cyclic $\left(m_{1}, \ldots, m_{r}\right)$ cycle system of order v with the exception that $\left(v ; m_{1}, \ldots, m_{r}\right)=(9 ; 4,6,8)$ and ($9 ; 4,4,4,6$).

2. The Necessary Conditions

All graphs considered here have vertices in Z_{v}. In what follows, assume $3 \leq$ $m_{1} \leq \cdots \leq m_{r}$ and $\sum_{i=1}^{r} m_{i}=m$. The necessary conditions for the existence of an $\left(m_{1}, \ldots, m_{r}\right)$-cycle system of order v is that $v \geq m_{r}, m$ divides $v(v-1) / 2$, and the degree of each vertex is even. Obviously, v must be odd.

Given any positive integers m_{1}, \ldots, m_{r} with $\sum_{i=1}^{r} m_{i}=m$, it is not easy to find each admissible value v such that an $\left(m_{1}, \ldots, m_{r}\right)$-cycle system of order v exists. However, if we fix an odd factor of m, say k, so that $m=k s$ with $\operatorname{gcd}(k, s)=1$ and suppose $\operatorname{gcd}(v, m)=k$, then it turns out to be a simpler work.

A method to find out each admissible value v will be given. First, we need one basic fact from number theory.

Fact. The linear congruence $a x \equiv 1(\bmod m)$ has a unique integral solution modulo m if and only if $\operatorname{gcd}(a, m)=1$.

Throughout this paper, let $\sum_{i=1}^{r} m_{i}=m=k s$ with k odd and $\operatorname{gcd}(k, s)=1$.
Proposition 2.1. Let m and v be positive integers with $\operatorname{gcd}(m, v)=k$ and let c be the least positive integral solution of the linear congruence $k x \equiv 1(\bmod 2 s)$ satisfying $k c \geq m_{r}$. If v is any admissible value of an $\left(m_{1}, \ldots, m_{r}\right)$-cycle system, then

$$
v=2 p m+k c
$$

for some integer $p \geq 0$.
Proof. Since the value of v is admissible, we have $2 m \mid v(v-1)$, and since $m=$ $k s$ and $\operatorname{gcd}(m, v)=k$, it implies that $2 s \mid v-1$ or, equivalently, $v \equiv 1(\bmod 2 s)$ or, equivalently, $k x \equiv 1(\bmod 2 s)$ for some positive integer x. Note that x is odd and $\operatorname{gcd}(x, 2 s)=1$. Now, by the fact stated above, the linear congruence $k x \equiv 1$ $(\bmod 2 s)$ has a unique least positive integral solution c, that is, $v=2 p m+k c$ for some integer $p \geq 0$ because $\operatorname{gcd}(m, v)=k$.

As usual, we use $\operatorname{Spec}(m)$ to denote the set of all admissible values v. By Proposition 2.1, if m has n distinct odd factors then the number of residue classes (modulo $2 m$) in $\operatorname{Spec}(m)$ is 2^{n}. Consider, for instance, the m-cycle system with $m=180$. It is clear that all possible values of k are $1,3^{2}, 5$, or $3^{2} .5$ and we have four residue classes modulo 360. An easy verification shows that $\operatorname{Spec}(180)=$ $\{v \mid v \equiv 1,81,145$, or $225(\bmod 360)\}$.

As a consequence of Proposition 2.1, which will be used later, we have $\operatorname{Spec}(m)$ for $m=6,2^{k}(k \geq 2), 10,12,14,18$, and 20 .

Corollary 2.2.

(1) $\operatorname{Spec}(6)=\{v \mid v \equiv 1,9(\bmod 12)\}$.
(2) $\operatorname{Spec}\left(2^{k}\right)=\left\{v \mid v \equiv 1\left(\bmod 2^{k+1}\right)\right\}$ for $k \geq 2$.
(3) $\operatorname{Spec}(10)=\{v \mid v \equiv 1,5(\bmod 20)\}$.
(4) $\operatorname{Spec}(12)=\{v \mid v \equiv 1,9(\bmod 24)\}$.
(5) $\operatorname{Spec}(14)=\{v \mid v \equiv 1,21(\bmod 28)\}$.
(6) $\operatorname{Spec}(18)=\{v \mid v \equiv 1,9(\bmod 36)\}$.
(7) $\operatorname{Spec}(20)=\{v \mid v \equiv 1,25(\bmod 40)\}$.

For any cycle with vertices in Z_{v}, it is proved in [13] that the sum of absolute differences of edges in C must be even.

Lemma 2.3. [13] Let $C=\left(c_{0}, c_{1}, \ldots, c_{m-1}\right)$ be an m-cycle with $c_{i} \in Z_{v}$ where $0 \leq i \leq m-1$ and v is any positive integer. Then the sum of absolute differences of edges in C is even.

Proof. The proof follows immediately from the fact that

$$
\sum_{i=1}^{m}\left|c_{i}-c_{i-1}\right| \equiv \sum_{i=1}^{m}\left(c_{i}-c_{i-1}\right) \equiv 0 \quad(\bmod 2)
$$

3. Definitions and Preliminaries

Assume $\{a, b\}$ to be any edge in K_{v}, we shall use $\pm|a-b|$ to denote the difference of the edge $\{a, b\}$.

Given a subset Ω of $Z_{v} \backslash\{0\}$ with $\Omega=-\Omega$, let $G_{v}[\Omega]$ denote the subgraph of K_{v} which contains the edges $\{a, a+b\}$ with $a \in Z_{v}$ and $b \in \Omega$. Where it is clear what v is, the subscript will be omitted and just write $G[\Omega]$.

Let C be an $\left(m_{1}, \ldots, m_{r}\right)$-cycle in a k-cyclic $\left(m_{1}, \ldots, m_{r}\right)$-cycle system of order v. The (m_{1}, \ldots, m_{r})-cycle orbit O of C is defined as the set of distinct $\left(m_{1}, \ldots, m_{r}\right)$-cycles $\left\{C+i k \mid i \in Z_{v}\right\}$. The length of an $\left(m_{1}, \ldots, m_{r}\right)$-cycle orbit is its cardinality, i.e., the minimum positive integer p such that $C+p k=C$. An $\left(m_{1}, \ldots, m_{r}\right)$-cycle orbit of length v is called full, otherwise short. A base $\left(m_{1}, \ldots, m_{r}\right)$-cycle of an $\left(m_{1}, \ldots, m_{r}\right)$-cycle orbit \dot{O} is an $\left(m_{1}, \ldots, m_{r}\right)$-cycle $C \in O$ that is chosen arbitrarily. A base (m_{1}, \ldots, m_{r})-cycle corresponding to an (m_{1}, \ldots, m_{r})-cycle orbit \grave{O} is said to be full (resp. short) if \grave{O} is full (resp. short). An $\left(m_{1}, \ldots, m_{r}\right)$-cycle orbit \grave{O} is full if and only if the differences of edges of any base (m_{1}, \ldots, m_{r})-cycle in \grave{O} are distinct. Any k-cyclic $\left(m_{1}, \ldots, m_{r}\right)$-cycle system of order v could be generated from full or short base (m_{1}, \ldots, m_{r})-cycles.

Throughout this paper, we will restrict our attention to the case where $m_{i}(1 \leq$ $i \leq r)$ are all even (>3).

Lemma 3.1. Let $G[\Omega]$ be a subgraph of $K_{2 p m+k c}$ with $\Omega= \pm\left\{a_{1}, \ldots, a_{t}\right\}$ and m even. If there exists a k-cyclic $\left(m_{1}, \ldots, m_{r}\right)$-cycle system of $G[\Omega]$, then t is even and m divides k t.

Proof. Let $\{a, b\}$ be any edge of $G[\Omega]$. Note that the edges $\{a, b\}$ and $\{a+$ $i, b+i\}$ in $G[\Omega]$ with $i \in Z_{2 p m+k c}$ have the same difference. Since $G[\Omega]$ has a k-cyclic $\left(m_{1}, \ldots, m_{r}\right)$-cycle system, this means that the number of edges with the same difference occurring in the union of base $\left(m_{1}, \ldots, m_{r}\right)$-cycles, say C, is
precisely k, and so the number of edges in C is equal to $k t$, which is a multiple of m. It follows that t must be even since m is even.

A set of integers is said to be a complete residue system modulo k if every integer is congruent modulo k to exactly one integer of the set. For instance, the set $\{0,1,7,8,4\}$ is a complete residue system of modulo 5 .

Given a subgraph H of $G[\Omega]$ with $k s$ edges, $\operatorname{gcd}(k, s)=1$, and k odd, the graph H is called modulo k-complete on $G[\Omega]$ if the following conditions hold:
(1) The edge set of H can be partitioned into s subsets such that each subset contains k edges;
(2) All k edges in each subset have the same difference;
(3) If $\left\{a_{1}, b_{1}\right\}, \ldots,\left\{a_{k}, b_{k}\right\}$ with $a_{i}<b_{i}$ are distinct edges in a subset, then both of the sets $\left\{a_{1}, \ldots, a_{k}\right\}$ and $\left\{b_{1}, \ldots, b_{k}\right\}$ are complete residue systems modulo k; and
(4) For each edge $\{a, b\}$ in H, the absolute difference of a and b is less than or equal to $\lfloor(v+1) / 2\rfloor$.

Example 1. Consider a $(4,8)$-cycle $C=\{(1,2,3,5),(0,1,4,6,2,5,7,3)\}$, which is a subgraph of K_{9} with $3 \cdot 4$ edges. It is easy to check that the $(4,8)$ cycle C is modulo 3 -complete on K_{9}, and by virtue of the fact that C is modulo 3 -complete on K_{9}, it follows that there exists a 3 -cyclic $(4,8)$-cycle system of order 9.

The following consequence plays a crucial role for the construction of a k-cyclic $\left(m_{1}, \ldots, m_{r}\right)$-cycle system and its proof follows immediately from the definition of modulo k-completeness on $G[\Omega]$.

Proposition 3.2. Let C be the union of $\left(m_{1}, \ldots, m_{r}\right)$-cycles with $k s$ edges, $\operatorname{gcd}(k, s)=1$, and k odd. If C is modulo k-complete on $G_{k c}[\Omega]$, then there exists a k-cyclic $\left(m_{1}, \ldots, m_{r}\right)$-cycle system of $G_{k c}[\Omega]$.

By D we mean the difference set in an $\left(m_{1}, \ldots, m_{r}\right)$-cycle. The following consequences can be found in [14].

Lemma 3.3. [14] For any positive integers s and t, there exists a 4 s-cycle with $D= \pm\{t, t+1, \ldots, t+4 s-1\}$ in K_{v} where v is odd with $v \geq 2(t+4 s-1)+1$.

Note that, by Lemma 2.3, there does not exist a $(4 s+2)$-cycle with $D=$ $\pm\{t, t+1, \ldots, t+4 s+1\}$ for any positive integer t.

Lemma 3.4. [14] Let s and t be any positive integers.
(1) There exists $a(4 s+2)$-cycle with $D= \pm\{t, t+1, \ldots, t+4 s, t+4 s+2\}$ in K_{v} where v is odd with $v \geq 2(t+4 s+2)+1$.
(2) There exists a $(4 s+2)$-cycle with $D= \pm\{t, t+2, \ldots, t+4 s+2\}$ in K_{v} where v is odd with $v \geq 2(t+4 s+2)+1$.

In order to construct cycles of even length with consecutive differences, one may utilize cycles of length congruent to 0 modulo 4 and/or an even number of cycles of length congruent to 2 modulo 4 .

As immediate consequences of Lemmas 3.3 and 3.4, we have the following two preliminary results.

Corollary 3.5. If $m_{i} \equiv 0(\bmod 4)$ for $1 \leq i \leq r$, then for any positive integer t, there exists an $\left(m_{1}, \ldots, m_{r}\right)$-cycle with $D= \pm\{t, t+1, \ldots, t+m-1\}$ in K_{v} where v is odd with $v \geq 2(t+m-1)+1$.

Corollary 3.6. Let t be any positive integer.
(1) If r is even and $m_{i} \equiv 2(\bmod 4)$ for $1 \leq i \leq r$, then there exists an $\left(m_{1}, \ldots, m_{r}\right)$-cycle with $D= \pm\{t, t+1, \ldots, t+m-1\}$ in K_{v} where v is odd with $v \geq 2(t+m-1)+1$.
(2) If r is even and $m_{i} \equiv 2(\bmod 4)$ for $1 \leq i \leq r$, then there exists an $\left(m_{1}, \ldots, m_{r}\right)$-cycle with $D= \pm\{t, t+2, \ldots, t+m-1, t+m+1\}$ in K_{v} where v is odd with $v \geq 2(t+m+1)+1$.
(3) If r is odd and $m_{i} \equiv 2(\bmod 4)$ for $1 \leq i \leq r$, then there exists an $\left(m_{1}, \ldots, m_{r}\right)$-cycle with $D= \pm\{t, t+1, \ldots, t+m-2, t+m\}$ in K_{v} where v is odd with $v \geq 2(t+m)+1$.
(4) If r is odd and $m_{i} \equiv 2(\bmod 4)$ for $1 \leq i \leq r$, then there exists an $\left(m_{1}, \ldots, m_{r}\right)$-cycle with $D= \pm\{t, t+2, \ldots, t+m\}$ in K_{v} where v is odd with $v \geq 2(t+m)+1$.

By N we mean the number of cycles in an $\left(m_{1}, \ldots, m_{r}\right)$-cycle with length congruent to 2 modulo 4 .

Proposition 3.7. If there exists a k-cyclic $\left(m_{1}, \ldots, m_{r}\right)$-cycle system of order $k c$, then for any positive integer p, there exists a k-cyclic $\left(m_{1}, \ldots, m_{r}\right)$-cycle system of order $2 p m+k c$.

Proof. Set $q=\lfloor k c / 2\rfloor$. Note that by Lemma 3.1, q is congruent to 0 or 2 $(\bmod 4)$. Let $\Omega_{1}= \pm\{1,2, \ldots, q\}, \Omega_{2}= \pm\{q+1, q+2, \ldots, p m+q\}, \Omega_{3}=$ $\pm\{1,2, \ldots, q-1, q+1\}$, and $\Omega_{4}= \pm\{q, q+2, \ldots, p m+q\}$. It is clear that $K_{2 p m+k c}$ is isomorphic to the union of $G\left[\Omega_{1}\right]$ and $G\left[\Omega_{2}\right]$ or $G\left[\Omega_{3}\right]$ and $G\left[\Omega_{4}\right]$. Since there exists a k-cyclic $\left(m_{1}, \ldots, m_{r}\right)$-cycle system of order $k c$, it suffices to
show that there exists a cyclic $\left(m_{1}, \ldots, m_{r}\right)$-cycle system of $G\left[\Omega_{2}\right]$ or $G\left[\Omega_{4}\right]$ with full base (m_{1}, \ldots, m_{r})-cycles. Without loss of generality, we may assume $m_{i} \equiv 0$ $(\bmod 4)$ for $1 \leq i \leq w$ and $m_{i} \equiv 2(\bmod 4)$ for $w+1 \leq i \leq r$, where $0 \leq w \leq r$. Let us set $N=r-w$. We divide the proof into two cases depending on whether $q \equiv 0$ or $2(\bmod 4)$.

Case 1. $q \equiv 0(\bmod 4)$.
If N is even or if N is odd and p is even, then by Corollaries 3.5 and 3.6(1), we obtain the graph C, the union of p edge-disjoint $\left(m_{1}, \ldots, m_{r}\right)$-cycles, with $D= \pm\{q+1, q+2, \ldots, p m+q\}$; if N is odd and p is odd, by Corollaries 3.5 and 3.6-(3), we also have the graph C with $D= \pm\{q+1, q+2, \ldots, p m+q\}$.

Case 2. $q \equiv 2(\bmod 4)$.
If N is even or if N is odd and p is even, then by Corollaries 3.5 and 3.6(2), the graph C with $D= \pm\{q, q+2, q+3, \ldots, p m+q\}$ is given; if N is odd and p is odd, by Corollaries 3.5 and 3.6-(4), we obtain the graph C with $D= \pm\{q, q+2, q+3, \ldots, p m+q\}$.

Then use the graph C constructed in each case as the base (m_{1}, \ldots, m_{r})-cycles and the desired $\left(m_{1}, \ldots, m_{r}\right)$-cycle system follows.

For clarity, we give some examples to demonstrate the construction of a k-cyclic $\left(m_{1}, \ldots, m_{r}\right)$-cycle system stated above.

Example 2. Consider the $(4,8)$-cycle C in Example 1. Use C as the base $(4,8)$-cycle and a 3 -cyclic (4,8)-cycle system of $G_{9}[\Omega]$ with $\Omega= \pm\{1,2,3,4\}$ then follows. Since the absolute difference of each edge $\{a, b\}$ in C is less than or equal to 4 , it means that the $(4,8)$-cycle C can also be used as the base $(4,8)$-cycle of a 3 -cyclic $(4,8)$-cycle system of $G_{24 p+9}[\Omega]$ and hence, a 3 -cyclic (4,8)-cycle system of $G_{24 p+9}[\Omega]$ does exist for $p \geq 0$.

Example 3. For $1 \leq i \leq 5$, let C_{i} be $(4,10)$-cycles with $7 \cdot 2$ edges given as

$$
\begin{aligned}
& C_{1}=\{(4,5,8,10),(2,8,16,9,17,6,10,7,14,3)\} ; \\
& C_{2}=\{(8,17,10,19),(1,2,4,3,6,14,5,9,18,7)\} ; \\
& C_{3}=\{(5,10,18,11),(1,6,12,20,13,9,7,3,8,4)\} ; \\
& C_{4}=\{(5,7,8,6),(0,5,16,7,11,19,12,8,15,6)\} ; \text { and } \\
& C_{5}=\{(4,7,6,9),(2,5,3,9,20,11,6,4,15,7)\} .
\end{aligned}
$$

Assume C to be the union of $(4,10)$-cycles C_{1}, \ldots, C_{5} and let $v=21=7 \cdot 3$. An easy verification shows that C is modulo 7 -complete on K_{21} and a 7 -cyclic $(4,10)$-cycle system of order $28 t+21$ exist for each $t \geq 0$.

4. Proof of the Main Result

We are now in a position to prove the main result in this paper.
Proof of Theorem 1.2. By virtue of Theorem 1.1, it follows that there exists a cyclic $\left(m_{1}, \ldots, m_{r}\right)$-cycle system of order $2 p m+1$ for $p \geq 1$. So, we need only consider the remaining case. By Propositions 2.1 and 3.7, it is enough to show that there exists a k-cyclic $\left(m_{1}, \ldots, m_{r}\right)$-cycle system of order $k c$ if $k c<2 m+1$, or that there exists a k-cyclic $\left(m_{1}, \ldots, m_{r}\right)$-cycle system of $G_{k c}[\Omega]$ if $k c \geq 2 m+1$, where $\Omega= \pm\{1,2, \ldots,\lfloor k c / 2\rfloor-m\}$ or $\pm\{1,2, \ldots,\lfloor k c / 2\rfloor-m-1,\lfloor k c / 2\rfloor-m+1\}$.

In order to accomplish this objective, by Proposition 3.2, it suffices to prove that C, the union of $\left(m_{1}, \ldots, m_{r}\right)$-cycles, is modulo k-complete on $G_{k c}[\Omega]$. For the convenience of notation, by $\left(G_{k c}[\Omega] ; C_{m_{1}}, \ldots, C_{m_{r}} ; k\right)$-CS we mean the union of $\left(m_{1}, \ldots, m_{r}\right)$-cycles which is modulo k-complete on $G_{k c}[\Omega]$. The proof is split into 6 cases depending on $m=6,10,12,14,18$, or 20 . We recall that for each m, the $\operatorname{Spec}(m)$ is given in Corollary 2.2.

Case 1. Suppose that $\sum_{i=1}^{r} m_{i}=6$.
$\left(K_{9} ; C_{6} ; 3\right)-\mathrm{CS}=\{(0,1,2,5,7,3),(1,5,3,2,6,4)\}$.
Case 2. Suppose that $\sum_{i=1}^{r} m_{i}=10$.

$$
\begin{aligned}
& \left(G_{25}[\pm\{1,3\}] ; C_{10} ; 5\right)-\mathrm{CS}=\{(0,3,6,9,8,7,4,5,2,1)\} \\
& \left(G_{25}[\pm\{1,3\}] ; C_{4}, C_{6} ; 5\right)-\mathrm{CS}=\{(0,1,2,3),(3,4,7,10,9,6)\}
\end{aligned}
$$

Case 3. Suppose that $\sum_{i=1}^{r} m_{i}=12$.
$\left(G_{33}[\pm\{1,2,3,4\}] ; C_{12} ; 3\right)-\mathrm{CS}=\{(1,5,8,9,12,14,16,15,11,10,7,3)\}$.
$\left(K_{9} ; C_{4}, C_{8} ; 3\right)-\mathrm{CS}=\{(1,2,3,5),(0,1,4,6,2,5,7,3)\}$.
$\left(K_{9} ; C_{6}, C_{6} ; 3\right)-\mathrm{CS}=\{(0,3,5,8,4,1),(1,2,6,5,7,3)\}$.
$\left(K_{9} ; C_{4}, C_{4}, C_{4} ; 3\right)-\mathrm{CS}=\{(0,1,5,2),(1,2,6,3),(2,3,7,4)\}$.

Case 4. Suppose that $\sum_{i=1}^{r} m_{i}=14$.

$$
\begin{aligned}
\left(K_{21} ; C_{14} ; 7\right)-\mathrm{CS}= & \{(2,3,5,4,15,7,9,17,6,11,18,10,19,8) \\
& (1,2,4,3,8,10,6,14,5,11,20,9,18,7) \\
& (3,14,13,12,19,11,7,10,5,9,16,8,4,6) \\
& (0,5,2,7,3,9,13,16,11,14,15,8,12,6)
\end{aligned}
$$

$$
\begin{aligned}
&(1,4,10,17,8,5,16,7,14,12,20,13,15,6)\} . \\
&\left(K_{21} ; C_{4}, C_{10} ; 7\right)-\mathrm{CS}=\{\{(4,5,8,10),(2,8,16,9,17,6,10,7,14,3)\} \cup \\
&\{(8,17,10,19),(1,2,4,3,6,14,5,9,18,7)\} \cup \\
&\{(5,10,18,11),(1,6,12,20,13,9,7,3,8,4)\} \cup \\
&\{(5,7,8,6),(0,5,16,7,11,19,12,8,15,6)\} \cup \\
&\{(4,7,6,9),(2,5,3,9,20,11,6,4,15,7)\}\} . \\
&\left(K_{21} ; C_{6}, C_{8} ; 7\right)-\mathrm{CS}=\{\{(6,10,7,18,9,17),(3,8,4,15,6,11,20,9)\} \cup \\
&\{(7,11,19,12,8,15),(0,6,1,4,10,19,8,5)\} \cup \\
&\{(6,12,20,13,9,7),(2,5,4,3,14,6,8,7)\} \cup \\
&\{(1,10,5,14,7,3),(2,3,5,9,4,7,16,8)\} \cup \\
&\{(3,10,18,11,5,6),(1,2,4,6,9,16,5,7)\}\} \\
&\left(K_{21} ; C_{4}, C_{4}, C_{6} ; 7\right)-\mathrm{CS}=\{\{(1,4,15,6),(6,9,20,11),(2,8,16,9,5,3)\} \cup \\
&\{(2,5,16,7),(0,5,14,6),(6,10,7,18,9,17)\} \cup \\
&\{(4,5,8,10),(5,7,8,6),(7,11,19,12,8,15)\} \cup \\
&\{(8,17,10,19),(3,9,4,8),(6,12,20,13,9,7)\} \cup \\
&\{(5,10,18,11),(3,4,7,14),(1,2,4,6,3,7)\}\} .
\end{aligned}
$$

Case 5. Suppose that $\sum_{i=1}^{r} m_{i}=18$.
It follows from Lemma 3.1 that there does not exist 3-cyclic (4, 6, 8)- and (4, 4, 4, 6)cycle systems of order 9

$$
\begin{gathered}
\left(G_{45}[\pm\{1,2,3,4\}] ; C_{18} ; 9\right)-\mathrm{CS}= \\
\{(1,2,5,3,7,6,9,10,12,15,19,17,16,14,13,11,8,4) \\
(7,11,9,12,13,15,17,21,20,24,23,26,27,25,22,18,14,10)\} \\
\left(G_{45}[\pm\{1,2,3,4\}] ; C_{4}, C_{14} ; 9\right)-\mathrm{CS}= \\
\{\{(8,9,10,12),(1,2,3,7,10,14,12,13,17,15,11,9,6,4)\} \cup \\
\{(4,5,8,7),(5,6,10,8,11,14,18,22,20,16,15,12,9,7)\} \\
\left(G_{45}[\pm\{1,2,3,4\}] ; C_{6}, C_{12} ; 9\right)-\mathrm{CS}= \\
\{\{(5,7,10,9,8,6),(1,5,9,12,14,17,13,10,8,7,6,2)\} \cup \\
\{(3,7,11,9,6,4),(2,5,4,7,9,13,11,8,12,10,6,3)\}\} \\
\left(G_{45}[\pm\{1,2,3,4\}] ; C_{8}, C_{10} ; 9\right)-\mathrm{CS}=
\end{gathered}
$$

$$
\begin{gathered}
\{\{(9,10,14,12,13,17,15,11),(4,5,8,12,10,6,9,13,11,7)\} \cup \\
\{(7,8,11,14,16,15,12,9),(1,2,3,7,10,8,9,5,6,4)\}\} . \\
\left(G_{45}[\pm\{1,2,3,4\}] ; C_{4}, C_{4}, C_{10} ; 9\right)-\mathrm{CS}= \\
\{\{(0,1,5,3),(3,4,8,6),(4,5,8,12,10,6,9,13,11,7)\} \cup \\
\{(7,9,11,8),(2,6,7,5),(1,2,3,7,10,8,9,5,6,4)\}\} . \\
\left(G_{45}[\pm\{1,2,3,4\}] ; C_{4}, C_{6}, C_{8} ; 9\right)-\mathrm{CS}= \\
\{\{(0,1,5,3),(6,7,10,12,8,9),(1,2,5,7,8,6,3,4)\} \cup \\
\{(5,6,10,8),(4,5,9,13,11,7),(2,3,7,9,11,8,4,6)\}\} . \\
\left(G_{45}[\pm\{1,2,3,4\}] ; C_{4}, C_{4}, C_{4}, C_{6} ; 9\right)-\mathrm{CS}= \\
\{\{(0,1,5,3),(1,2,6,4),(2,3,7,5),(6,7,10,12,8,9)\} \cup \\
\{(3,4,8,6),(5,6,10,8),(7,9,11,8),(4,5,9,13,11,7)\}\} .
\end{gathered}
$$

Case 6. Suppose that $\sum_{i=1}^{r}=20$.

$$
\begin{aligned}
&\left(K_{25} ; C_{20} ; 5\right)-\mathrm{CS}= \\
&\{(1,6,15,9,8,4,14,19,22,11,17,20,21,18,13,5,16,7,12,2), \\
&(0,4,2,13,11,9,16,8,15,10,20,18,12,24,17,5,7,3,14,6), \\
&(2,3,12,5,4,16,6,18,11,15,24,21,17,9,20,8,14,23,13,10)\} . \\
&\left(K_{25} ; C_{4},\right.\left.C_{16} ; 5\right)-\mathrm{CS}= \\
&\{\{(4,11,16,12),(2,12,7,16,17,11,22,19,14,4,8,9,15,6,18,13)\} \cup \\
&\{(0,6,5,4),(2,4,16,5,7,3,14,8,20,18,12,24,15,11,13,10)\} \cup \\
&\{(2,3,12,5),(0,8,18,9,1,11,3,10,5,15,4,6,13,16,19,12)\}\} . \\
&\left(K_{25} ; C_{6},\right.\left.C_{14} ; 5\right)-\mathrm{CS}= \\
&\{\{(4,5,6,12,16,11),(0,8,18,9,1,11,5,15,4,6,13,16,19,12)\} \cup \\
&\{(5,9,17,16,7,12),(2,5,10,3,14,4,8,20,18,12,24,15,11,13)\} \cup \\
&\{(2,3,7,5,16,4),(2,12,3,11,22,19,14,8,9,15,6,18,13,10)\}\} . \\
&\left(K_{25} ; C_{8},\right.\left.C_{12} ; 5\right)-\mathrm{CS}= \\
&\{\{(1,13,4,9,6,12,3,5),(0,12,2,3,1,6,7,9,8,4,16,5)\} \cup \\
&\{(1,12,4,5,2,10,3,9),(0,8,2,9,15,3,6,4,14,5,12,10)\} \cup \\
&\{(0,1,11,2,14,3,13,6),(2,6,15,4,11,3,7,12,9,5,8,13)\}\} .
\end{aligned}
$$

$$
\begin{aligned}
&\left(K_{25} ; C_{10}, C_{10} ; 5\right)-\mathrm{CS}= \\
&\{\{(0,5,16,4,9,7,6,1,3,12),(2,11,3,7,12,9,5,8,13,6)\} \cup \\
&\{(0,10,12,5,4,6,3,9,2,8),(1,9,15,3,10,2,5,14,4,12)\} \cup \\
&\left(K_{25} ; C_{4}, C_{4}, C_{12} ; 5\right)-\mathrm{CS}= \\
&\{\{(3,12,4,9),(1,5,2,3),(0,12,2,11,1,6,7,9,8,4,16,5)\} \cup \\
& \quad\{(2,10,3,14),(1,9,6,12),(0,8,2,9,15,3,6,4,14,5,12,10)\} \cup \\
&\quad\{(0,1,13,6),(3,5,4,13),(2,6,15,4,11,3,7,12,9,5,8,13)\}\} . \\
&\left(K_{25} ; C_{4}, C_{6}, C_{10} ; 5\right)-\mathrm{CS}= \\
&\{\{(3,11,4,15),(2,12,7,6,4,13),(0,10,12,4,5,9,7,3,13,6)\} \cup \\
&\{(1,9,2,5),(0,1,6,2,3,12),(0,8,2,11,1,3,9,4,16,5)\} \cup \\
&\{(2,10,3,14),(5,12,6,15,9,8),(1,12,9,6,3,5,14,4,8,13)\}\} . \\
&\left(K_{25} ; C_{4},\right.\left.C_{8}, C_{8} ; 5\right)-\mathrm{CS}= \\
&\{\{(3,11,4,15),(0,8,2,11,1,9,3,12),(0,5,16,4,9,2,6,1)\} \cup \\
&\{(1,5,2,3),(0,6,7,3,13,4,12,10),(4,8,9,15,6,12,5,14)\} \cup \\
&\{(2,10,3,14),(1,12,9,6,3,5,8,13),(2,13,6,4,5,9,7,12)\}\} . \\
&\left(K_{25} ; C_{6},\right.\left.C_{6}, C_{8} ; 5\right)-\mathrm{CS}= \\
&\{\{(1,9,5,4,8,13),(2,9,7,3,14,5),(0,10,12,4,15,3,13,6)\} \cup \\
&\{(2,12,7,6,4,13),(0,1,6,2,3,12),(5,12,6,8,14,9,21,10)\} \cup \\
&\{(1,12,9,6,3,5),(2,10,3,11,4,14),(5,13,7,16,6,15,9,8)\}\} . \\
&\left(K_{25} ; C_{4},\right.\left.C_{4}, C_{4}, C_{8} ; 5\right)-\mathrm{CS}= \\
&\{\{(4,14,5,8),(3,11,4,15),(0,4,2,7),(0,8,2,11,1,9,3,12)\} \cup \\
&\{(1,5,2,3),(1,4,3,8),(1,12,2,13),(0,5,16,4,9,2,6,1)\} \cup \\
&\{(3,5,4,6),(2,10,3,14),(1,7,4,10),(0,6,7,3,13,4,12,10)\}\} . \\
&\left(K_{25} ; C_{4},\right.\left.C_{4}, C_{6}, C_{6} ; 5\right)-\mathrm{CS}= \\
&\{\{(4,14,5,8),(1,5,2,3),(1,9,3,15,4,11),(0,8,2,11,3,12)\} \cup \\
&\{(1,4,3,8),(1,12,2,13),(0,5,16,4,6,1),(2,6,3,5,4,9)\} \cup \\
&\{(2,10,3,14),(1,7,4,10),(0,6,7,3,13,4),(0,10,12,4,2,7)\}\} .
\end{aligned}
$$

5. Concluding Remark

So far, for each even m_{i} with $\sum_{i=1}^{r} m_{i} \leq 20$, a k-cyclic $\left(m_{1}, \ldots, m_{r}\right)$-cycle system is given, but we can not find out an ingenious method to construct a k cyclic $\left(m_{1}, \ldots, m_{r}\right)$-cycle in general. It is natural, however, to pose the following problem.

Conjecture. Suppose $\sum_{i=1}^{r} m_{i}=k s$ with m_{i} even, $\operatorname{gcd}(k, s)=1$, and k odd and let c be the least positive integral solution of $k x \equiv 1(\bmod 2 s)$ satisfying $k c \geq m_{r}$. Then there exists a k-cyclic (m_{1}, \ldots, m_{r})-cycle system of order $k c$.

Moreover, we may ask whether the values of m_{i} 's in an $\left(m_{1}, \ldots, m_{r}\right)$-cycle could be odd. In fact, we believe that the existence problem for k-cyclic $\left(m_{1}, \ldots, m_{r}\right)$ cycle system is still correct even though some of m_{i}^{\prime} 's in an $\left(m_{1}, \ldots, m_{r}\right)$-cycle are odd. It turns out, however, a much more difficult problem. We conclude this paper with an example.

Let C be a $(3,4,5)$-cycle with $3 \cdot 4$ edges and $v=33=3 \cdot 11$. The base $(3,4,5)$-cycles of the 3 -cyclic ($3,4,5$)-cycle system of order 33 are:
$\left(G_{33}[\pm\{1,2,3,4\}] ; C_{3}, C_{4}, C_{5} ; 3\right)-\mathrm{CS}=\{(0,1,2),(1,5,2,3),(2,4,7,3,6)\}$, and $\left(G_{33}[\pm\{5,6, \ldots, 16\}] ; C_{3}, C_{4}, C_{5} ; 1\right)-\mathrm{CS}=\{(0,5,11),(0,12,28,13),(0,7,15,24$, 10) \}.

Acknowledgment

The authors are very grateful to the referee for his/her patience and valuable comments to improve the readability of this paper.

References

1. B. Alspach and H. Gavlas, Cycle decompositions of K_{n} and $K_{n}-I$, J. Combin. Theory, Ser, B 81 (2001), 77-99.
2. M. Buratti and A. Del Fra, Existence of cyclic k-cycle systems of the complete graph, Discrete Math., 261 (2003), 113-125.
3. M. Buratti and A. Del Fra, Cyclic Hamiltonian cycle systems of the complete graph, Discrete Math., 279 (2004), 107-119.
4. D. Bryant, H. Gavlas, and A. Ling, Skolem-type difference sets for cycle systems, The Electronic Journal of Combinatorics, 10 (2003), 1-12.
5. H.-L. Fu and S.-L. Wu, Cyclically decomposing the complete graph into cycles, Discrete Math., 282 (2004), 267-273.
6. A. Kotzig, Decompositions of a complete graph into $4 k$-gons. (Russian) Mat.-Fyz. Casopis Sloven. Akad. Vied, 15 (1965), 229-233.
7. R. Peltesohn, Eine Loung der beiden Heffterschen Differenzenprobleme, Compositio Math., 6 (1938), 251-257.
8. A. Rosa, On cyclic decompositions of the complete graph into $(4 m+2)$-gons, Mat. Fyz. Casopis Sloven. Akad. Vied, 16 (1966), 349-352.
9. A. Rosa, On cyclic decompositions of the complete graph into polygons with odd number of edges (Slovak), Casopis Pest. Mat., 91 (1966), 53-63.
10. M. Šajna, Cycle decompositions III: Complete graphs and fixed length cycles, J. Combin. Des., 10 (2002), 27-78
11. A. Vietri, Cyclic k-cycle system of order $2 k m+k$; a solution of the last open cases, J. Combin. Des., 12 (2004), 299-310.
12. S.-L. Wu and H.-L. Fu, Cyclic m-cycle systems with $m \leq 32$ or $m=2 q$ with q a prime power, J. Combin. Des., 14 (2006), 66-81.
13. S.-L. Wu and H.-L. Fu, Maximum cyclic 4-cycle packings of the complete multipartite graph, J. Combin. Optimization, to appear.
14. S.-L.Wu, Even $\left(m_{1}, m_{2}, \ldots, m_{r}\right)$-cycle systems of the complete graph, Ars Combin., 70 (2004), 89-96.

Shung-Liang Wu and Dung-Ming Lee
Department of Mathematics,
National United University,
Miaoli, Taiwan, R.O.C.
E-mail: slwu@nuu.edu.tw

