Lattice operations of positive bilinear mappings

Rusen Yilmaz

Abstract

In this paper we establish extension theorems for additive mappings $\varphi: A^{+} \times B^{+} \mapsto C^{+}$, where A, B are Riesz spaces (lattice ordered spaces or vector lattices) and C is an order complete Riesz space, to the whole of $A \times B$, thereby extending well-known results for additive mappings between Riesz spaces. We prove, in particular, that when A, B and C are order complete Riesz spaces, the ordered vector space $\mathcal{B}_{b}(A \times B, C)$ of all order bounded bilinear mappings has the structure of a lattice space.

1. Introduction

The extension theory of positive operators on a Riesz space has been welldocumented; see, for example, the book by Aliprantis and Burkinshaw [1]. It is well-known that the ordered vector space $\mathcal{L}_{b}(E, F)$ of all order bounded linear mappings of a Riesz space E into an order complete Riesz space F has the structure of a lattice space. This important result was first proved by Riesz [5] for the special case $F=I R$, and later extended to the general setting by Kantorovic [2, 3]. In this paper we consider order bounded bilinear mappings $\varphi: A \times B \mapsto C$, where A, B and C are Riesz spaces. In $\S \S 2$ and 3 we establish extension theorems for additive mappings $\varphi: A^{+} \times B^{+} \mapsto C^{+}$to the whole of $A \times B$. In particular, we prove in $\S 3$ that φ may be extended uniquely to an order bounded bilinear mapping on $A \times B$. This enables us to define lattice operations on the space $\mathcal{B}_{b}(A \times B, C)$ when A, B and C are order complete Riesz spaces.

For the elementary theory of Riesz space and terminology not explained here we refer to $[1,4]$.

2. Quasi-bilinear Mappings

Definition 2.1. Let A, B and C be ordered vector spaces.

[^0](i) A mapping $\varphi: A \times B \mapsto C$ is said to be positive (in notations $\varphi \geq 0$ or $\varphi \leq 0$) whenever $\varphi(x, y) \in C^{+}$(i.e., $\varphi(x, y) \geq 0$) holds for all $(x, y) \in A^{+} \times B^{+}$.
(ii) A mapping $\varphi: A^{+} \times B^{+} \mapsto C^{+}$is said to be additive whenever
$$
\varphi(x+y, z)=\varphi(x, z)+\varphi(y, z) \quad \text { and } \quad \varphi(x, w+z)=\varphi(x, w)+\varphi(x, z)
$$
hold for all $x, y \in A^{+}$and $w, z \in B^{+}$.
(iii) A mapping $\psi: A^{+} \times B \mapsto C$ (respectively $\varphi: A \times B^{+} \mapsto C$) is said to be a right (respectively left) quasi-bilinear mapping if it is linear in the second variable (first variable) and additive in the first (second) or, equivalently,
\[

$$
\begin{aligned}
& \psi(x+y, \lambda u+v)=\lambda \psi(x, u)+\psi(x, v)+\lambda \psi(y, u)+\psi(y, v) \\
& (\varphi(\lambda x+y, u+v)=\lambda \varphi(x, u)+\lambda \varphi(x, v)+\varphi(y, u)+\varphi(y, v))
\end{aligned}
$$
\]

for all $\lambda \in I R, x, y \in A^{+}$and $u, v \in B\left(x, y \in A\right.$ and $\left.u, v \in B^{+}\right)$.
The collection of all right (left) quasi-bilinear mappings of $A^{+} \times B$ into C (respectively $A \times B^{+}$into C) will be denoted by $\mathcal{Q B}\left(A^{+} \times B, C\right)$ (respectively $\mathcal{Q B}\left(A \times B^{+}, C\right)$). Evidently, $\mathcal{Q B}\left(A^{+} \times B, C\right)$ (respectively $\mathcal{Q B}\left(A \times B^{+}, C\right)$) is an ordered vector space under the ordering, for all $x \in A^{+}$and $y \in B^{+}, \varphi_{1} \geq \varphi_{2}$ if and only if $\varphi_{1}(x, y) \geq \varphi_{2}(x, y)$.

In this paper we shall concentrate on right quasi-bilinear mappings; similar results hold for left quasi-bilinear mappings ([6]).

The following result follows almost immediately from the definition.
Lemma 2.2. Let A, B and C be ordered vector spaces. If $\varphi: A^{+} \times B^{+} \mapsto C^{+}$ is an additive mapping, then $(x, y) \leq(a, b)$ in $A^{+} \times B^{+}$implies $\varphi(x, y) \leq \varphi(a, b)$ in C^{+}.

Lemma 2.3. Let A, B and C be Riesz spaces, with C order complete. If $\varphi: A^{+} \times B^{+} \mapsto C^{+}$is additive, then φ is positive homogeneous in both variables; that is, $\varphi(x, \lambda y)=\lambda \varphi(x, y)$ and $\varphi(\lambda x, y)=\lambda \varphi(x, y)$ for all $\lambda \geq 0$ and $(x, y) \in$ $A^{+} \times B^{+}$.

Proof. The result is trivial for $\lambda=0$, and so we assume that $\lambda>0$. We shall only prove that $\varphi(x, \lambda y)=\lambda \varphi(x, y)$ for all $\lambda>0,(x, y) \in A^{+} \times B^{+}$; the second equation can be established similarly. If λ is rational, then $\lambda=\frac{p}{q}$ for some positive integers $p, q>0$. By the additivity of φ,

$$
\varphi(a, p b)=p \varphi(a, b) \quad \text { and } \quad \varphi(a, b)=\varphi\left(a, q\left(\frac{b}{q}\right)\right)=q \varphi\left(a, \frac{b}{q}\right)
$$

which implies that $\varphi(a, \lambda b)=\lambda \varphi(a, b)$ for all positive rationals λ.

If λ is irrational, then choose two sequences of rational numbers $\left\{\epsilon_{n}\right\}$ and $\left\{\eta_{n}\right\}$ such that $0 \leq \epsilon_{n} \uparrow \lambda$ and $\eta_{n} \downarrow \lambda$. Given $a \in A^{+}$it follows from $\epsilon_{n} b \leq \lambda b \leq$ $\eta_{n} b$ in B^{+}that $\left(a, \epsilon_{n} b\right) \leq(a, \lambda b) \leq\left(a, \eta_{n} b\right)$ in $A^{+} \times B^{+}$for all $a \in A^{+}$. By Lemma 2.2, $\varphi\left(a, \epsilon_{n} b\right) \leq \varphi(a, \lambda b) \leq \varphi\left(a, \eta_{n} b\right)$, and so

$$
\epsilon_{n} \varphi(a, b) \leq \varphi(a, \lambda b) \leq \eta_{n} \varphi(a, b) \text { for } n=1,2, \ldots
$$

Moreover, $\epsilon_{n} \varphi(a, b) \uparrow \lambda \varphi(a, b)$ and $\eta_{n} \varphi(a, b) \downarrow \lambda \varphi(a, b)$ in C^{+}. It follows that $\lambda \varphi(a, b) \leq \varphi(a, \lambda b)$. Since $\varphi(a, b) \geq 0$ in C and C is Archimedean (note that every order complete Riesz space is Archimedean), it follows from $\left(\eta_{n}-\epsilon_{n}\right) \downarrow 0$ and the inequalities

$$
0 \leq \varphi(a, \lambda b)-\lambda \varphi(a, b) \leq \varphi(a, \lambda b)-\epsilon_{n} \varphi(a, b) \leq\left(\eta_{n}-\epsilon_{n}\right) \varphi(a, b)
$$

that $\varphi(a, \lambda b)=\lambda \varphi(a, b)$, as required.
Similarly we can show that $\varphi(\lambda a, b)=\lambda \varphi(a, b)$, for all $\lambda \geq 0$ and $(a, b) \in$ $A^{+} \times B^{+}$. This proves that an additive mapping φ is positive homogeneous from $A^{+} \times B^{+}$into C^{+}.

Theorem 2.4. Let A, B and C be Riesz spaces, with C order complete. If $\varphi: A^{+} \times B^{+} \mapsto C^{+}$is an additive mapping, then φ extends uniquely to a positive right quasi-bilinear mapping, for all $x \in A^{+}$and $y \in B$,

$$
\widetilde{\varphi}: A^{+} \times B \mapsto C \quad \text { such that } \quad \widetilde{\varphi}(x, y)=\varphi\left(x, y^{+}\right)-\varphi\left(x, y^{-}\right) .
$$

Proof. We first observe that if $y=u-v$ with $u, v \in B^{+}$, then

$$
\varphi\left(x, y^{+}\right)-\varphi\left(x, y^{-}\right)=\varphi(x, u)-\varphi(x, v)
$$

for $x \in A^{+}$. Indeed, it follows from $y=y^{+}-y^{-}=u-v$ that $y^{+}+v=u+y^{-}$, and so, by the additivity of φ on $A^{+} \times B^{+}$,

$$
\varphi\left(x, y^{+}\right)+\varphi(x, v)=\varphi\left(x, y^{+}+v\right)=\varphi\left(x, u+y^{-}\right)=\varphi(x, u)+\varphi\left(x, y^{-}\right)
$$

from which it follows that $\varphi\left(x, y^{+}\right)-\varphi\left(x, y^{-}\right)=\varphi(x, u)-\varphi(x, v)$. Therefore, since every $y \in A$ has at least one decomposition by the properties of Riesz spaces, if we define

$$
\widetilde{\varphi}(x, y)=\varphi(x, u)-\varphi(x, v) \quad\left((x, y) \in A^{+} \times B\right)
$$

where $y=u-v\left(u, v \in B^{+}\right)$, then $\widetilde{\varphi}(x, y)$ depends only on (x, y) in $A^{+} \times B$ and not on the particular decomposition of (x, y). Thus $\widetilde{\varphi}$ is well-defined on $A^{+} \times B$. Moreover, $\widetilde{\varphi}(x, y)=\varphi(x, y)$ holds for every $(x, y) \in A^{+} \times B^{+}$, and so $\widetilde{\varphi}$: $A^{+} \times B \mapsto C$ is a positive mapping.

We now show that $\widetilde{\varphi}$ is additive on $A^{+} \times B$. To see this, let $x_{1}, x_{2} \in A^{+}$and $y \in B$. Then $\left(x_{1}+x_{2}, y\right)=\left(x_{1}+x_{2}, y^{+}-y^{-}\right)$in $A^{+} \times B$, and so, it follows from the additivity of φ on $A^{+} \times B^{+}$in the first variable that

$$
\widetilde{\varphi}\left(x_{1}+x_{2}, y\right)=\widetilde{\varphi}\left(x_{1}, y\right)+\widetilde{\varphi}\left(x_{2}, y\right) .
$$

Similarly we see that $\widetilde{\varphi}(x, y+z)=\widetilde{\varphi}(x, y)+\widetilde{\varphi}(x, z)$ as $(x, y+z)=\left(x,\left(y^{+}+\right.\right.$ $\left.\left.z^{+}\right)-\left(y^{-}+z^{-}\right)\right)$in $A^{+} \times B$ for all $x \in A^{+}$and $y, z \in B$.

For the homogeneity of $\widetilde{\varphi}$ on $A^{+} \times B$, let $\lambda \in I R, x \in A^{+}$and $y \in B$. Then $(x, \lambda y)=\left(x,(\lambda y)^{+}-(\lambda y)^{-}\right)$holds in $A^{+} \times B$. If $\lambda \geq 0$, then we have $(x, \lambda y)=$ $\left(x, \lambda y^{+}-\lambda y^{-}\right)$in $A^{+} \times B$. Since φ is positive homogeneous by Lemma 2.3,

$$
\widetilde{\varphi}(x, \lambda y)=\varphi\left(x, \lambda y^{+}\right)-\varphi\left(x, \lambda y^{-}\right)=\lambda \varphi\left(x, y^{+}\right)-\lambda \varphi\left(x, y^{-}\right)=\lambda \widetilde{\varphi}(x, y) .
$$

If $\lambda \leq 0$, then $-\lambda \geq 0$, and so $(\lambda y)^{+}=(-\lambda) y^{-}$and $(\lambda y)^{-}=(-\lambda) y^{+}$. Hence $(x, \lambda y)=\left(x,(-\lambda) y^{-}-(-\lambda) y^{+}\right)$, and so since φ is positive homogeneous by Lemma 2.3,
$\widetilde{\varphi}(x, \lambda y)=\varphi\left(x,(-\lambda) y^{-}\right)-\varphi\left(x,(-\lambda) y^{+}\right)=\lambda\left(\varphi\left(x, y^{+}\right)-\varphi\left(x, y^{-}\right)\right)=\lambda \widetilde{\varphi}(x, y)$.
This proves that $\widetilde{\varphi}$ is homogeneous on $A^{+} \times B$ in the second variable.
Similarly it can be seen that $\widetilde{\varphi}$ is positive homogeneous on $A^{+} \times B$ in the first variable.

So far, we have proved that $\widetilde{\varphi}$ is a positive right quasi-bilinear mapping from $A^{+} \times B$ into C. Finally, it remains to show that $\widetilde{\varphi}$ is unique. Assume that ψ is another right quasi-bilinear mapping from $A^{+} \times B$ into C which extends φ; that is, $\psi(x, y)=\varphi(x, y)$ for all $(x, y) \in A^{+} \times B^{+}$. By the decomposition property of Riesz spaces, given $y \in B$, there exist u and v in B^{+}such that $y=u-v$. Hence $\psi(x, y)=\psi(x, u)-\psi(x, v)=\varphi(x, u)-\varphi(x, v)=\widetilde{\varphi}(x, y)$ for all $(x, y) \in A^{+} \times B$, as required.

Remark 2.5. Let A, B and C be Riesz spaces, with C order complete. If $\varphi: A^{+} \times B^{+} \mapsto C^{+}$is an additive mapping in both variables, then the left quasibilinear mapping $\widetilde{\varphi}: A \times B^{+} \mapsto C$ defined by $\widetilde{\varphi}(x, y)=\varphi\left(x^{+}, y\right)-\varphi\left(x^{-}, y\right)$ for all $x \in A$ and $y \in B^{+}$is the unique extension of φ.

3. Order Bounded Bilinear Mappings

Definition 3.1. Let A, B and C be ordered vector spaces. A subset D of $A \times B$ is called order bounded if there exist (a, b) and (\tilde{a}, \tilde{b}) in $A \times B$ such that $(a, b) \leq(x, y) \leq(\tilde{a}, \tilde{b})$ for all $(x, y) \in D$. A bilinear mapping $\varphi: A \times B \mapsto C$ is said to be order bounded if φ maps order bounded subsets of $A \times B$ onto order
bounded subsets of C. In other words, $\varphi: A \times B \mapsto C$ is order bounded if there exist $u, v \in C$ such that $u \leq \varphi(x, y)_{\tilde{b}} \leq v$ for all $(x, y) \in A \times B$ satisfying $(a, b) \leq(x, y) \leq(\tilde{a}, \tilde{b})$ for some $(a, b),(\tilde{a}, \tilde{b}) \in A \times B$.

The set of all order bounded bilinear mappings of $\mathcal{B}(A \times B, C)$ will be denoted by $\mathcal{B}_{b}(A \times B, C)$. It is not difficult to see that $\mathcal{B}_{b}(A \times B, C)$ is an ordered linear subspace of $B(A \times B, C)$. In this section we show that, for an order complete Riesz space $C, \mathcal{B}_{b}(A \times B, C)$ is an order complete Riesz space. We start with the following lemma.

Lemma 3.2. If A, B and C are Riesz spaces, then every positive bilinear mapping $\varphi: A \times B \mapsto C$ is order bounded.

Proof. Let D an order bounded subset of $A \times B$; that is, there exists (u, v) in $A^{+} \times B^{+}$such that $(-u,-v) \leq(x, y) \leq(u, v)$ in $A \times B$ for all $(x, y) \in D$. It follows from $(x+u, y+v) \geq(0,0)$ and $(u-x, v-y) \geq(0,0)$ that $\varphi(x, y)+$ $\varphi(x, v)+\varphi(u, y)+\varphi(u, v) \geq 0$ and $\varphi(u, v)-\varphi(u, y)-\varphi(x, v)+\varphi(x, y) \geq 0$, and so $-\varphi(u, v) \leq \varphi(x, y)$ in C. Similarly, from $(u-x, y+v) \geq(0,0)$ and $(x+u, v-y) \geq$ $(0,0)$, we see that $\varphi(x, y) \leq \varphi(u, v)$ in C. Hence $-\varphi(u, v) \leq \varphi(x, y) \leq \varphi(u, v)$ in C, or, equivalently, since C is a Riesz space, $|\varphi(x, y)| \leq \varphi(u, v)$ in C, as required.

Theorem 3.3. [Extension Theorem] Let A, B and C be Riesz spaces, with C order complete. If $\varphi: A^{+} \times B^{+} \mapsto C^{+}$is an additive mapping, then φ extends uniquely to a positive bilinear mapping $\varphi: A \times B \mapsto C$ such that $\varphi(x, y)=$ $\widetilde{\varphi}_{l}\left(x, y^{+}\right)-\widetilde{\varphi}_{l}\left(x, y^{-}\right)$for all $x \in A$ and $y \in B$, where $\widetilde{\varphi}_{l}$ is the unique positive left quasi-bilinear mapping from $A \times B^{+}$into C, as given in Remark 2.5.

Proof. We first show that φ is unambiguously defined on $A \times B$. For this reason, suppose that $y=u-v$ with $u, v \in B^{+}$. It follows from $\left(x, y^{+}+v\right)=$ $\left(x, u+y^{-}\right)$in $A \times B^{+}$that $\widetilde{\varphi}_{l}\left(x, y^{+}\right)-\widetilde{\varphi}_{l}\left(x, y^{-}\right)=\widetilde{\varphi}_{l}(x, u)-\widetilde{\varphi}_{l}(x, v)$. Hence, since every $y \in B$ has at least one decomposition $y=u-v$ with $u, v \in B^{+}$, if we define $\varphi(x, y)=\widetilde{\varphi}_{l}(x, u)-\widetilde{\varphi}_{l}(x, v)$, then $\varphi(x, y)$ depends only on (x, y) in $A \times B$; not on the particular decomposition of (x, y).

By repeating the same arguments as the ones used to prove the extension theorem (Theorem 2.4), it follows from the left quasi-bilinearity of $\widetilde{\varphi}_{l}$ on $A^{+} \times B$ that φ is bilinear. Moreover, φ is positive since $\widetilde{\varphi}_{l}$ on $A^{+} \times B^{+}$is positive.

Finally, for the uniqueness of φ, assume that $\widetilde{\varphi}$ is another bilinear mapping from $A \times B$ into C which extends φ; that is, $\widetilde{\varphi}(x, y)=\varphi(x, y)$ for all $(x, y) \in A^{+} \times B^{+}$. Given $x \in A$ and $y \in B^{+}$, there exist $u, v \in A^{+}$and $w, z \in B^{+}$such that $x=u-v$ and $y=w-z$. Hence

$$
\begin{aligned}
\widetilde{\varphi}(x, y) & =\widetilde{\varphi}(u, w)+\widetilde{\varphi}(v, z)-\widetilde{\varphi}(v, w)-\widetilde{\varphi}(u, z) \\
& =\left(\left(\widetilde{\varphi}_{l}(u, w)-\widetilde{\varphi}_{l}(v, w)\right)-\left(\widetilde{\varphi}_{l}(u, z)-\widetilde{\varphi}_{l}(v, z)\right)\right. \\
& =\varphi(x, w)-\varphi(x, z)=\varphi(x, y)
\end{aligned}
$$

for all $(x, y) \in A \times B$, which shows that $\widetilde{\varphi}=\varphi$, as required.
Theorem 3.4. Let A, B and C be Riesz spaces, with C order complete. A bilinear mapping $\varphi: A \times B \mapsto C$ is order bounded if and only if there exist positive bilinear mappings $\varphi_{1}, \varphi_{2}: A \times B \mapsto C$ such that $\varphi=\varphi_{1}-\varphi_{2}$.

Proof. Suppose first that $\varphi=\varphi_{1}-\varphi_{2}$, where φ_{1} and φ_{2} are positive bilinear mappings. Since φ_{1} and φ_{2} are order bounded by Lemma 3.2, φ is order bounded.

Conversely, suppose that φ is an order bounded bilinear mapping from $A \times B$ into C. Then, for $x \in A$ and $y \in B$, the set

$$
\{|\varphi(u, v)|:-x \leq u \leq x,-y \leq v \leq y\}
$$

is an order bounded subset of C^{+}; in particular, the set $\{\varphi(a, b): 0 \leq a \leq x, 0 \leq$ $b \leq y\}$ is an order bounded subset of C^{+}. Hence $\bigvee_{\substack{0 \leq a \leq x \\ 0 \leq b \leq y}} \varphi(a, b)$ exists in C since C is order complete. If we set

$$
\psi(x, y)=\bigvee_{\substack{0 \leq a \leq x \\ 0 \leq b \leq y}} \varphi(a, b)
$$

then it is clear that $\psi(x, y) \geq 0$ in C for all $(x, y) \geq(0,0)$ in $A \times B$.
We show that ψ is additive on $A^{+} \times B^{+}$. If $a, b \in A$ and $c \in B$ satisfy $0 \leq a \leq x, 0 \leq b \leq y$ in A and $0 \leq c \leq z$ in B, then $0 \leq a+b \leq x+y$ in A, and so it follows from

$$
\varphi(a, c)+\varphi(b, c)=\varphi(a+b, c) \leq \bigvee_{\substack{0 \leq u \leq x+y \\ 0 \leq v \leq z}} \varphi(u, v)=\psi(x+y, z)
$$

that $\psi(x, z)+\psi(y, z) \leq \psi(x+y, z)$.
On the other hand, if $a \in A^{+}$and $b \in B^{+}$satisfy $0 \leq a \leq x+y$ in A and $0 \leq$ $b \leq z$ in B, then there exist a_{1} and a_{2} in A such that $0 \leq a_{1} \leq x, 0 \leq a_{2} \leq$ y and $a_{1}+a_{2}=a$, by the decomposition property of Riesz spaces (see, e.g., [1, Theorem 1.9]). Hence

$$
\begin{aligned}
\varphi(a, b) & =\varphi\left(a_{1}, b\right)+\varphi\left(a_{2}, b\right) \leq \bigvee_{\substack{0 \leq u_{1} \leq x \\
0 \leq v \leq z}} \varphi\left(u_{1}, v\right)+\bigvee_{\substack{0 \leq u_{2} \leq y \\
0 \leq v \leq z}} \varphi\left(u_{2}, v\right) \\
& =\psi(x, z)+\psi(y, z)
\end{aligned}
$$

from which it follows that $\bigvee_{\substack{0 \leq a \leq x+y \\ 0<b<z}} \varphi(x+y, z) \leq \psi(x, z)+\psi(y, z)$; that is, $\psi(x+y, z) \leq \psi(x, z)+\psi(y, z)$. Therefore $\psi(x+y, z)=\psi(x, z)+\psi(y, z)$.

Similarly we can show that $\psi(x, y+z)=\psi(x, y)+\psi(x, z)$ for all $x \in A^{+}$and $y, z \in B^{+}$. This proves that ψ is an additive mapping from $A^{+} \times B^{+}$into C^{+}. By Theorem 3.3, there exists a unique positive bilinear mapping; say φ_{1}, from $A \times B$ into C which extends φ, i.e., $\varphi_{1}(x, y)=\varphi(x, y)$ for all $(x, y) \in A^{+} \times B^{+}$. Write $\varphi_{2}=\varphi_{1}-\varphi$. Clearly φ_{2} defines a bilinear mapping on $A \times B, \varphi_{1}$ and φ are in the space $\mathcal{B}_{b}(A \times B, C)$ of all order bounded bilinear mappings of $\varphi: A \times B \mapsto C$. Thus, by the definition of ψ,

$$
\varphi_{1}(x, y)=\psi(x, y) \geq \varphi(x, y), \quad \text { and so } \quad \varphi_{2}(x, y)=\varphi_{1}(x, y)-\varphi(x, y) \geq 0
$$

for all $(x, y) \in A^{+} \times B^{+}$. Hence $\varphi_{2} \geq 0$; that is, φ_{2} is positive, and so is order bounded by Lemma 3.2. Therefore we have $\varphi=\varphi_{1}-\varphi_{2}$ with $\varphi_{1}, \varphi_{2} \geq 0$ in $\mathcal{B}_{b}(A \times B, C)$, as required.

Theorem 3.5. Let A, B and C be Riesz spaces, with C order complete, and let $\mathcal{B}_{b}(A \times B, C)$ be the space of all order bounded bilinear mappings of $\varphi: A \times B$ into C. If order in $\mathcal{B}_{b}(A \times B, C)$ is defined by

$$
\varphi_{1} \geq \varphi_{2} \quad \text { if and only if } \varphi_{1}(x, y) \geq \varphi_{2}(x, y)
$$

for all $(x, y) \in A^{+} \times B^{+}$, then $\mathcal{B}_{b}(A \times B, C)$ becomes an order complete Riesz space.

Proof. We first prove that $\mathcal{B}_{b}(A \times B, C)$ is a Riesz space. In order to do this, in the view of the identities in Riesz spaces

$$
\varphi \vee \psi=(\varphi-\psi)^{+}+\psi \quad \text { and } \quad \varphi \wedge \psi=-((-\varphi) \vee(-\psi)),
$$

it is enough to show that φ^{+}exists and belongs to $\mathcal{B}_{b}(A \times B, C)$ for every $\varphi \in$ $\mathcal{B}_{b}(A \times B, C)$. To this end, let $\varphi \in \mathcal{B}_{b}(A \times B, C)$. As in the proof of the preceding theorem, if we define

$$
\psi: A^{+} \times B^{+} \mapsto C \quad \text { by } \quad \psi(x, y)=\bigvee_{\substack{0 \leq a \leq x \\ 0 \leq b \leq y}} \varphi(a, b)
$$

for all $(x, y) \in A^{+} \times B^{+}$, then we see that ψ is an additive mapping. By the extension theorem (Theorem 3.3), ψ defines a positive bilinear mapping from $A \times B$ into C (more precisely, ψ extends uniquely to a positive bilinear mapping, again denoted by ψ, from $A \times B$ into C).

We have to show that ψ is the least upper bound of φ and 0 . Clearly $\psi \geq 0$ and $\psi \geq \varphi$ since $\psi(x, y) \geq \varphi(x, y)$ for all $(x, y) \in A^{+} \times B^{+}$. Hence $\psi \geq \varphi \vee 0$;
that is, ψ is any other upper bound of φ and 0 in $\mathcal{B}_{b}(A \times B, C)$. Suppose that ψ^{\prime} is an upper bound of φ and 0 in $\mathcal{B}_{b}(A \times B, C)$. Then $\psi^{\prime}(x, y) \geq \psi^{\prime}(a, b) \geq \varphi(a, b)$ for all $(0,0) \leq(x, y) \leq(a, b)$ in $A \times B$. It follows that

$$
\psi^{\prime}(x, y) \geq \bigvee_{\substack{0 \leq a \leq x \\ 0 \leq b \leq y}} \varphi(a, b)=\psi(x, y)
$$

for all $(x, y) \in A^{+} \times B^{+}$, and so $\psi^{\prime} \geq \psi$. Therefore ψ is the least upper bound of φ and 0 ; that is, $\psi=\varphi \vee 0$ in $\mathcal{B}_{b}(A \times B, C)$. In the usual notation, $\psi=\varphi^{+}$holds in $\mathcal{B}_{b}(A \times B, C)$. This shows that $\varphi^{+} \in \mathcal{B}_{b}(A \times B, C)$ for each $\varphi \in \mathcal{B}_{b}(A \times B, C)$ and satisfies $\varphi^{+}(x, y)=\bigvee_{\substack{0 \leq a \leq x \\ 0 \leq b \leq y}} \varphi(a, b)$ for all $(x, y) \in A^{+} \times B^{+}$, as required.

Finally we establish that $\mathcal{B}_{b}(A \times B, C)$ is order complete, as follows.
Suppose that $0 \leq \varphi_{\tau} \uparrow \leq \varphi_{0}$ holds in $\mathcal{B}_{b}(A \times B, C)$. We have to show that $\bigvee_{\tau} \varphi_{\tau}$ exists in $\mathcal{B}_{b}(A \times B, C)$. To this end, let $\varphi(x, y)=\bigvee_{\tau} \varphi_{\tau}(x, y)$ for all $(x, y) \in A^{+} \times B^{+}$. Clearly $\varphi(x, y)$ exists as an element of C^{+}since C is order complete. For $x, y \in A^{+}$and $z \in B^{+}$, the nets $\left\{\varphi_{\tau}(x, z)\right\}$ and $\left\{\varphi_{\tau}(y, z)\right\}$ are upwards directed in C^{+}and it follows from the bilinearity of φ_{τ} for all τ and the properties of Riesz spaces (see, e.g., [4, Theorem 15.8(iii)]) that

$$
\varphi(x+y, z)=\bigvee_{\tau} \varphi_{\tau}(x, z)+\bigvee_{\tau} \varphi_{\tau}(y, z)=\varphi(x, z)+\varphi(y, z)
$$

Similarly we can show that $\varphi(x, y+z)=\varphi(x, y)+\varphi(x, z)$ for all $x \in A^{+}$ and $y, z \in B^{+}$. This shows that φ is an additive mapping from $A^{+} \times B^{+}$into C^{+} in both variables. Hence, by the extension theorem (Theorem 3.3), there exists a unique positive bilinear mapping ψ from $A \times B$ into C which extends φ. It follows that $\psi(x, y)=\bigvee_{\tau} \varphi_{\tau}(x, y)$ for all $(x, y) \in A^{+} \times B^{+}$since $\psi(x, y)=\varphi(x, y)$ for all $(x, y) \in A^{+} \times B^{+}$. Therefore $\varphi_{\tau} \uparrow \psi$ holds in $\mathcal{B}_{b}(A \times B, C)$; that is, ψ is the desired supremum of the net $\left\{\varphi_{\tau}\right\}$ satisfying $0 \leq \varphi_{\tau} \uparrow \leq \varphi_{0}$ in $\mathcal{B}_{b}(A \times B, C)$. This proves that $\mathcal{B}_{b}(A \times B, C)$ is an order complete Riesz space.

Considering Theorem 2.4 and following the proofs of Theorem 2.5, the following can be established.

Remark 3.6. If A, B and C be Riesz spaces, with C order complete, then the space of all right quasi-bilinear mappings $(\mathcal{Q B})_{b}\left(A^{+} \times B, C\right)$ and the space of all left quasi-bilinear mappings $(\mathcal{Q B})_{b}\left(A \times B^{+}, C\right)$ are both order complete Riesz spaces.

We observe that $\mathcal{B}_{b}(A \times B, C) \subseteq(\mathcal{Q B})_{b}\left(A^{+} \times B, C\right)$ and $\mathcal{B}_{b}(A \times B, C) \subseteq$ $(\mathcal{Q B})_{b}\left(A \times B^{+}, C\right)$, and so $\mathcal{B}_{b}(A \times B, C) \subseteq(\mathcal{Q B})_{b}\left(A^{+} \times B, C\right) \cap(\mathcal{Q B})_{b}(A \times$ $\left.B^{+}, C\right)$. Hence $\mathcal{B}_{b}(A \times B, C)$ is an order complete Riesz subspace of both $(\mathcal{Q B})_{b}\left(A^{+} \times\right.$ $B, C)$ and $(\mathcal{Q B})_{b}\left(A \times B^{+}, C\right)$.

We are now in a position to express the lattice operations of the space $\mathcal{B}_{b}(A \times$ $B, C)$.

Theorem 3.7. Let A, B and C be Riesz spaces, with C order complete. For every $\varphi \in \mathcal{B}_{b}(A \times B, C)$ and $(x, y) \in A^{+} \times B^{+}$, the following statements hold.
(1) $\varphi^{+}(x, y)=\bigvee_{\substack{0 \leq a \leq x \\ 0 \leq b \leq y}} \varphi(a, b)$.
(2) $\varphi^{-}(x, y)=\bigvee_{\substack{0 \leq a \leq x \\ 0 \leq b \leq y}}-\varphi(a, b)$.
(3) $|\varphi(x, y)| \leq|\varphi|(x, y)$.
(4) $|\varphi(x, y)| \leq|\varphi|(|x|,|y|)$ for all $(x, y) \in A \times B$.
(5) $|\varphi|(x, y)=\underset{\substack{|a| \leq x \\|b| \leq y}}{ } \varphi(a, b)=\underset{\substack{|a| \leq x \\|b| \leq y}}{ }|\varphi(a, b)|$.

Proof. We first note that φ^{+}(and hence φ^{-}and $\left.|\varphi|\right)$ is well-defined in $\mathcal{B}_{b}(A \times$ $B, C)$ since $\mathcal{B}_{b}(A \times B, C)$ is an order complete Riesz space by Theorem 3.5.
(1) This is obvious since φ^{+}is the mapping ψ in the proof of Theorem 3.5.
(2) Follows from the fact that $\varphi^{-}=(-\varphi)^{+}$in $\mathcal{B}_{b}(A \times B, C)$ since $\mathcal{B}_{b}(A \times B, C)$ is a Riesz space.
(3) By the properties of Riesz spaces again, for all $(x, y) \in A^{+} \times B^{+}, \varphi(x, y) \leq$ $\varphi^{+}(x, y) \leq|\varphi|(x, y)$ and $-\varphi(x, y) \leq \varphi^{-}(x, y) \leq|\varphi|(x, y)$ hold in C. Hence $|\varphi(x, y)|=(\varphi(x, y)) \vee(-\varphi(x, y)) \leq|\varphi|(x, y)$ for all $(x, y) \in A^{+} \times B^{+}$.
(4) Using the decomposition property of Riesz spaces, bilinearity of φ and (3), for all $x \in A$ and $y \in B$, we have

$$
|\varphi(x, y)| \leq|\varphi|\left(x^{+}, y^{+}\right)+|\varphi|\left(x^{+}, y^{-}\right)+|\varphi|\left(x^{-}, y^{+}\right)+|\varphi|\left(x^{-}, y^{-}\right)|=|\varphi|(|x|,|y|) .
$$

(5) If $|a| \leq x$ in A and $|b| \leq y$ hold in B, then $\varphi(a, b) \leq|\varphi(a, b)| \leq$ $|\varphi|(|a|,|b|) \leq|\varphi|(x, y)$ by (4) and the positivity of $|\varphi|$ in the Riesz space $\mathcal{B}_{b}(A \times B, C)$. It follows that

$$
\underset{\substack{|a| \leq x \\|b| \leq y}}{ } \varphi(a, b) \leq|\varphi|(x, y) \quad \text { and } \quad \underset{\substack{|a| \leq x \\|b| \leq y}}{\bigvee}|\varphi(a, b)| \leq|\varphi|(x, y)
$$

For the converse direction, we first observe that $0 \leq a_{1} \leq x$ and $0 \leq a_{2} \leq x$ imply $a_{1}-a_{2} \leq x$ and $a_{2}-a_{1} \leq x$, and so $\left|a_{1}-a_{2}\right| \leq x$. Similarly $0 \leq b_{1} \leq y$ and $0 \leq b_{2} \leq y$ imply $\left|b_{1}-b_{2}\right| \leq y$. It now follows from $|\varphi|=\varphi^{+}+\varphi^{-}$in
$\mathcal{B}_{b}(A \times B, C)$ that

$$
\begin{aligned}
& |\varphi|(x, y)=\varphi^{+}(x, y)+\varphi^{-}(x, y) \\
& =\bigvee_{\substack{0 \leq u \leq x \\
0 \leq v \leq y}} \varphi(u, v)+\underset{\substack{0 \leq w \leq x \\
0 \leq z \leq y}}{\bigvee}-\varphi(w, z) \quad \text { (by (1) and (2)) } \\
& =\bigvee_{\substack{0 \leq u \leq x \\
0 \leq v \leq y}} \varphi(u, v)+\underset{\substack{0 \leq w \leq x \\
0 \leq z \leq y}}{\bigvee} \varphi(-w, z) \\
& \leq(\underset{\substack{0 \leq u \leq x \\
0 \leq v \leq y}}{ } \varphi(u, v)+\underset{\substack{0 \leq w \leq x \\
0 \leq z \leq y}}{\bigvee} \varphi(-w, z)+\underset{\substack{0 \leq \leq \leq x \\
0 \leq v \leq y}}{\bigvee} \varphi(u, v)+\underset{\substack{0 \leq w \leq x \\
0 \leq v \leq y}}{\bigvee} \varphi(-w, v)) \\
& +\bigvee_{\substack{0 \leq u \leq x, 0 \leq w \leq x \\
0 \leq z \leq y}} \varphi(u-w,-2 z) \\
& =\bigvee_{\substack{0 \leq u \leq x, 0 \leq w \leq x \\
0 \leq v \leq y, 0 \leq z \leq y}} \varphi(u-w, v+z)+\bigvee_{\substack{0 \leq u \leq x, 0 \leq w \leq x \\
0 \leq z \leq y}} \varphi(u-w,-2 z) \\
& =\bigvee_{\substack{0 \leq u \leq x, 0 \leq w \leq x \\
0 \leq v \leq y, 0 \leq z \leq y}} \varphi(u-w, v-z) \leq \bigvee_{\substack{|a| \leq x \\
|b| \leq y}} \varphi(a, b) \leq \bigvee_{\substack{|a| \leq x \\
|b| \leq y}}|\varphi(a, b)| .
\end{aligned}
$$

Combining the above and preceding gives

$$
|\varphi|(x, y)=\bigvee_{\substack{a|\leq x\\| b \mid \leq y}} \varphi(a, b)=\bigvee_{\substack{|a| \leq x \\|b| \leq y}}|\varphi(a, b)|,
$$

as required.

References

1. C. D. Aliprantis and O. Burkinshaw, Positive Oparators, Academic Press (1985).
2. L. V. Kantorovič, On the moment problem for a finite interval, Dokl. Akad. Nauk SSSR, 14 (1937), 531-537.
3. L. V. Kantorovič, Linear operators in semi-ordered spaces, Mat. Sb. (N.S), 49 (1940), 209-284.
4. W. A. J. Luxemburg and A. C. Zaanen, Riesz Spaces I, North-Holland (1981).
5. F. Riesz, Sur la décomposition des opération linéaires, Atti Congr. Internaz. Mat., Bologna, 3 (1928), 143-148.
6. R. Yilmaz, On lattice ordered algebras, Ph.D. Thesis, University of Wales, 2001.

Rusen Yilmaz
Department of Mathematics,
Faculty of Arts and Science,
Rize University,
53100 Rize, Turkey
E-mail: ryilmaz00@yahoo.com

[^0]: Received July 31, 2003, accepted June 27, 2006.
 Communicated by Pei Yuan Wu.
 2000 Mathematics Subject Classification: 46A40, 47A07.
 Key words and phrases: Riesz space, vector lattice, lattice operation, bilinear mapping.

