TAIWANESE JOURNAL OF MATHEMATICS Vol. 12, No. 1, pp. 39-49, February 2008 This paper is available online at http://www.tjm.nsysu.edu.tw/

LATTICE OPERATIONS OF POSITIVE BILINEAR MAPPINGS

Rusen Yilmaz

Abstract. In this paper we establish extension theorems for additive mappings $\varphi : A^+ \times B^+ \mapsto C^+$, where A, B are Riesz spaces (lattice ordered spaces or vector lattices) and C is an order complete Riesz space, to the whole of $A \times B$, thereby extending well-known results for additive mappings between Riesz spaces. We prove, in particular, that when A, B and C are order complete Riesz spaces, the ordered vector space $\mathcal{B}_b(A \times B, C)$ of all order bounded bilinear mappings has the structure of a lattice space.

1. INTRODUCTION

The extension theory of positive operators on a Riesz space has been welldocumented; see, for example, the book by Aliprantis and Burkinshaw [1]. It is well-known that the ordered vector space $\mathcal{L}_b(E, F)$ of all order bounded linear mappings of a Riesz space E into an order complete Riesz space F has the structure of a lattice space. This important result was first proved by Riesz [5] for the special case F = IR, and later extended to the general setting by Kantorovic [2, 3]. In this paper we consider order bounded bilinear mappings $\varphi : A \times B \mapsto C$, where A, Band C are Riesz spaces. In §§2 and 3 we establish extension theorems for additive mappings $\varphi : A^+ \times B^+ \mapsto C^+$ to the whole of $A \times B$. In particular, we prove in §3 that φ may be extended uniquely to an order bounded bilinear mapping on $A \times B$. This enables us to define lattice operations on the space $\mathcal{B}_b(A \times B, C)$ when A, Band C are order complete Riesz spaces.

For the elementary theory of Riesz space and terminology not explained here we refer to [1, 4].

2. QUASI-BILINEAR MAPPINGS

Definition 2.1. Let A, B and C be ordered vector spaces.

Received July 31, 2003, accepted June 27, 2006.

Communicated by Pei Yuan Wu.

²⁰⁰⁰ Mathematics Subject Classification: 46A40, 47A07.

Key words and phrases: Riesz space, vector lattice, lattice operation, bilinear mapping.

- (i) A mapping $\varphi : A \times B \mapsto C$ is said to be positive (in notations $\varphi \ge 0$ or $\varphi \le 0$) whenever $\varphi(x, y) \in C^+$ (i.e., $\varphi(x, y) \ge 0$) holds for all $(x, y) \in A^+ \times B^+$.
- (ii) A mapping $\varphi: A^+ \times B^+ \mapsto C^+$ is said to be additive whenever

$$\varphi(x+y,z) = \varphi(x,z) + \varphi(y,z)$$
 and $\varphi(x,w+z) = \varphi(x,w) + \varphi(x,z)$

hold for all $x, y \in A^+$ and $w, z \in B^+$.

(iii) A mapping $\psi : A^+ \times B \mapsto C$ (respectively $\varphi : A \times B^+ \mapsto C$) is said to be a right (respectively left) quasi-bilinear mapping if it is linear in the second variable (first variable) and additive in the first (second) or, equivalently,

$$\begin{split} \psi(x+y,\lambda u+v) &= \lambda \psi(x,u) + \psi(x,v) + \lambda \psi(y,u) + \psi(y,v) \\ (\varphi(\lambda x+y,u+v) &= \lambda \varphi(x,u) + \lambda \varphi(x,v) + \varphi(y,u) + \varphi(y,v)) \end{split}$$

for all $\lambda \in IR$, $x, y \in A^+$ and $u, v \in B$ $(x, y \in A \text{ and } u, v \in B^+)$.

The collection of all right (left) quasi-bilinear mappings of $A^+ \times B$ into C(respectively $A \times B^+$ into C) will be denoted by $\mathcal{QB}(A^+ \times B, C)$ (respectively $\mathcal{QB}(A \times B^+, C)$). Evidently, $\mathcal{QB}(A^+ \times B, C)$ (respectively $\mathcal{QB}(A \times B^+, C)$) is an ordered vector space under the ordering, for all $x \in A^+$ and $y \in B^+$, $\varphi_1 \ge \varphi_2$ if and only if $\varphi_1(x, y) \ge \varphi_2(x, y)$.

In this paper we shall concentrate on right quasi-bilinear mappings; similar results hold for left quasi-bilinear mappings ([6]).

The following result follows almost immediately from the definition.

Lemma 2.2. Let A, B and C be ordered vector spaces. If $\varphi : A^+ \times B^+ \mapsto C^+$ is an additive mapping, then $(x, y) \leq (a, b)$ in $A^+ \times B^+$ implies $\varphi(x, y) \leq \varphi(a, b)$ in C^+ .

Lemma 2.3. Let A, B and C be Riesz spaces, with C order complete. If $\varphi : A^+ \times B^+ \mapsto C^+$ is additive, then φ is positive homogeneous in both variables; that is, $\varphi(x, \lambda y) = \lambda \varphi(x, y)$ and $\varphi(\lambda x, y) = \lambda \varphi(x, y)$ for all $\lambda \ge 0$ and $(x, y) \in A^+ \times B^+$.

Proof. The result is trivial for $\lambda = 0$, and so we assume that $\lambda > 0$. We shall only prove that $\varphi(x, \lambda y) = \lambda \varphi(x, y)$ for all $\lambda > 0$, $(x, y) \in A^+ \times B^+$; the second equation can be established similarly. If λ is rational, then $\lambda = \frac{p}{q}$ for some positive integers p, q > 0. By the additivity of φ ,

$$\varphi(a,pb) = p\varphi(a,b) \quad \text{ and } \quad \varphi(a,b) = \varphi(a,q(\frac{b}{q})) = q\varphi(a,\frac{b}{q}),$$

which implies that $\varphi(a, \lambda b) = \lambda \varphi(a, b)$ for all positive rationals λ .

40

If λ is irrational, then choose two sequences of rational numbers $\{\epsilon_n\}$ and $\{\eta_n\}$ such that $0 \leq \epsilon_n \uparrow \lambda$ and $\eta_n \downarrow \lambda$. Given $a \in A^+$ it follows from $\epsilon_n b \leq \lambda b \leq \eta_n b$ in B^+ that $(a, \epsilon_n b) \leq (a, \lambda b) \leq (a, \eta_n b)$ in $A^+ \times B^+$ for all $a \in A^+$. By Lemma 2.2, $\varphi(a, \epsilon_n b) \leq \varphi(a, \lambda b) \leq \varphi(a, \eta_n b)$, and so

$$\epsilon_n \varphi(a, b) \leq \varphi(a, \lambda b) \leq \eta_n \varphi(a, b)$$
 for $n = 1, 2, \dots$

Moreover, $\epsilon_n \varphi(a, b) \uparrow \lambda \varphi(a, b)$ and $\eta_n \varphi(a, b) \downarrow \lambda \varphi(a, b)$ in C^+ . It follows that $\lambda \varphi(a, b) \leq \varphi(a, \lambda b)$. Since $\varphi(a, b) \geq 0$ in C and C is Archimedean (note that every order complete Riesz space is Archimedean), it follows from $(\eta_n - \epsilon_n) \downarrow 0$ and the inequalities

$$0 \le \varphi(a, \lambda b) - \lambda \varphi(a, b) \le \varphi(a, \lambda b) - \epsilon_n \varphi(a, b) \le (\eta_n - \epsilon_n) \varphi(a, b)$$

that $\varphi(a, \lambda b) = \lambda \varphi(a, b)$, as required.

Similarly we can show that $\varphi(\lambda a, b) = \lambda \varphi(a, b)$, for all $\lambda \ge 0$ and $(a, b) \in A^+ \times B^+$. This proves that an additive mapping φ is positive homogeneous from $A^+ \times B^+$ into C^+ .

Theorem 2.4. Let A, B and C be Riesz spaces, with C order complete. If $\varphi : A^+ \times B^+ \mapsto C^+$ is an additive mapping, then φ extends uniquely to a positive right quasi-bilinear mapping, for all $x \in A^+$ and $y \in B$,

$$\widetilde{\varphi}: A^+ \times B \mapsto C \quad \text{ such that } \quad \widetilde{\varphi}(x,y) = \varphi(x,y^+) - \varphi(x,y^-).$$

Proof. We first observe that if y = u - v with $u, v \in B^+$, then

$$\varphi(x, y^+) - \varphi(x, y^-) = \varphi(x, u) - \varphi(x, v)$$

for $x \in A^+$. Indeed, it follows from $y = y^+ - y^- = u - v$ that $y^+ + v = u + y^-$, and so, by the additivity of φ on $A^+ \times B^+$,

$$\varphi(x,y^+) + \varphi(x,v) = \varphi(x,y^+ + v) = \varphi(x,u+y^-) = \varphi(x,u) + \varphi(x,y^-),$$

from which it follows that $\varphi(x, y^+) - \varphi(x, y^-) = \varphi(x, u) - \varphi(x, v)$. Therefore, since every $y \in A$ has at least one decomposition by the properties of Riesz spaces, if we define

$$\widetilde{\varphi}(x,y) = \varphi(x,u) - \varphi(x,v) \ ((x,y) \in A^+ \times B),$$

where y = u - v $(u, v \in B^+)$, then $\tilde{\varphi}(x, y)$ depends only on (x, y) in $A^+ \times B$ and not on the particular decomposition of (x, y). Thus $\tilde{\varphi}$ is well-defined on $A^+ \times B$. Moreover, $\tilde{\varphi}(x, y) = \varphi(x, y)$ holds for every $(x, y) \in A^+ \times B^+$, and so $\tilde{\varphi} : A^+ \times B \mapsto C$ is a positive mapping.

We now show that $\tilde{\varphi}$ is additive on $A^+ \times B$. To see this, let $x_1, x_2 \in A^+$ and $y \in B$. Then $(x_1 + x_2, y) = (x_1 + x_2, y^+ - y^-)$ in $A^+ \times B$, and so, it follows from the additivity of φ on $A^+ \times B^+$ in the first variable that

$$\widetilde{\varphi}(x_1 + x_2, y) = \widetilde{\varphi}(x_1, y) + \widetilde{\varphi}(x_2, y).$$

Similarly we see that $\widetilde{\varphi}(x, y + z) = \widetilde{\varphi}(x, y) + \widetilde{\varphi}(x, z)$ as $(x, y + z) = (x, (y^+ + z^+) - (y^- + z^-))$ in $A^+ \times B$ for all $x \in A^+$ and $y, z \in B$.

For the homogeneity of $\widetilde{\varphi}$ on $A^+ \times B$, let $\lambda \in IR$, $x \in A^+$ and $y \in B$. Then $(x, \lambda y) = (x, (\lambda y)^+ - (\lambda y)^-)$ holds in $A^+ \times B$. If $\lambda \ge 0$, then we have $(x, \lambda y) = (x, \lambda y^+ - \lambda y^-)$ in $A^+ \times B$. Since φ is positive homogeneous by Lemma 2.3,

$$\widetilde{\varphi}(x,\lambda y) = \varphi(x,\lambda y^+) - \varphi(x,\lambda y^-) = \lambda \varphi(x,y^+) - \lambda \varphi(x,y^-) = \lambda \widetilde{\varphi}(x,y).$$

If $\lambda \leq 0$, then $-\lambda \geq 0$, and so $(\lambda y)^+ = (-\lambda)y^-$ and $(\lambda y)^- = (-\lambda)y^+$. Hence $(x, \lambda y) = (x, (-\lambda)y^- - (-\lambda)y^+)$, and so since φ is positive homogeneous by Lemma 2.3,

$$\widetilde{\varphi}(x,\lambda y) = \varphi(x,(-\lambda)y^{-}) - \varphi(x,(-\lambda)y^{+}) = \lambda(\varphi(x,y^{+}) - \varphi(x,y^{-})) = \lambda\widetilde{\varphi}(x,y).$$

This proves that $\tilde{\varphi}$ is homogeneous on $A^+ \times B$ in the second variable.

Similarly it can be seen that $\tilde{\varphi}$ is positive homogeneous on $A^+ \times B$ in the first variable.

So far, we have proved that $\tilde{\varphi}$ is a positive right quasi-bilinear mapping from $A^+ \times B$ into C. Finally, it remains to show that $\tilde{\varphi}$ is unique. Assume that ψ is another right quasi-bilinear mapping from $A^+ \times B$ into C which extends φ ; that is, $\psi(x, y) = \varphi(x, y)$ for all $(x, y) \in A^+ \times B^+$. By the decomposition property of Riesz spaces, given $y \in B$, there exist u and v in B^+ such that y = u - v. Hence $\psi(x, y) = \psi(x, u) - \psi(x, v) = \varphi(x, u) - \varphi(x, v) = \tilde{\varphi}(x, y)$ for all $(x, y) \in A^+ \times B$, as required.

Remark 2.5. Let A, B and C be Riesz spaces, with C order complete. If $\varphi: A^+ \times B^+ \mapsto C^+$ is an additive mapping in both variables, then the left quasibilinear mapping $\tilde{\varphi}: A \times B^+ \mapsto C$ defined by $\tilde{\varphi}(x, y) = \varphi(x^+, y) - \varphi(x^-, y)$ for all $x \in A$ and $y \in B^+$ is the unique extension of φ .

3. Order Bounded Bilinear Mappings

Definition 3.1. Let A, B and C be ordered vector spaces. A subset D of $A \times B$ is called order bounded if there exist (a, b) and (\tilde{a}, \tilde{b}) in $A \times B$ such that $(a, b) \leq (x, y) \leq (\tilde{a}, \tilde{b})$ for all $(x, y) \in D$. A bilinear mapping $\varphi : A \times B \mapsto C$ is said to be order bounded if φ maps order bounded subsets of $A \times B$ onto order

bounded subsets of C. In other words, $\varphi : A \times B \mapsto C$ is order bounded if there exist $u, v \in C$ such that $u \leq \varphi(x, y) \leq v$ for all $(x, y) \in A \times B$ satisfying $(a, b) \leq (x, y) \leq (\tilde{a}, \tilde{b})$ for some $(a, b), (\tilde{a}, \tilde{b}) \in A \times B$.

The set of all order bounded bilinear mappings of $\mathcal{B}(A \times B, C)$ will be denoted by $\mathcal{B}_b(A \times B, C)$. It is not difficult to see that $\mathcal{B}_b(A \times B, C)$ is an ordered linear subspace of $B(A \times B, C)$. In this section we show that, for an order complete Riesz space C, $\mathcal{B}_b(A \times B, C)$ is an order complete Riesz space. We start with the following lemma.

Lemma 3.2. If A, B and C are Riesz spaces, then every positive bilinear mapping $\varphi : A \times B \mapsto C$ is order bounded.

Proof. Let D an order bounded subset of $A \times B$; that is, there exists (u, v) in $A^+ \times B^+$ such that $(-u, -v) \leq (x, y) \leq (u, v)$ in $A \times B$ for all $(x, y) \in D$. It follows from $(x + u, y + v) \geq (0, 0)$ and $(u - x, v - y) \geq (0, 0)$ that $\varphi(x, y) + \varphi(x, v) + \varphi(u, y) + \varphi(u, v) \geq 0$ and $\varphi(u, v) - \varphi(u, y) - \varphi(x, v) + \varphi(x, y) \geq 0$, and so $-\varphi(u, v) \leq \varphi(x, y)$ in C. Similarly, from $(u - x, y + v) \geq (0, 0)$ and $(x + u, v - y) \geq (0, 0)$, we see that $\varphi(x, y) \leq \varphi(u, v)$ in C. Hence $-\varphi(u, v) \leq \varphi(x, y) \leq \varphi(u, v)$ in C, or, equivalently, since C is a Riesz space, $|\varphi(x, y)| \leq \varphi(u, v)$ in C, as required.

Theorem 3.3. [Extension Theorem] Let A, B and C be Riesz spaces, with C order complete. If $\varphi : A^+ \times B^+ \mapsto C^+$ is an additive mapping, then φ extends uniquely to a positive bilinear mapping $\varphi : A \times B \mapsto C$ such that $\varphi(x, y) = \widetilde{\varphi}_l(x, y^+) - \widetilde{\varphi}_l(x, y^-)$ for all $x \in A$ and $y \in B$, where $\widetilde{\varphi}_l$ is the unique positive left quasi-bilinear mapping from $A \times B^+$ into C, as given in Remark 2.5.

Proof. We first show that φ is unambiguously defined on $A \times B$. For this reason, suppose that y = u - v with $u, v \in B^+$. It follows from $(x, y^+ + v) = (x, u + y^-)$ in $A \times B^+$ that $\tilde{\varphi}_l(x, y^+) - \tilde{\varphi}_l(x, y^-) = \tilde{\varphi}_l(x, u) - \tilde{\varphi}_l(x, v)$. Hence, since every $y \in B$ has at least one decomposition y = u - v with $u, v \in B^+$, if we define $\varphi(x, y) = \tilde{\varphi}_l(x, u) - \tilde{\varphi}_l(x, v)$, then $\varphi(x, y)$ depends only on (x, y) in $A \times B$; not on the particular decomposition of (x, y).

By repeating the same arguments as the ones used to prove the extension theorem (Theorem 2.4), it follows from the left quasi-bilinearity of $\tilde{\varphi}_l$ on $A^+ \times B$ that φ is bilinear. Moreover, φ is positive since $\tilde{\varphi}_l$ on $A^+ \times B^+$ is positive.

Finally, for the uniqueness of φ , assume that $\tilde{\varphi}$ is another bilinear mapping from $A \times B$ into C which extends φ ; that is, $\tilde{\varphi}(x, y) = \varphi(x, y)$ for all $(x, y) \in A^+ \times B^+$. Given $x \in A$ and $y \in B^+$, there exist $u, v \in A^+$ and $w, z \in B^+$ such that x = u - v and y = w - z. Hence

$$\begin{split} \widetilde{\varphi}(x,y) &= \widetilde{\varphi}(u,w) + \widetilde{\varphi}(v,z) - \widetilde{\varphi}(v,w) - \widetilde{\varphi}(u,z) \\ &= \left((\widetilde{\varphi}_l(u,w) - \widetilde{\varphi}_l(v,w)) - (\widetilde{\varphi}_l(u,z) - \widetilde{\varphi}_l(v,z)) \right) \\ &= \varphi(x,w) - \varphi(x,z) = \varphi(x,y) \end{split}$$

for all $(x, y) \in A \times B$, which shows that $\tilde{\varphi} = \varphi$, as required.

Theorem 3.4. Let A, B and C be Riesz spaces, with C order complete. A bilinear mapping $\varphi : A \times B \mapsto C$ is order bounded if and only if there exist positive bilinear mappings $\varphi_1, \varphi_2 : A \times B \mapsto C$ such that $\varphi = \varphi_1 - \varphi_2$.

Proof. Suppose first that $\varphi = \varphi_1 - \varphi_2$, where φ_1 and φ_2 are positive bilinear mappings. Since φ_1 and φ_2 are order bounded by Lemma 3.2, φ is order bounded.

Conversely, suppose that φ is an order bounded bilinear mapping from $A \times B$ into C. Then, for $x \in A$ and $y \in B$, the set

$$\{|\varphi(u,v)|: -x \le u \le x, -y \le v \le y\}$$

is an order bounded subset of C^+ ; in particular, the set $\{\varphi(a, b) : 0 \le a \le x, 0 \le b \le y\}$ is an order bounded subset of C^+ . Hence $\bigvee_{\substack{0 \le a \le x \\ 0 \le b \le y}} \varphi(a, b)$ exists in C since

C is order complete. If we set

$$\psi(x,y) = \bigvee_{\substack{0 \le a \le x\\ 0 \le b \le y}} \varphi(a,b),$$

then it is clear that $\psi(x, y) \ge 0$ in C for all $(x, y) \ge (0, 0)$ in $A \times B$.

We show that ψ is additive on $A^+ \times B^+$. If $a, b \in A$ and $c \in B$ satisfy $0 \le a \le x$, $0 \le b \le y$ in A and $0 \le c \le z$ in B, then $0 \le a + b \le x + y$ in A, and so it follows from

$$\varphi(a,c) + \varphi(b,c) = \varphi(a+b,c) \le \bigvee_{\substack{0 \le u \le x+y \\ 0 < v < z}} \varphi(u,v) = \psi(x+y,z)$$

that $\psi(x, z) + \psi(y, z) \le \psi(x + y, z)$.

On the other hand, if $a \in A^+$ and $b \in B^+$ satisfy $0 \le a \le x + y$ in A and $0 \le b \le z$ in B, then there exist a_1 and a_2 in A such that $0 \le a_1 \le x$, $0 \le a_2 \le y$ and $a_1 + a_2 = a$, by the decomposition property of Riesz spaces (see, e.g., [1, Theorem 1.9]). Hence

$$\begin{aligned} \varphi(a,b) &= \varphi(a_1,b) + \varphi(a_2,b) \leq \bigvee_{\substack{0 \leq u_1 \leq x \\ 0 \leq v \leq z}} \varphi(u_1,v) + \bigvee_{\substack{0 \leq u_2 \leq y \\ 0 \leq v \leq z}} \varphi(u_2,v) \\ &= \psi(x,z) + \psi(y,z), \end{aligned}$$

44

from which it follows that $\bigvee_{\substack{0 \leq a \leq x+y \\ 0 \leq b \leq z}} \varphi(x+y,z) \leq \psi(x,z) + \psi(y,z)$; that is, $\psi(x+y,z) \leq \psi(x,z) + \psi(y,z)$. Therefore $\psi(x+y,z) = \psi(x,z) + \psi(y,z)$.

Similarly we can show that $\psi(x, y+z) = \psi(x, y) + \psi(x, z)$ for all $x \in A^+$ and $y, z \in B^+$. This proves that ψ is an additive mapping from $A^+ \times B^+$ into C^+ . By Theorem 3.3, there exists a unique positive bilinear mapping; say φ_1 , from $A \times B$ into C which extends φ , i.e., $\varphi_1(x, y) = \varphi(x, y)$ for all $(x, y) \in A^+ \times B^+$. Write $\varphi_2 = \varphi_1 - \varphi$. Clearly φ_2 defines a bilinear mapping on $A \times B$, φ_1 and φ are in the space $\mathcal{B}_b(A \times B, C)$ of all order bounded bilinear mappings of $\varphi : A \times B \mapsto C$. Thus, by the definition of ψ ,

$$\varphi_1(x,y) = \psi(x,y) \ge \varphi(x,y), \quad \text{and so} \quad \varphi_2(x,y) = \varphi_1(x,y) - \varphi(x,y) \ge 0$$

for all $(x, y) \in A^+ \times B^+$. Hence $\varphi_2 \ge 0$; that is, φ_2 is positive, and so is order bounded by Lemma 3.2. Therefore we have $\varphi = \varphi_1 - \varphi_2$ with $\varphi_1, \varphi_2 \ge 0$ in $\mathcal{B}_b(A \times B, C)$, as required.

Theorem 3.5. Let A, B and C be Riesz spaces, with C order complete, and let $\mathcal{B}_b(A \times B, C)$ be the space of all order bounded bilinear mappings of $\varphi : A \times B$ into C. If order in $\mathcal{B}_b(A \times B, C)$ is defined by

$$\varphi_1 \ge \varphi_2$$
 if and only if $\varphi_1(x,y) \ge \varphi_2(x,y)$

for all $(x, y) \in A^+ \times B^+$, then $\mathcal{B}_b(A \times B, C)$ becomes an order complete Riesz space.

Proof. We first prove that $\mathcal{B}_b(A \times B, C)$ is a Riesz space. In order to do this, in the view of the identities in Riesz spaces

$$\varphi \lor \psi = (\varphi - \psi)^+ + \psi$$
 and $\varphi \land \psi = -((-\varphi) \lor (-\psi)),$

it is enough to show that φ^+ exists and belongs to $\mathcal{B}_b(A \times B, C)$ for every $\varphi \in \mathcal{B}_b(A \times B, C)$. To this end, let $\varphi \in \mathcal{B}_b(A \times B, C)$. As in the proof of the preceding theorem, if we define

$$\psi: A^+ \times B^+ \mapsto C \quad \text{by} \quad \psi(x,y) = \bigvee_{\substack{0 \le a \le x \\ 0 \le b \le y}} \varphi(a,b)$$

for all $(x, y) \in A^+ \times B^+$, then we see that ψ is an additive mapping. By the extension theorem (Theorem 3.3), ψ defines a positive bilinear mapping from $A \times B$ into C (more precisely, ψ extends uniquely to a positive bilinear mapping, again denoted by ψ , from $A \times B$ into C).

We have to show that ψ is the least upper bound of φ and 0. Clearly $\psi \ge 0$ and $\psi \ge \varphi$ since $\psi(x, y) \ge \varphi(x, y)$ for all $(x, y) \in A^+ \times B^+$. Hence $\psi \ge \varphi \lor 0$;

that is, ψ is any other upper bound of φ and 0 in $\mathcal{B}_b(A \times B, C)$. Suppose that ψ' is an upper bound of φ and 0 in $\mathcal{B}_b(A \times B, C)$. Then $\psi'(x, y) \ge \psi'(a, b) \ge \varphi(a, b)$ for all $(0, 0) \le (x, y) \le (a, b)$ in $A \times B$. It follows that

$$\psi'(x,y) \ge \bigvee_{\substack{0 \le a \le x\\ 0 \le b \le y}} \varphi(a,b) = \psi(x,y)$$

for all $(x, y) \in A^+ \times B^+$, and so $\psi' \ge \psi$. Therefore ψ is the least upper bound of φ and 0; that is, $\psi = \varphi \lor 0$ in $\mathcal{B}_b(A \times B, C)$. In the usual notation, $\psi = \varphi^+$ holds in $\mathcal{B}_b(A \times B, C)$. This shows that $\varphi^+ \in \mathcal{B}_b(A \times B, C)$ for each $\varphi \in \mathcal{B}_b(A \times B, C)$ and satisfies $\varphi^+(x, y) = \bigvee_{\substack{0 \le a \le x \\ 0 \le b \le y}} \varphi(a, b)$ for all $(x, y) \in A^+ \times B^+$, as required.

Finally we establish that $\overline{\mathcal{B}}_{b}(A \times B, C)$ is order complete, as follows.

Suppose that $0 \leq \varphi_{\tau} \uparrow \leq \varphi_{0}$ holds in $\mathcal{B}_{b}(A \times B, C)$. We have to show that $\bigvee_{\tau} \varphi_{\tau}$ exists in $\mathcal{B}_{b}(A \times B, C)$. To this end, let $\varphi(x, y) = \bigvee_{\tau} \varphi_{\tau}(x, y)$ for all $(x, y) \in A^{+} \times B^{+}$. Clearly $\varphi(x, y)$ exists as an element of C^{+} since C is order complete. For $x, y \in A^{+}$ and $z \in B^{+}$, the nets $\{\varphi_{\tau}(x, z)\}$ and $\{\varphi_{\tau}(y, z)\}$ are upwards directed in C^{+} and it follows from the bilinearity of φ_{τ} for all τ and the properties of Riesz spaces (see, e.g., [4, Theorem 15.8(iii)]) that

$$\varphi(x+y,z) = \bigvee_{\tau} \varphi_{\tau}(x,z) + \bigvee_{\tau} \varphi_{\tau}(y,z) = \varphi(x,z) + \varphi(y,z).$$

Similarly we can show that $\varphi(x, y + z) = \varphi(x, y) + \varphi(x, z)$ for all $x \in A^+$ and $y, z \in B^+$. This shows that φ is an additive mapping from $A^+ \times B^+$ into C^+ in both variables. Hence, by the extension theorem (Theorem 3.3), there exists a unique positive bilinear mapping ψ from $A \times B$ into C which extends φ . It follows that $\psi(x, y) = \bigvee_{\tau} \varphi_{\tau}(x, y)$ for all $(x, y) \in A^+ \times B^+$ since $\psi(x, y) = \varphi(x, y)$ for all $(x, y) \in A^+ \times B^+$. Therefore $\varphi_{\tau} \uparrow \psi$ holds in $\mathcal{B}_b(A \times B, C)$; that is, ψ is the desired supremum of the net $\{\varphi_{\tau}\}$ satisfying $0 \leq \varphi_{\tau} \uparrow \leq \varphi_0$ in $\mathcal{B}_b(A \times B, C)$. This proves that $\mathcal{B}_b(A \times B, C)$ is an order complete Riesz space.

Considering Theorem 2.4 and following the proofs of Theorem 2.5, the following can be established.

Remark 3.6. If A, B and C be Riesz spaces, with C order complete, then the space of all right quasi-bilinear mappings $(\mathcal{QB})_b(A^+ \times B, C)$ and the space of all left quasi-bilinear mappings $(\mathcal{QB})_b(A \times B^+, C)$ are both order complete Riesz spaces.

We observe that $\mathcal{B}_b(A \times B, C) \subseteq (\mathcal{QB})_b(A^+ \times B, C)$ and $\mathcal{B}_b(A \times B, C) \subseteq (\mathcal{QB})_b(A \times B^+, C)$, and so $\mathcal{B}_b(A \times B, C) \subseteq (\mathcal{QB})_b(A^+ \times B, C) \cap (\mathcal{QB})_b(A \times B^+, C)$. Hence $\mathcal{B}_b(A \times B, C)$ is an order complete Riesz subspace of both $(\mathcal{QB})_b(A^+ \times B, C)$ and $(\mathcal{QB})_b(A \times B^+, C)$.

We are now in a position to express the lattice operations of the space $\mathcal{B}_b(A \times B, C)$.

Theorem 3.7. Let A, B and C be Riesz spaces, with C order complete. For every $\varphi \in \mathcal{B}_b(A \times B, C)$ and $(x, y) \in A^+ \times B^+$, the following statements hold.

- (1) $\varphi^+(x,y) = \bigvee_{\substack{0 \le a \le x \\ 0 \le b \le y}} \varphi(a,b).$
- (2) $\varphi^{-}(x,y) = \bigvee_{\substack{0 \le a \le x \\ 0 \le b \le y}} -\varphi(a,b).$
- $(3) \ |\varphi(x,y)| \leq |\varphi|(x,y).$
- (4) $|\varphi(x,y)| \le |\varphi|(|x|,|y|)$ for all $(x,y) \in A \times B$.
- (5) $|\varphi|(x,y) = \bigvee_{\substack{|a| \le x \\ |b| \le y}} \varphi(a,b) = \bigvee_{\substack{|a| \le x \\ |b| \le y}} |\varphi(a,b)|.$

Proof. We first note that φ^+ (and hence φ^- and $|\varphi|$) is well-defined in $\mathcal{B}_b(A \times B, C)$ since $\mathcal{B}_b(A \times B, C)$ is an order complete Riesz space by Theorem 3.5.

- (1) This is obvious since φ^+ is the mapping ψ in the proof of Theorem 3.5.
- (2) Follows from the fact that $\varphi^- = (-\varphi)^+$ in $\mathcal{B}_b(A \times B, C)$ since $\mathcal{B}_b(A \times B, C)$ is a Riesz space.
- (3) By the properties of Riesz spaces again, for all $(x, y) \in A^+ \times B^+$, $\varphi(x, y) \leq \varphi^+(x, y) \leq |\varphi|(x, y)$ and $-\varphi(x, y) \leq \varphi^-(x, y) \leq |\varphi|(x, y)$ hold in *C*. Hence $|\varphi(x, y)| = (\varphi(x, y)) \vee (-\varphi(x, y)) \leq |\varphi|(x, y)$ for all $(x, y) \in A^+ \times B^+$.
- (4) Using the decomposition property of Riesz spaces, bilinearity of φ and (3), for all x ∈ A and y ∈ B, we have

$$|\varphi(x,y)| \le |\varphi|(x^+,y^+) + |\varphi|(x^+,y^-) + |\varphi|(x^-,y^+) + |\varphi|(x^-,y^-)| = |\varphi|(|x|,|y|)$$

(5) If $|a| \leq x$ in A and $|b| \leq y$ hold in B, then $\varphi(a, b) \leq |\varphi(a, b)| \leq |\varphi|(|a|, |b|) \leq |\varphi|(x, y)$ by (4) and the positivity of $|\varphi|$ in the Riesz space $\mathcal{B}_b(A \times B, C)$. It follows that

$$\bigvee_{\substack{|a| \leq x \\ |b| \leq y}} \varphi(a, b) \leq |\varphi|(x, y) \quad \text{and} \quad \bigvee_{\substack{|a| \leq x \\ |b| \leq y}} |\varphi(a, b)| \leq |\varphi|(x, y).$$

For the converse direction, we first observe that $0 \le a_1 \le x$ and $0 \le a_2 \le x$ imply $a_1 - a_2 \le x$ and $a_2 - a_1 \le x$, and so $|a_1 - a_2| \le x$. Similarly $0 \le b_1 \le y$ and $0 \le b_2 \le y$ imply $|b_1 - b_2| \le y$. It now follows from $|\varphi| = \varphi^+ + \varphi^-$ in $\mathcal{B}_b(A \times B, C)$ that

$$\begin{split} |\varphi|(x,y) &= \varphi^+(x,y) + \varphi^-(x,y) \\ &= \bigvee_{\substack{0 \le u \le x \\ 0 \le v \le y}} \varphi(u,v) + \bigvee_{\substack{0 \le w \le x \\ 0 \le z \le y}} -\varphi(w,z) \quad (\text{by (1) and (2)}) \\ &= \bigvee_{\substack{0 \le u \le x \\ 0 \le v \le y}} \varphi(u,v) + \bigvee_{\substack{0 \le w \le x \\ 0 \le z \le y}} \varphi(-w,z) + \bigvee_{\substack{0 \le u \le x \\ 0 \le v \le y}} \varphi(u,v) + \bigvee_{\substack{0 \le w \le x \\ 0 \le v \le y}} \varphi(-w,z) + \bigvee_{\substack{0 \le u \le x \\ 0 \le v \le y}} \varphi(u,v) + \bigvee_{\substack{0 \le w \le x \\ 0 \le v \le y}} \varphi(-w,z) + \bigvee_{\substack{0 \le u \le x \\ 0 \le v \le y}} \varphi(u,v) + \bigvee_{\substack{0 \le w \le x \\ 0 \le v \le y}} \varphi(-w,v) \Big) \\ &+ \bigvee_{\substack{0 \le u \le x, 0 \le w \le x \\ 0 \le v \le y}} \varphi(u-w,-2z) \\ &= \bigvee_{\substack{0 \le u \le x, 0 \le w \le x \\ 0 \le v \le y, 0 \le z \le y}} \varphi(u-w,v+z) + \bigvee_{\substack{0 \le u \le x, 0 \le w \le x \\ 0 \le v \le y}} \varphi(u-w,-2z) \\ &= \bigvee_{\substack{0 \le u \le x, 0 \le w \le x \\ 0 \le v \le y, 0 \le z \le y}} \varphi(u-w,v-z) \le \bigvee_{\substack{|a| \le x \\ |b| \le y}} \varphi(a,b) \le \bigvee_{\substack{|a| \le x \\ |b| \le y}} |\varphi(a,b)|. \end{split}$$

Combining the above and preceding gives

$$|\varphi|(x,y) = \bigvee_{\substack{|a| \le x \\ |b| \le y}} \varphi(a,b) = \bigvee_{\substack{|a| \le x \\ |b| \le y}} |\varphi(a,b)|,$$

as required.

References

- 1. C. D. Aliprantis and O. Burkinshaw, Positive Oparators, Academic Press (1985).
- 2. L. V. Kantorovič, On the moment problem for a finite interval, *Dokl. Akad. Nauk SSSR*, **14** (1937), 531-537.
- 3. L. V. Kantorovič, Linear operators in semi-ordered spaces, *Mat. Sb. (N.S)*, **49** (1940), 209-284.
- 4. W. A. J. Luxemburg and A. C. Zaanen, Riesz Spaces I, North-Holland (1981).
- 5. F. Riesz, Sur la décomposition des opération linéaires, *Atti Congr. Internaz. Mat., Bologna*, **3** (1928), 143-148.
- 6. R. Yilmaz, On lattice ordered algebras, Ph.D. Thesis, University of Wales, 2001.

Rusen Yilmaz Department of Mathematics, Faculty of Arts and Science, Rize University, 53100 Rize, Turkey E-mail: ryilmaz00@yahoo.com