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WEAKLY STABLE IDEALS OF EXCHANGE RINGS

Huanyin Chen

Abstract. Let I be an ideal of an exchange ring R. We say that I is weakly
stable provided that every regular element in 1+I is one-sided unit-regular. If
I is weakly stable, then so is Mn(I) as an ideal of Mn(R). Also every square
regular matrix over such an ideal admits a diagonal reduction by right or left
invertible matrices. These extend the corresponding results of [1],[6-8],[10]
and [12-13].

A ring R is an exchange ring if for every right R-module A and any two
decompositions A = M ′ ⊕N =

⊕
i∈I Ai, where M ′

R
∼= RR and the index set I is

finite, there exist submodulesA′
i ⊆ Ai such thatA = M ′⊕(⊕

i∈I A
′
i

)
. The class of

exchange rings is very large, it includes local rings, semiperfect rings, semiregular
rings, π-regular rings, strongly π-regular rings, C∗-algebras with real rank one,
while there still exist exchange rings which belong to none of the above classes. An
element a ∈ R is regular in case there exists a x ∈ R such that a = axa. If x is
right or left invertible, then a ∈ R is said to be one-sided unit-regular. Following
Wei, an exchange ring R is weakly stable if and only if every regular element in R
is one-sided unit-regular(see [12, Theorem 3]). Many equivalent characterizations
of weakly stable exchange rings have been studied by Wei(cf. [12-13]). A natural
problem asks that whether weakly stable property is Morita invariant for exchange
rings.

Let I be an ideal of an exchange ring R. We say that I is weakly stable
provided that every regular element in 1 + I is one-sided unit-regular. Let V be
an infinite-dimensional vector space over a division ring D. Let R = EndD(V )
and S = End

(
G⊕H

)
, where G is the direct sum of infinitely many copies of Zp

and H is the direct sum of infinitely many copies of Zq with distinct primes p and
q. Set T = R ⊕ S. Then T is a regular ring, while it is not weakly stable. But
S is weakly stable as an ideal of T . Thus the concept of weakly stable ideal is a
nontrivial generalization of that of weakly stable ring.
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We prove, in this paper, that if an ideal I of an exchange ring R is weakly
stable then so is Mn(I) as an ideal of Mn(R). This gives an affirmative answer
to the previous problem. Also every square regular matrix over such an ideal
admits a diagonal reduction by right or left invertible matrices. These extend the
corresponding results of [1, 6-8, 10, 12-13].

Throughout, all rings are associative with identity and all modules are right
modules. U<(R) stands for the set of all right or left invertible elements in R.
M �⊕ N means that a right R-module M is isomorphic to a direct summand of a
right R-module N . The pair (a, b) is called right unimodular in case aR+bR = R.
The right unimodular (a, b) is called right weakly reducible if there exists y ∈ R
such that a+ by ∈ U<(R).

Lemma 1. Let (a, b) be right unimodular in a ring R. Let u, v ∈ U(R) and
c ∈ R. Then (vau+ vbc, vb) is also right unimodular. Furthermore, (a, b) is right
weakly reducible if and only if so is (vau+ vbc, vb).

Proof. By [3, Lemma 6.3], (vau+ vbc, vb) is right unimodular. Assume that
(a, b) is right weakly reducible. Then we have a y ∈ R such that a+ by ∈ U<(R).
Choose z = yu− c. We have (vau+ vbc)+ (vb)z = v(a+ by)u ∈ U<(R); hence,
(au+vbc, vb) is right weakly reducible. Conversely, assume that there exists z ∈ R

such that vau + vbc + vbz ∈ U<(R). Then v
(
a + b(c + z)u−1

)
u ∈ U<(R), so

a+ b(c+ z)u−1 ∈ U<(R). Therefore (a, b) is right weakly reducible.

Lemma 2. Let I be an ideal of an exchange ring R. Then the following are
equivalent:

(1) I is weakly stable.
(2) Whenever ax + b = 1 with a ∈ 1 + I, b ∈ I , there exists a y ∈ R such that

a+ by ∈ U<(R)

Proof. (1)⇒(2) Suppose that ax + b = 1 with a ∈ 1 + I, b ∈ I . Since R is
an exchange ring, by [11, Proposition 29.1], we can find an idempotent e ∈ R such
that e ∈ bR and 1− e ∈ (1− b)R. So e = bs and 1− e = (1− b)t = axt for some
s, t ∈ R. Hence (1−e)axt(1−e)+e = 1, and then (1−e)a = (1−e)axt(1−e)a,
i.e., (1− e)a ∈ 1 + I is regular. So we can find a u ∈ U<(R) such that (1− e)a =
(1 − e)au(1− e)a. Let f = u(1 − e)a. Then

f
(
xt(1 − e) + ue) + (1− f)ue

= fxt(1 − e) + ue

= u
(
(1− e)axt(1− e) + e

)
= u.
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If vu = 1 for some v ∈ R, then

(1− f)uev(1− f)ue

= (1− f)ue(vu− vfu)e

= (1− f)ue
(
1− vu(1− e)au

)
e

= (1− f)ue.

If uv = 1 for some v ∈ R, then

(1− f)uev(1− f)ue

= (1− f)(1− f)uev(1− f)ue

= (1− f)
(
uv − f(xt(1− e) + ue)v

)
(1− f)ue

= (1− f)uv(1− f)ue

= (1− f)ue.

In any case, we get (1−f)ue = (1−f)uev(1−f)ue. Let g = (1−f)uev(1−f).
Then f

(
xt(1 − e) + ue) + gue = u. Since f = f2, g = g2 and fg = gf = 0, we

see that f
(
xt(1 − e) + ue) = fu and gue = gu. Thus

u
(
a+ bs(v(1− f)(1 + fuev(1− f))− a)

)(
1 − fuev(1 − f)

)
u

= u
(
(1 − e)a+ ev(1 − f)(1 + fuev(1 − f))

)(
1 − fuev(1 − f)

)
u

=
(
f + uev(1− f)(1 + fuev(1 − f))

)(
1 − fuev(1− f)

)
u

=
(
f(1 − fuev(1 − f)) + uev(1 − f)

)
u

=
(
f + (1− f)uev(1− f)

)
u

= (f + g)u

= f
(
xt(1 − e) + ue) + gue

= u.

It follows from u ∈ U<(R) that a+ bs
(
v(1− f)(1+ fuev(1− f))− a

) ∈ U<(R),
as required.

(2)⇒(1) For any regular x ∈ 1 + I , we have a y ∈ R such that x = xyx and
y = yxy. Clearly, yx+(1−yx) = 1 with y ∈ 1+I, 1−yx ∈ I . Hence, we have a
z ∈ R such that y+(1−yx)z = u ∈ U<(R). Therefore x = x

(
y+(1−yx)z)x =

xux, as asserted.

In [5, Corollary 7], the author proved that if R is one-sided unit-regular then
so is Mn(R) by virtue of self-cancellations of modules. But we can not apply that
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method to weakly stable ideals of exchange rings. Now we extend this fact to ideals
of an exchange ring by a new route.

Theorem 3. Let I be a weakly stable ideal of an exchange ring R. Then
Mn(I) is a weakly stable ideal of Mn(R)(n ≥ 1).

Proof. Clearly, the result holds for n = 1. Assume inductively that the result
holds for n. It will suffice to show that the result also holds for n + 1. Suppose
that




a11 a12 · · · a1(n+1)

a21 a22 · · · a2(n+1)

...
... . . . ...

a(n+1)1 a(n+1)2 · · · a(n+1)(n+1)







b11 b12 · · · b1(n+1)

b21 b22 · · · b2(n+1)

...
... . . . ...

b(n+1)1 b(n+1)2 · · · b(n+1)(n+1)




+




c11 c12 · · · c1(n+1)

c21 c22 · · · c2(n+1)

...
... . . . ...

c(n+1)1 c(n+1)2 · · · c(n+1)(n+1)


 = diag(1, 1, · · · , 1) (∗)

in Mn+1(R), where




a11 a12 · · · a1(n+1)

a21 a22 · · · a2(n+1)

...
... . . .

...
a(n+1)1 a(n+1)2 · · · a(n+1)(n+1)


 ∈ diag(1, 1, · · · , 1) +Mn+1(I),




c11 c12 · · · c1(n+1)

c21 c22 · · · c2(n+1)

...
... . . .

...
c(n+1)1 c(n+1)2 · · · c(n+1)(n+1)


 ∈Mn+1(I).

Clearly, a11b11 + a12b21 + · · · + a1(n+1)b(n+1)1 + c11 = 1 with a11 ∈ 1 + I .
Since I is weakly stable, by virtue of Lemma 2, we can find z1 ∈ R such that
a11 + (a12b21 + · · ·+ a1(n+1)b(n+1)1 + c11)z1 ∈ U<(R). According to Lemma 1,
(∗) is right weakly reducible if and only if this is so for the row with elements
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a11 a12 a13 · · · a1(n+1)

a21 a22 a23 · · · a2(n+1)

a31 a32 a33 · · · a3(n+1)

...
...

... . . . ...
a(n+1)1 a(n+1)2 a(n+1)3 · · · a(n+1)(n+1)







1 0 0 · · · 0
b21z1 1 0 · · · 0
b31z1 0 1 · · · 0

...
...

... . . . ...
b(n+1)1z1 0 0 · · · 1




+




c11 c12 c13 · · · c1(n+1)

c21 c22 c23 · · · c2(n+1)

c31 c32 c33 · · · c3(n+1)

...
...

... . . . ...
c(n+1)1 c(n+1)2 c(n+1)3 · · · c(n+1)(n+1)







z1 0 0 · · · 0
0 1 0 · · · 0
0 0 1 · · · 0
...

...
... . . . ...

0 0 0 · · · 1




and 


c11 c12 c13 · · · c1(n+1)

c21 c22 c23 · · · c2(n+1)

c31 c32 c33 · · · c3(n+1)

...
...

... . . . ...
c(n+1)1 c(n+1)2 c(n+1)3 · · · c(n+1)(n+1).




Thus we may assume that the element a11 ∈ U<(R) in (∗), so there are s, t ∈ R
such that sa11t = 1, where s = 1 or t = 1. Clearly, we may assume that




a33 · · · a3(n+1)

a43 · · · a4(n+1)

... . . . ...
a(n+1)3 · · · a(n+1)(n+1)


 ∈ diag(1, 1, · · · , 1) +Mn−1(I),




c33 · · · c3(n+1)

c43 · · · c4(n+1)

... . . . ...
c(n+1)3 · · · c(n+1)(n+1)


 ∈Mn−1(I).

One easily verifies that



s 0 0 · · · 0
1 − ats at 0 · · · 0

0 0 1 · · · 0
...

...
... . . . ...

0 0 0 · · · 1







a11 a12 a13 · · · a1(n+1)

a21 a22 a23 · · · a2(n+1)

a31 a32 a33 · · · a3(n+1)

...
...

... . . . ...
a(n+1)1 a(n+1)2 a(n+1)3 · · · a(n+1)(n+1)
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×




t 1− tsa 0 · · · 0
0 sa 0 · · · 0
0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1




=




1 b12 b13 · · · b1(n+1)

b21 b22 b23 · · · b2(n+1)

b31 b32 ∗ · · · ∗
...

...
... . . . ...

b(n+1)1 b(n+1)2 ∗ · · · ∗



,

and that



s 0 0 · · · 0
1 − ats at 0 · · · 0

0 0 1 · · · 0
...

...
... . . . ...

0 0 0 · · · 1




=




at 1 − ats 0 · · · 0
0 s 0 · · · 0
0 0 1 · · · 0
...

...
... . . . ...

0 0 0 · · · 1




−1

,




t 1 − tsa 0 · · · 0
0 sa 0 · · · 0
0 0 1 · · · 0
...

...
... . . . ...

0 0 0 · · · 1




=




sa 0 0 · · · 0
1 − tsa t 0 · · · 0

0 0 1 · · · 0
...

...
... . . . ...

0 0 0 · · · 1




−1

∈ GLn+1(R).

Thus (∗) is right weakly reducible if and only if this is so for the row with elements



1 b12 b13 · · · b1(n+1)

b21 b22 b23 · · · b2(n+1)

b31 b32 ∗ · · · ∗
...

...
... . . .

...
b(n+1)1 b3(n+1) ∗ · · · ∗



,




s 0 0 · · ·0
1 − ats at 0 · · · 0

0 0 1 · · · 0
...

...
... . . . ...

0 0 0 · · · 1




×




c11 c12 c13 · · · c1(n+1)

c21 c22 c23 · · · c2(n+1)

c31 c32 c33 · · · c3(n+1)

...
...

... . . . ...
c(n+1)1 c(n+1)2 c(n+1)3 · · · c(n+1)(n+1)



.

Clearly, all bij ∈ I for i �= j. If s = 1, we see that b22 = a21(1− ta11) + a22a11 ∈
1 + I because a21 ∈ I and a11, a22 ∈ 1 + I . If t = 1, then b22 = (1 − a11)a12 +
a11a22 ∈ 1 + I because a12 ∈ I and a11, a22 ∈ 1 + I . In any case, we have
b22 ∈ 1 + I . By Lemma 1 again, (∗) is right weakly reducible if and only if this is
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so for the row with elements


1 0 0 · · · 0
0 ∗ ∗ · · · ∗
0 ∗ ∗ · · · ∗
...

...
... . . . ...

0 ∗ ∗ · · · ∗



,




1 0 0 · · · 0
∗∗ 1 0 · · · 0
∗∗ 0 1 · · · 0
...

...
... . . . ...

∗∗ 0 0 · · · 1







s 0 0 · · · 0
1 − ats at 0 · · · 0

0 0 1 · · · 0
...

...
... . . . ...

0 0 0 · · · 1




×




c11 c12 c13 · · · c1(n+1)

c21 c22 c23 · · · c2(n+1)

c31 c32 c33 · · · c3(n+1)

...
...

... . . . ...
c(n+1)1 c(n+1)2 c(n+1)3 · · · c(n+1)(n+1)



.

Thus, we may assume that a11 = 1, a1i = 0 = ai1 for i = 2, · · · , n + 1 in (∗).
Furthermore, we may assume that (∗) is in the following form:

(
1 01×n

0n×1 D

)(
b11 B12

B21 B22

)
+

(
c11 C12

C21 C22

)
=

(
1 0
0 In

)
,

and that we may assume that D ∈ diag(1, 1, · · · , 1) + Mn(I). Clearly, we have
DB22 + C22 = In. By the induction hypothesis, Mn(I) is weakly stable. In view
of Lemma 2, there exists a Z2 ∈ Mn(R) such that D + C22Z2 ∈ U<

(
Mn(R)

)
.

Thus, we pass to the right unimodular row with elements
(

1 01×n

0n×1 D

)
+

(
c11 C12

C21 C22

)(
0 01×n

0n×1 Z2

)
,

(
c11 C12

C21 C22

)
.

So it suffices to show that the right unimodular with elements
(

1 C12Z2

0n×1 D +C22Z2

)
and

(
c11 C12

C21 C22

)

is weakly right reducible. Since D + C22Z2 ∈ U<(Mn(R)), we conclude that(
1 C12Z2

0 D +C22Z2

)
∈ U<(Mn+1(R)). By induction, we complete the proof.

Lemma 4. Let I be a weakly stable ideal of an exchange ring R. Then for
any idempotent e ∈ I , eRe is a weakly stable ring.

Proof. Lete ∈ I be an idempotent. Given ax + b = e with a, x, b ∈ eRe,
we have (a + 1 − e)(x + 1 − e) + b = 1 in R. From a, e ∈ I , we know that
a + 1 − e ∈ 1 + I . So there is a y ∈ R such that a+ 1 − e+ by ∈ U<(R).
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First, assume (a + 1 − e + by)u = 1 for some u ∈ R. As a, b ∈ eRe, we get
(1 − e)u = 1 − e; hence eue = ue. Thus

(
a + b(eye)

)
(eue) = e. Now assume

u(a+1−e+by) = 1 for some u ∈ R. It is easy to check that (eue)
(
a+b(eye)

)
= e.

In any case, we have a + b(eye) ∈ U<(eRe). Therefore eRe is a weakly stable
ring.

Let FP (I) denotes the set of all finitely generated projective right R-modules P
with P = PI . Recall that an ideal I of an exchange ring R is separative provided
that for any A,B ∈ FP (I),

A ⊕A ∼= A⊕B ∼= B ⊕B =⇒ A ∼= B.

It is well known that an ideal I of an exchange ring R is separative if and only
if eRe is separative for any idempotents e ∈ I . By [6, Theorem 3], every weakly
stable exchange ring is separative. In view of Lemma 4, we conclude that every
weakly stable ideal I of an exchange ring R is separative; hence, the natural map
GL1(R, I) → K1(R, I) is surjective.

Lemma 5. Let A be a right R-module such that EndR(A) is a weakly stable
ring. Then for any right R-module B and C, A ⊕ B ∼= A ⊕C implies that either
B �⊕ C or C �⊕ B.

Proof. Suppose that M = A1 ⊕ B1 = A2 ⊕ B2 with A1
∼= A ∼= A2, B1

∼= B
and B2

∼= C. By virtue of [10, Proposition 2.5.4], we can find some C,D ≤ M

such that M = C ⊕ D ⊕ B1 = C ⊕ B2 or M = C ⊕ B1 = C ⊕ D ⊕ B2.
If M = C ⊕ D ⊕ B1 = C ⊕ B2, then B2

∼= D ⊕ B1; hence, B1 �⊕ B2. If
M = C ⊕ B1 = C ⊕ D ⊕ B2, then B1

∼= D ⊕ B2, and so B2 �⊕ B1. Therefore
we complete the proof.

Let R be an associative ring with identity. The notatin Rn×1 stands for the

set







x1

...
xn


 | x1, · · · , xn ∈ R


, which is a Mn(R)-R-bimodule. The notation

R1×n stands for the set {(x1, · · · , xn) | x1, · · · , xn ∈ R}, which is a R-Mn(R)-
bimodule. We now observe the following comparability of modules related to weakly
stable ideals of exchange rings.

Theorem 6. Let I be a weakly stable ideal of an exchange ring R, and let
A ∈ FP (I). If B and C are any right R-modules such that A⊕B ∼= A⊕C, then
B �⊕ C or C �⊕ B.

Proof. Suppose that A⊕B ∼= A⊕C for right R-modules B and C. Since A is
a finitely generated projective right R-module, we have idempotents e1, · · · , en ∈
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R such that A ∼= e1R ⊕ · · · ⊕ enR (cf. [11, Exercise 29.9]). Hence, A ∼=
diag(e1, · · · , en)Rn×1. Thus, we see that

diag(e1, · · · , en)Rn×1 ⊕B ∼= diag(e1, · · · , en)Rn×1 ⊕C,

and then
diag(e1, · · · , en)Rn×1

⊗
R
R1×n ⊕B

⊗
R
R1×n

∼= diag(e1, · · · , en)Rn×1
⊗
R

R1×n ⊕C
⊗
R

R1×n.

From A = AI , we deduce that e1R
⊗
R

(R/I)⊕· · ·⊕enR
⊗
R

(R/I) ∼= A
⊗
R

(R/I) =

0. This means that all eiR/(eiI) ∼= eiR
⊗
R

(R/I) = 0, hence ei ∈ eiR = eiI ∈ I

for all i. Therefore A ∼= e1R⊕ · · ·enR with all ei ∈ I . Thus, diag(e1, · · · , en) is
an idempotent matrix over I . By Theorem 3, Mn(I) is weakly stable as an ideal of
Mn(R). Since

EndMn(R)

(
diag(e1, · · · , en)Rn×1

⊗
R
R1×n

)
∼= diag(e1, · · · , en)Mn(R)diag(e1, · · · , en),

it follows from Lemma 4 that EndMn(R)

(
diag(e1, · · · , en)Rn×1

⊗
R
R1×n

)
is a

weakly stable ring, hence we get B
⊗
R
R1×n �⊕ C

⊗
R
R1×n or C

⊗
R
R1×n �⊕

B
⊗
R

R1×n by Lemma 5. Clearly, R1×n
⊗

Mn(R)

Rn×1 ∼= R as right R-modules.

Therefore either B ∼= B
⊗
R
R1×n

⊗
Mn(R)

Rn×1 �⊕ C
⊗
R
R1×n

⊗
Mn(R)

Rn×1 ∼= C or

C ∼= C
⊗
R
R1×n

⊗
Mn(R)

Rn×1 �⊕ B
⊗
R
R1×n

⊗
Mn(R)

Rn×1 ∼= B, as required.

In [13, Theorem 6], Wei obtained the internal weak cancellation property of
weakly stable ring. He proved that EndR(A) is a weakly stable ring if and only if
A = A1 ⊕B = A2 ⊕C with A1

∼= A2 implies that B �⊕ C or C �⊕ B. Now we
get an external weak cancellation property of weakly stable exchange rings.

Corollary 7. An exchange ring R is a weakly stable ring if and only if for all
finitely generated projective right R-modules A,B and C, A ⊕ B ∼= A ⊕ C =⇒
B �⊕ C or C �⊕ B.

Proof. It is obvious from Theorem 6 and [13, Theorem 3.1].

Lemma 8. Let I be a weakly stable ideal of an exchange ring R. Then
ax+ b = 1 with a ∈ I implies there exists y ∈ R such that a+ by ∈ U <(R).
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Proof. Suppose that ax+b = 1 with a ∈ I, x, b ∈ R. Then (a+b)x+b(1−x) =
1. Furthermore, we have (a+b)

(
x+b(1−x))+

(
1−(a+b)

)
b(1−x) = 1. Clearly,

a + b ∈ 1 + I and
(
1 − (a+ b)

)
b(1 − x) ∈ I . By Lemma 2, we have z ∈ R such

that (a+ b)+
(
1− (a+ b)

)
b(1− x)z ∈ U<(R). So we have some s ∈ R such that

x+
(
1 + s(1− (a+ b))

)
b(1− x)

= x+ b(1− x) + s
(
1 − (a+ b)

)
b(1− x)

∈ U<(R).

Consequently, we have t ∈ R such that a+ b
(
1 + (1− x)t

)
= a+ b+ b(1− x)t ∈

U<(R), as asserted.

Theorem 9. Let I be a weakly stable ideal of an exchange ring R. Then for
any regular A ∈ Mn(I), there exist an idempotent matrix E and a right or left
invertible matrix U such that A = EU .

Proof. Because I is weakly stable, so is Mn(I) as an ideal of Mn(R) by
Theorem 3. Let A ∈Mn(I) be regular. We have B ∈Mn(R) such that A = ABA.
Applying Lemma 8 to AB + (In − AB) = In, there is a Y ∈ Mn(R) such that
A+ (In −AB)Y = U ∈ U<

(
Mn(R)

)
. Therefore A = AB

(
A+ (In − AB)Y

)
=

ABU . Set E = AB. Then E ∈Mn(R) is an idempotent, as desired.

Corollary 10. Let I be a weakly stable ideal of an exchange ring R. If 1
2 ∈ R,

then for any regular A ∈Mn(I)(n ≥ 2), there exist right or left invertible matrices
U, V such that A = U + V .

Proof. Let A ∈Mn(I) be regular and n ≥ 2. In view of Theorem 9, there exist
an idempotent matrix E and a right or left invertible matrix W such that A = EW .
Since 2 ∈ U(R), we see that E = 2−1diag(1, · · · , 1)+ 2−1

(
2E− diag(1, · · · , 1)

)
is the sum of two invertible matrices. Set U = 2−1diag(1, · · · , 1)W and V =
2−1

(
2E − diag(1, · · · , 1)

)
. Then A = U + V , as asserted .

Let I be a weakly stable ideal of an exchange ring R, and let A ∈ Mn(I) be
regular. Analogously to [13, Theorem 3.6], it follows by Theorem 3 and Lemma 8
that there exists a right or left U ∈Mn(R) such that A = ABA = ABU = UBA

for some B ∈Mn(R).

Lemma 11. For any regular a, b ∈ R, if ψ : aR ∼= bR, then Ra = Rψ(a) and
ψ(a)R = bR.

Proof. It is easy to see that ψ(a)R = bR. By the regularity of b, we see that
ψ(a) ∈ R is regular, and thus we have c ∈ R such that ψ(a) = ψ(a)cψ(a) =
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ψ
(
acψ(a)

)
. This implies that a = acψ(a) ∈ Rψ(a); hence, Ra ⊆ Rψ(a). In

addition, we have a = ada for a d ∈ R. So ψ(a) = ψ(a)da ∈ Ra; hence,
Rψ(a) ⊆ Ra. Therefore Ra = Rψ(a), as asserted.

Lemma 12. Let I be a weakly stable ideal of an exchange ring R. Then
aR ∼= bR with regular a ∈ I implies b = uav for some right or left invertible
u, v ∈ R.

Proof. Given ψ : aR ∼= bR with regular a ∈ I , by Lemma 11, we have
Ra = Rψ(a) and ψ(a)R = bR. As a ∈ I , we get ψ(a) ∈ I ; hence, b ∈ I .
Clearly, there is some s ∈ R such that sa = ψ(a). Because of regularity of a, we
can find y ∈ R such that a = aya. Hence (say)a = ψ(a). Set c = say. Then
ca = ψ(a) and c ∈ I . Likewise, we have a d ∈ I such that a = dψ(a). Inasmuch
as dc + (1 − dc) = 1 and d ∈ I , from Lemma 8, there exists a z ∈ R such that
d+(1−dc)z ∈ U<(R). Using [4, Lemma 1], c+ t(1−dc) = u ∈ U<(R) for some
t ∈ R. Hence, ua =

(
c + t(1 − dc)

)
a = ca = ψ(a). Since ψ(a)R = bR, we also

have p ∈ I and q ∈ I such that ψ(a)p = b and bq = ψ(a). From pq+(1−pq) = 1
and p ∈ I , there exists a k ∈ R such that p + (1 − pq)k = v ∈ U<(R). Thus,
b = ψ(a)p = ψ(a)

(
p+ (1 − pq)k

)
= ψ(a)v, and therefore b = ψ(a)v = uav.

By [6, Theorem 3], every weakly stable exchange ring is separative. Thus
every square regular matrix over weakly stable exchange rings admits a diagonal
reduction(cf. [1]). A natural problem is how to extend this fact to matrices over
ideals of exchange rings. Now we observe the following result, which also gives a
nontrivial generalization of [7, Theorem 15] and [8, Theorem 3].

Theorem 13. Let I be a weakly stable ideal of an exchange ring R. Then
every square regular matrix over I admits a diagonal reduction by right or left
invertible matrices.

Proof. Given any regular A ∈ Mn(R), there is a split right R-modules exact
sequence 0 −→ KerE −→ Rn E−→ ERn −→ 0. Hence ERn is a generated pro-
jective right R-module. Clearly, there are idempotents e1, · · · , en ∈ R such that
ERn ∼= e1R ⊕ · · · ⊕ enR ∼= diag(e1, · · · , en) as right R-modules, so ERn×1 ∼=
diag(e1, · · · , en) Rn×1. Therefore (ERn×1)

⊗
R
R1×n ∼= diag(e1, · · · , en)Rn×1

⊗
R

R1×n. It follows by Rn×1
⊗
R1×n ∼= Mn(R) that AMn(R) = EMn(R) ∼=

diag(e1, · · · , en)Mn(R). As A ∈ Mn(I), by Lemma 12, there are U, V ∈
U<

(
Mn(R)

)
such that UAV = diag(e1, · · · , en).

Corollary 14. Let R be an exchange ring R, and let A ∈Mn(R) be regular.
If Mn(R)AMn(R) is weakly stable, then A admits a diagonal reduction by right
or left invertible matrices.
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Proof. Since Mn(R)AMn(R) is an ideal of Mn(R), there exists an ideal I
of R such that Mn(I) = Mn(R)AMn(R). In view of [10, Proposition 2.3.14],
I is weakly stable. Clearly, A ∈ Mn(I), and therefore we complete the proof by
Theorem 13.

Recall that a ring R is regular in case every element in R is regular.

Lemma 15. Let I be an ideal of a regular ring R. Then the following are
equivalent:

(1) I is weakly stable.
(2) For all idempotents e ∈ I , eRe is one-sided unit-regular.

Proof. (1) ⇒ (2) is obvious from Lemma 4.
(2) ⇒ (1) Suppose that ax + b = 1 with a ∈ 1 + I and x, b ∈ R. Since R

is regular, there exists an idempotent e ∈ I such that 1 − a = (1 − a)e; hence,
a(1− e) = 1− e. Clearly, aR+ bR = R. So ar+ bs = (1−a)e for some r, s ∈ R.
Thus we have eae(e+ere)+ebse = e−ea(1−e)re = e. Inasmuch as eRe is one-
sided unit-regular, we can find a z ∈ eRe such that eae + ebsez = u ∈ U<(eRe).
Set w = (1 − e)ae+ (1− e)bsez.

First, assume uv = e for some v ∈ eRe. Then (ae + bsez)(v − wv + 1 −
e) = (ae + bsez)v = av + bsezv = wv + e and a(1 − e)(v − wv + 1 − e) =
(1 − e)(v − wv + 1 − e) = −wv + 1 − e. Combining these two equalities, we get
(a+ bsez)(v −wv + 1 − e) = 1.

Now assume vu = e for some v ∈ eRe. Then (v−wv+1−e)(ae+bsez) = e−
w+(ae+bsez)−u = e and (v−wv+1−e)a(1−e) = (v−wv+1−e)(1−e) = 1−e.
Hence, (v1−wv+1−e)(a+bsez)=1. In any case, we have a+ b(sez) ∈ U<(R).

Theorem 16. Let I be a weakly stable ideal of a regular ring R. Then every
square matrix over I admits a diagonal reduction by invertible matrices.

Proof. Given any A ∈ Mn(I), we have the entries a11, · · · , aij, · · · , ann ∈ I .
Since R is a regular ring, by [7, Lemma 6], we have an idempotent e ∈ I such
that a11, · · · , aij, · · · , ann ∈ eRe. Thus we see that A ∈Mn(eRe). Inasmuch as I
is weakly stable, from Lemma 15, eRe is an one-sided unit-regular ring; hence, it
is separative. According to [1, Theorem 2.4], there exist some invertible matrices
U ′, V ′ ∈ Mn(eRe) such that U ′AV ′ is a diagonal matrix. Choose U = U′ +
diag(1− e, · · · , 1− e) and V = V ′ +diag(1− e, · · · , 1− e). Then U, V ∈Mn(R)
are invertible. Furthermore, we see that UAV = U ′AV ′ is a diagonal matrix, and
we are through.

An element e ∈ R is infinite if there exist orthogonal idempotents e, f ∈ R such
that e = f + g while eR ∼= fR and g �= 0. A simple idealI of a ring R is said to
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be purely infinite if every nonzero right ideal of I(as a ring without units) contains
an infinite idempotent. Let I be a purely infinite, simple and essential ideal of a
regular ring R. Then every A ∈ Mn(I) admits a diagonal reduction by invertible
matrices. In view of [7, Lemma 10], I is weakly stable. Therefore we are done by
Theorem 16.
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