TAIWANESE JOURNAL OF MATHEMATICS Vol. 12, No. 3, pp. 807-820, June 2008 This paper is available online at http://www.tjm.nsysu.edu.tw/

SOME FIXED POINT THEOREMS FOR HYBRID CONTRACTIONS IN UNIFORM SPACE

Duran Turkoglu

Abstract. In this paper we prove new fixed point theorems for multi valued mappings with an implicit relations on complete uniform space.

1. INTRODUCTION

Uniform spaces form a natural extension of metric spaces. An exact analogue of the well-known Banach contraction principle in uniform spaces was obtained independently by Acharya [1], Gheorghiu [8] and Tarafdar [25]. Since then a number of fixed point theorems for single-valued and multi-valued mappings using various contractive conditions in this setting have been obtained ([2, 7, 12-17, 19, 25, 26, 28-33]). In this paper we first prove a fixed point theorem for a multi-valued mapping from an orbitally complete uniform space to its hyperspace. Subsequently, an application to locally convex spaces is also presented.

Let (X, u) be a uniform space. A family $P = \{d_i : i \in I_0\}$ of pseudometrics on X with indexing set I_0 , is called an associated family for the uniformity u if the family

$$\beta = \{V(i, r) : i \in I_0, r > 0\}$$

where

$$V(i, r) = \{(x, y) : x, y \in X, d_i(x, y) < r\},\$$

is a subbase for the uniformity u. We may assume β itself to be base by adjoining finite intersections of members of β , if necessary. The corresponding family of pseudometrics is called an augmented associated family for u. An augmented

Communicated by Sen-Yen Shaw.

Received April 26, 2006, accepted September 14, 2006.

²⁰⁰⁰ Mathematics Subject Classification: Primary 54H25, Secondary 47H10.

Key words and phrases: Fixed point, Multi-valued mapping, Implicit relation, Uniform space, Locally convex spaces.

This work has been supported by Gazi University project No. 05/2006-16, Turkey.

associated family for u will be denoted by P^* . For details the reader is referred to Tarafdar [25] and Thron [27]. Now onward, unless otherwise stated, X will denote a uniform space (X, u) defined by P^* .

Let A be a nonempty subset of a uniform space X. Define

$$\Delta^*(A) = \sup\{d_i(x, y) : x, y \in A, i \in I_0\},\$$

where $\{d_i : i \in I_0\} = P^*$. Then $\Delta^*(A)$ is called an augmented diameter of A. Further, A is said to be P^* -bounded if $\Delta^*(A) < \infty$ (see [12]). Let

 $2^X = \{A : A \text{ is a nonempty } P^* - \text{bounded subset of } X\}.$

For any nonempty subsets A and B of X, define

$$d_i(x, A) = \inf \{ d_i(x, a) : a \in A, i \in I_0 \}$$
$$\delta_i(A, B) = \sup \{ d_i(a, b) : a \in A, b \in B, i \in I_0 \}.$$

The function δ_i satisfies the following conditions

- (i) $\delta_i(A, B) = \delta_i(B, A) \ge 0$, $\delta_i(A, B) = 0$ implies that A = B and this set consists only one point.
- (ii) $\delta_i(A, B) \leq \delta_i(A, C) + \delta_i(C, B)$ for $A, B, C \in 2^X$.

Also, if $A = \{a\}$ we write $\delta_i(A, B) = \delta_i(a, B)$ and furthermore $B = \{b\}$ we write $\delta_i(A, B) = \delta_i(a, b) = d_i(a, b)$.

A sequence $\{A_n\}$ of sets in 2^X is said to converge to the subset A of X if the following two conditions are satisfied:

- (i) For each point in a in A, there is a sequence $\{a_n\}$ such that $a_n \in A_n$ for all n and $a_n \to a$.
- (ii) For every $\varepsilon > 0$, there is an integer N such that $A_n \subseteq A_{\varepsilon}$ for $n \ge N$, where

$$A_{\varepsilon} = \bigcup_{x \in A} U(x) = \{ y \in X : d_i(x, y) < \varepsilon \text{ for some } x \text{ in } A, i \in I_0 \}.$$

In such a case, A is said to be limit of the sequence $\{A_n\}$ and we write $\lim_{n\to\infty} A_n = A$ or $A_n \to A$ as $n \to \infty$.

The mapping $F : X \to 2^X$ is said to be continuous at $x_0 \in X$ if whenever $\{x_n\}$ is a sequence of points in X converging to x, the sequence $\{Fx_n\}$ in 2^X converges to Fx in 2^X . We say that F is a continuous mapping of X into 2^X if F is continuous at each point x in X.

The usual definition of a fixed point x of a set valued mapping F is that $x \in Fx$. A good reference, for theorems in this setting is the paper by [3, 5, 6, 16, 17, 24].

For $A, B \in 2^X$ we define

$$H_i(A, B) = \max\{\sup_{x \in A} d_i(x, B), \sup_{x \in B} d_i(x, A)\}.$$

Let (X, u) be a uniform space and let $U \in u$ be an arbitrary entourage. For each subset A of X, define

$$U[A] = \{ y \in X : (x, y) \in U \text{ for some } x \in A \}.$$

The uniformity 2^u on 2^X is defined by the base

$$2^{\beta} = \{ \tilde{U} : U \in u \}$$

where

$$\tilde{U} = \{ (A, B) \in 2^X \times 2^X : A \times B \subseteq U \} \cup \Delta$$

(Here Δ denotes the diagonal of $X \times X$).

The augmented associated family P^* also induces a uniformity u^* on 2^X defined by the base

$$\beta^* = \{ V^*(i, r) : i \in I_0, r > 0 \},\$$

where

$$V^*(i,r) = \{(A,B) \in 2^X \times 2^X : \delta_i(A,B) < \varepsilon\} \cup \Delta.$$

The uniformities 2^u and u^* on 2^X are uniformly isomorphic. The space $(2^X, u^*)$ is thus a uniform space called the hyperspace of (X, u).

Let S and T be two self mapping of (X, u). S and T to be weakly commuting if $d_i(STx, TSx) \leq d_i(Tx, Sx)$ for all x in X. S and T to be compatible if $\lim_n d_i(STx_n, TSx_n) = 0$ whenever $\{x_n\}$ is a sequence in X such that $\lim_n Sx_n = \lim_n Tx_n = x$ for some $x \in X$. Clearly, commuting mappings are weakly commuting and weakly commuting mappings are compatible, but neither implications are reversible.

Definition 1. Let $S: X \to 2^X$ be a set valued function and let $I: X \to X$ be a single valued function. We say that S and I commute weakly if

$$H_i(SIx, ISx) \le \delta_i(Ix, Sx)$$

for x in X.

Definition 2. Let $S: X \to 2^X$ a set valued function and let $I: X \to X$ be a single valued function. We say that S and I are compatible if $\lim_n H_i(SIx_n, ISx_n) = 0$ whenever $\{x_n\}$ is a sequence in X such that $\lim_n \delta_i(Ix_n, Sx_n) = 0$. In particular, $H_i(SIx, ISx) = 0$ if $\delta_i(Ix, Sx) = 0$ by taking $x_n = x$ for all n.

Definition 3. A set valued $S : X \to 2^X$ is said to be continuous if for any sequence $\{x_n\}$ in X with $\{x_n\} \to x$ as $n \to \infty$, we have $\lim H_i(Sx_n, Sx) = 0$.

For fixed point theory of multi valued mappings, we refer to Hicks [9], Hicks and Rhoades [10] and references therein (also, see [18] for some related results).

2. IMPLICIT RELATIONS

Let \Im be the set of real continuous functions $F(t_1, ..., t_6) : \mathcal{R}^6_+ \to \mathcal{R}$ satisfying the following conditions:

- (I1) F is nonincreasing in variables $t_2, ..., t_6$.
- (I2) There exists $h \in (0, 1)$ such that for every $u, v \ge 0$ with [(Ia)] $F(u, v, v, u, u + v, 0) \le 0$ or [(Ib)] $F(u, v, u, v, 0, u + v) \le 0$
 - we have $u \leq hv$.
- (I3) $F(u, ..., u) > 0, \forall u > 0.$

Example 1. $F(t_1, ..., t_6) = t_1 - k \max\{t_2, t_3, t_4, \frac{1}{2}(t_5 + t_6)\}$ where $k \in (0, 1)$.

- (I1) Obviously.
- (I2) Let u > 0 be and $F(u, v, v, u, u + v, 0) = u k \max\{v, v, u, \frac{1}{2}(u + v) \le 0$. If $u \ge v$ then $u \le ku < u$, a contradiction. Thus u < v and $u \le kv = hv$ where $h = k \in (0, 1)$. Let u > 0 and $F(u, v, u, v, 0, u + v) \le 0$ then $u \le hv$. If u = 0 then $u \le hv$.
- (I3) $F(u, ..., u) = u(1 k) > 0, \forall u > 0.$

Example 2. $F(t_1, ..., t_6) = t_1^2 - c_1 \max\{t_2^2, t_3^2, t_4^2\} - c_2 \max\{t_3 t_5, t_4 t_6\} - c_3 t_5 t_6$ where $c_1 > 0, c_2, c_3 \ge 0; c_1 + 2c_2 < 1$ and $c_1 + c_2 + c_3 < 1$.

- (I1) Obviously.
- (I2) Let u > 0 be and $F(u, v, v, u, u+v, 0) = u^2 c_1 \max\{u^2, v^2\} c_2 v(u+v) \le 0$. If $u \ge v$ then $u^2(1 c_1 c_2) \le 0$ which implies $c_1 + 2c_2 \ge 1$, a contradiction. Thus u < v and $u \le (c_1+2c_2)v = hv$, where $h = c_1+2c_2 < 1$. Let u > 0 and $F(u, v, u, v, 0, u+v) \le 0$ then $u \le hv$. If u = 0 then $u \le hv$.
- (I3) $F(u,...,u) = u^2(1 c_1 c_2 c_3) > 0, \forall u > 0.$

Example 3. $F(t_1, ..., t_6) = t_1^2 - t_1(at_2 + bt_3 + ct_4) - d(t_5t_6)$, where $a > 0; b, c, d \ge 0$ and a + b + c + d < 1.

(I1) Obviously.

- (I2) Let u > 0 be and $F(u, v, v, u, u + v, 0) = u^2 u(av + bv + cu) \le 0$ then $u \le \frac{a+b}{1-c}v = h_1v$ where $h_1 = \frac{a+b}{1-c} < 1$. Let u > 0 be and $F(u, v, u, v, 0, u + v) = uh_2 \le -u(av + bu + cv) \le 0$ which implies $u \le \frac{a+c}{1-b}v = h_2v$ where $h_2 = \frac{a+c}{1-b} < 1$. Therefore, $u \le hv$ where $h = \max\{h_1, h_2\} < 1$. If u = 0 then $u \le hv$.
- (I3) $F(u, ..., u) = u^2(1 a b c) > 0, \forall u > 0.$

Example 4. $F(t_1, ..., t_6) = t_1^3 - at_1^2 t_2 - bt_1 t_3 t_4 - ct_5^2 t_6 - dt_5 t_6^2$ where $a > 0; b, c, d \ge 0$ and a + b + c + d < 1.

- (I1) Obviously.
- (I2) Let u > 0 be and $F(u, v, v, u, u + v, 0) = u^3 au^2v bu^2v \le 0$. Then $u \le (a+b)v = hv$, where h = a+b < 1. If u > 0 and $F(u, v, u, v, 0, u+v) \le 0$ then $u \le hv$. If u = 0 then $u \le hv$.
- (I3) $F(u, ..., u) = u^3(1 a b c d) > 0, \forall u > 0.$

The purpose of this paper is to prove some fixed point theorems for hybrid contractions satisfying an implicit relations on uniform spaces.

3. FIXED POINT THEOREMS

Theorem 1. Let (X, u) be a Hausdorff uniform space and let I, J be two single valued mappings from X into itself, $S, T : X \to 2^X$ be two set valued mappings satisfying the inequality

(1)
$$F(\delta_i(Sx,Ty), d_i(Ix,Jy), \delta_i(Ix,Sx), \delta_i(Jy,Ty), d_i(Ix,Ty), d_i(Jy,Sx)) \leq 0$$

for all x, y in X and $i \in I_0$, where F satisfies property 13. Then S, T, I, J have at most one common fixed point.

Proof. Let $y \in X$ be a common fixed point of I, J, S and T. By (1) we have

 $F(\delta_i(Sy,Ty), d_i(Iy,Jy), \delta_i(Iy,Sy), \delta_i(Jy,Ty), d_i(Iy,Ty), d_i(Jy,Sy))$

 $= F(\delta_i(Sy,Ty), 0, \delta_i(y,Sy), \delta_i(y,Ty), 0, 0) \le 0$

and thus

 $F(\delta_i(Sy,Ty),...,(\delta_i(Sy,Ty)) \le 0$

a contradiction of I3 if $\delta_i(Sy, Ty) \neq 0$. Thus $\delta_i(Sy, Ty) = 0$. Since $y \in Sy$ and $y \in Ty$ then $Sy = Ty = \{y\}$.

```
Duran Turkoglu
```

Suppose that I, J, S, T have to common fixed points z and y. Then by (1) we have successively:

$$F(\delta_{i}(Sy, Tz), d_{i}(Iy, Jz), \delta_{i}(Iy, Sy), \delta_{i}(Jz, Tz), d_{i}(Iy, Tz), d_{i}(Jz, Sy)) \leq 0$$

$$F(d_{i}(y, z), d_{i}(y, z), 0, 0, d_{i}(y, z), d_{i}(y, z)) \leq 0$$

and

$$F(d_i(y, z), ..., d_i(y, z)) \le 0$$

a contradiction of I3 if $y \neq z$. Thus y = z.

Theorem 2. Let (X, u) be a complete Hausdorff uniform space and let I, Jbe two single valued mappings from X into itself and $S, T: X \to 2^X$ be two set valued mappings satisfying the conditions:

- (a) $S(X) \subset J(X)$ and $T(X) \subset I(X)$,
- (b) I or J is continuous,
- (c) S and I as well T and J are compatible,
- (d) the inequality (1) holds for all x, y in X and $i \in I_0$, where $F \in \mathfrak{T}$, then S, T, I and J have a unique common fixed point z in X. Moreover, Sz = $Tz = \{z\} = Iz = Jz.$

Proof. Suppose x_0 an arbitrary point in X. Then since (a) holds we can define a sequence $\{x_n\}$ recursively as follows $Jx_{2n+1} \in Sx_{2n} = z_{2n}; Ix_{2n+2} \in Tx_{2n+1} =$ z_{2n+1} .

Let $U \in u$ be an arbitrary entourage. Since β is a base for u, there exists $V(i,r) \in \beta$ such that $V(i,r) \subseteq U$. By (1) we have successively

~

$$\begin{split} F(\delta_i(Sx_{2n},Tx_{2n+1}),d_i(Ix_{2n},Jx_{2n+1}),\delta_i(Ix_{2n},Sx_{2n}),\delta_i(Jx_{2n+1},Tx_{2n+1}),\\ d_i(Ix_{2n},Tx_{2n+1}),d_i(Jx_{2n+1},Sx_{2n})) &\leq 0\\ F(\delta_i(z_{2n},z_{2n+1}),\delta_i(z_{n-1},z_{2n}),\delta_i(z_{2n-1},z_{2n}),\delta_i(z_{2n},z_{2n+1}),\delta_i(z_{2n-1},z_{2n+1}),0) &\leq 0\\ F(\delta_i(z_{2n},z_{2n+1}),\delta_i(z_{n-1},z_{2n}),\delta_i(z_{2n-1},z_{2n}),\delta_i(z_{2n},z_{2n+1}),\delta_i(z_{2n},z_{2n+1}),\delta_i(z_{2n-1},z_{2n}),\delta_i(z_{2n-1},z_{2n+1}),\delta_i(z_{2n-1},z_{$$

By Ia we have

$$\delta_i(z_{2n}, z_{2n+1}) \le h\delta_i(z_{2n-1}, z_{2n}).$$

Similarly, we have successively

$$F(\delta_i(Sx_{2n}, Tx_{2n-1}), d_i(Ix_{2n}, Jx_{2n-1}), \delta_i(Ix_{2n}, Sx_{2n}), \delta_i(Jx_{2n-1}, Tx_{2n-1}), d_i(Ix_{2n}, Tx_{2n-1}), d_i(Jx_{2n-1}, Sx_{2n})) \le 0$$

$$F(\delta_i(z_{2n-1}, z_{2n}), \delta_i(z_{2n-1}, z_{2n-2}), \delta_i(z_{2n-1}, z_{2n}), \delta_i(z_{2n-2}, z_{2n-1}), 0, \delta_i(z_{2n-2}, z_{2n})) \le 0$$

$$F(\delta_i(z_{2n-1}, z_{2n}), \delta_i(z_{2n-1}, z_{2n-2}), \delta_i(z_{2n-1}, z_{2n}), \delta_i(z_{2n-2}, z_{2n-1}), 0,$$

$$\delta_i(z_{2n-2}, z_{2n-1}) + \delta_i(z_{2n-1}, z_{2n})) \le 0.$$

By Ib we have

$$\delta_i(z_{2n-1}, z_{2n}) \le h\delta_i(z_{2n-2}, z_{2n-1})$$

and so $\delta_i(z_{2n}, z_{2n+1}) \leq h^{2n} \delta_i(x_0, Sx_0)$.

By a routine calculation follows that for r > 0, there is $n_0(r) \in \mathcal{N}$ such that for $m, n \ge n_0(r)$ we have $\delta_i(z_m, z_n) < r$.

Let $u_n \in z_n, u_m \in z_m$, since $d_i(u_n, u_m) \leq \delta_i(z_m, z_n) < r$ and hence $(u_n, u_m) \in U$ for all $n, m \geq n_0(r)$. Therefore the sequence $\{u_n\}$ is Cauchy sequence in the d_i - uniformity on X.

Let $S_p = \{U_n : n \ge n_0(r)\}$ for all positive integer $n_0(r)$ and let β be the filter basis $\{S_p : p = 1, 2, ...\}$. Then since $\{u_n\}$ is a d_i - Cauchy sequence for each $i \in I_0$, it is easy to see that the filter basis β is Cauchy filter in the uniform space (X, u). To see this we first note that family $\{V(i, r) : i \in I_0, r > 0\}$ is a base u as $P^* = \{d_i : i \in I_0\}$. Now, since $\{u_n\}$ is a d_i - Cauchy sequence in X, there exists a positive integer $n_0(r)$ such that $d_i(u_n, u_m) < r$ for $m \ge n_0(r), n \ge n_0(r)$. This implies that $S_p \times S_p \subset V(i, r)$. Thus given any $U \in u$, we can find a $S_p \in \beta$ such that $S_p \times S_p \subset U$. Hence β is a Cauchy filter in (X, u). Since (X, u) complete uniform space, the Cauchy filter $\beta = \{S_p\}$ converges to some point say z in X. The point z is independent of the choice of u_n . So $Ix_{2n} \to z$, $Jx_{2n+1} \to z$, $\delta_i(Sx_n, z) \to 0$ and $\delta_i(Tx_{2n+1}, z) \to 0$ as $n \to \infty$. Assume that I is continuous. Then we have $I^2x_{2n} \to Iz$ and $\delta_i(ISx_n, Iz) \to 0$ as $n \to \infty$. Since S and I are compatible and $\delta_i(Ix_n, Sx_{2n}) \to 0$ as $n \to \infty$, we have

$$\begin{split} \delta_i(SIx_n, Iz) &= H_i(SIx_{2n}, Iz) \le H_i(SIx_{2n}, ISx_{2n}) + H_i(ISx_{2n}, Iz) \\ &\le H_i(SIx_{2n}, ISx_{2n}) + \delta_i(ISx_{2n}, Iz) \end{split}$$

and so $\delta_i(SIx_{2n}, Iz) \to 0$ as $n \to \infty$.

For any $n \in \mathcal{N}$, we have from (1)

$$F(\delta_i(SIx_{2n}, Tx_{2n+1}), d_i(I^2x_{2n}, Jx_{2n+1}), \delta_i(I^2x_{2n+1}, SIx_{2n}), \delta_i(Jx_{2n+1}, Tx_{2n+1}), d_i(I^2x_{2n}, Tx_{2n+1}), d_i(Jx_{2n+1}, SIx_{2n})) \le 0.$$

As $n \to \infty$ we get

$$F(d_i(Iz, z), d_i(Iz, z), 0, 0, d_i(Iz, z), d_i(Iz, z)) \le 0$$

which implies

$$F(d_i(Iz, z), d_i(Iz, z), d_i(Iz, z), d_i(Iz, z), d_i(Iz, z), d_i(Iz, z)) \le 0$$

a contradiction of I3 if $d_i(Iz, z) \neq 0$. Thus z = Iz. Similarly, for any $n \in \mathcal{N}$, we have

$$F(\delta_i(Sz, Tx_{2n+1}), d_i(Iz, Jx_{2n+1}), \delta_i(Iz, Sz), \delta_i(Jx_{2n+1}, Tx_{2n+1}), d_i(Iz, Tx_{2n+1}), d_i(Jx_{2n+1}, Sz)) \le 0.$$

As $n \to \infty$, we get

$$F(\delta_i(Sz,z), 0, \delta_i(z,Sz), 0, 0, \delta_i(z,Sz)) \le 0.$$

By Ib follows that $\delta_i(Sz, z) = 0$ and thus $Sz = \{z\}$.

By $S(X) \subset J(X)$ there exists $w \in X$ such that $Jw = z \in Sz$. Then TJw = Tz. Now by (1) we have successively

$$egin{aligned} F(\delta_i(Sz,Tw),d_i(Iz,Jw),\delta_i(Iz,Sz),\delta_i(Jw,Tw),d_i(Iz,Tw),d_i(Jw,Sz))&\leq 0\ & F(\delta_i(z,Tw),0,0,\delta_i(z,Tw),\delta_i(z,Tw),0)&\leq 0. \end{aligned}$$

By Ia follows that $\delta_i(z, Tw) = 0$. Since T and J are compatible and $\delta_i(Tw, Jw) = 0$, we get $\delta_i(Tw, Jw) = H_i(TJw, JTw) = 0$. It implies Tz = Jz. By (1) we have successively

$$F(\delta_{i}(Sz,Tz), d_{i}(Iz,Jz), \delta_{i}(Iz,Sz), \delta_{i}(Jz,Tz), d_{i}(Iz,Tz), d_{i}(Jz,Sz)) \leq 0$$

$$F(\delta_{i}(z,Tz), \delta_{i}(z,Tz), 0, 0, \delta_{i}(z,Tz), \delta_{i}(z,Tz)) \leq 0$$

$$F(\delta_{i}(z,Tz), \delta_{i}(z,Tz), \delta_{i}(z,Tz), \delta_{i}(z,Tz), \delta_{i}(z,Tz)) \leq 0$$

a contradiction of I3 if $\delta_i(z, Tz) \neq 0$. Thus $\delta_i(z, Tz) = 0$ which implies $Tz = \{z\}$.

Hence the point z is a common fixed point of S, T, I and J with $Sz = Tz = \{z\}$. By Theorem 1, z is the unique common fixed point of I, J, S and T. The proof for J continuous is similar.

Theorem 3. Let (X, u) be a complete Hausdorff uniform space and let I, J be mappings from X into itself and for any $a \in A$, $S_a, T_a : X \to 2^X$ be set valued mappings with $\bigcup_{a \in A} S_a(X) \subset J(X)$ and $\bigcup_{a \in A} T_a(X) \subset I(X)$ such that

(2)
$$F(\delta_i(S_ax, T_by), d_i(Ix, Jy), \delta_i(Ix, S_ax), \\ \delta_i(Jy, T_by), d_i(Ix, T_by), d_i(Jy, S_ax)) \le 0$$

for all x, y in X and $i \in I_0$, $a, b \in A$ where $F \in \mathfrak{S}$. If for all a in A, S_a and I, T_a and J are compatible and if either I or J is continuous then $\{S_a\}_{a \in A}$, $\{T_a\}_{a \in A}$, I and J have a unique common fixed point z in X. Moreover $S_a z = T_a z = \{z\}$ for all a in A.

Proof. Using the result of Theorem 2, we have that for any $a \in A$ there is a unique point z_a in X such that $Iz_a = Jz_a = \{z_a\}$ and $S_a z_a = T_a z_a = \{z_a\}$. Now for all a, b in A, we have by (2)

$$F(\delta_i(S_a z_a, T_b z_b), d_i(I z_a, J z_b), \delta_i(I z_a, S_a z_a),$$

$$\delta_i(J z_b, T_b z_b), d_i(I z_a, T_b z_b), d_i(J z_b, S_a z_a)) \le 0$$

$$= F(d_i(z_a, z_b), d_i(z_a, z_b), 0, 0, d_i(z_a, z_b), d_i(z_b, z_a)) \le 0$$

and

$$F(d_i(z_a, z_b), d_i(z_a, z_b), d_i(z_a, z_b), d_i(z_a, z_b), d_i(z_a, z_b), d_i(z_b, z_a)) \le 0$$

which implies by I3 that $z_a = z_b$.

-

Theorem 4. Let (X, u) be a complete Hausdorff uniform space and let I, J be mappings from X into itself $S, T : X \to 2^X$ be set valued mappings satisfying the conditions:

- (a) $S(X) \subset J(X)$ and $T(X) \subset I(X)$,
- (b) S is continuous,
- (c) S and I as well T and J are compatible,
- (d) the inequality (1) holds for all x, y in X,
- (e) $\delta_i(Sx, Sx) \leq \delta_i(x, Sx)$ holds for all x, y in X and $i \in I_0$, then S, T, I and J have a unique common fixed point z in X. Further $Sz = Tz = Iz = Jz = \{z\}$.

Proof. Define the sequence $\{x_n\}$ as in Theorem 2 so that $Ix_{2n} \to z$, $Jx_{2n+1} \to z$, $\delta_i(Sx_{2n}, z) \to 0$ and $\delta_i(Tx_{2n+1}, z) \to 0$ as $n \to \infty$ and so $\delta_i(Sx_{2n}, Ix_{2n}) \to 0$ as $n \to \infty$. Since S is continuous we have $H_i(SIx_{2n}, Sz) \to 0$ and $H_i(SJx_{2n+1}, Sz) \to 0$ as $n \to \infty$. now by the inequality

$$H_i(ISx_{2n}, Sz) \le H_i(ISx_{2n}, SIx_{2n}) + H_i(SIx_{2n}, Sz)$$

and the fact that S and I are compatible we get $H_i(ISx_{2n}, Sz) \to 0$ as $n \to \infty$. Since $Jx_{2n+1} \in Sx_{2n}$, by (1) we have successively

$$\begin{aligned} &F(\delta_i(SJx_{2n+1},Tx_{2n+1}),d_i(IJx_{2n+1},Jx_{2n+1}),\delta_i(IJx_{2n+1},SJx_{2n+1}),\\ &\delta_i(Jx_{2n+1},Tx_{2n+1}),d_i(IJx_{2n+1},Tx_{2n+1}),d_i(Jx_{2n+1},SJx_{2n+1})) \leq 0\\ &F(\delta_i(SJx_{2n+1},Tx_{2n+1}),\delta_i(ISx_{2n},Tx_{2n+1}),\delta_i(ISx_{2n},SJx_{2n+1}),\\ &\delta_i(Jx_{2n+1},Tx_{2n+1}),\delta_i(ISx_{2n},Tx_{2n+1}),d_i(Jx_{2n+1},SJx_{2n+1})) \leq 0. \end{aligned}$$

Duran Turkoglu

Passing the limit as $n \to \infty$ we get

 $F(\delta_i(Sz, z), \delta_i(Sz, z), \delta_i(Sz, z), 0, \delta_i(Sz, z), \delta_i(Sz, z)) \le 0$

and by (e) and I1

$$F(\delta_i(Sz,z),\delta_i(Sz,z),\delta_i(Sz,z),\delta_i(Sz,z),\delta_i(Sz,z),\delta_i(Sz,z)) \le 0$$

a contradiction if $\delta_i(Sz, z) \neq 0$. It follows that $Sz = \{z\}$. Let z' be a point in X with Jz' = z = Sz we have successively

$$F(\delta_{i}(SJx_{2n+1}, Tz'), d_{i}(IJx_{2n+1}, Jz'), \delta_{i}(IJx_{2n+1}, SJx_{2n+1}), \delta_{i}(Jz', Tz'), d_{i}(IJx_{2n+1}, Tz'), d_{i}(Jx_{2n+1}, SJx_{2n+1})) \leq 0$$

$$F(\delta_{i}(SJx_{2n+1}, Tz'), \delta_{i}(ISx_{2n}, Jz'), \delta_{i}(ISx_{2n}, Jz'), \delta_{i}(Jz', Tz'), \delta_{i}(ISx_{2n}, Tz'), d_{i}(Jx_{2n+1}, SJx_{2n+1})) \leq 0.$$

Then as $n \to \infty$ we get

$$F(\delta_i(z, Tz'), 0, 0, \delta_i(z, Tz'), \delta_i(z, Tz'), 0) \le 0$$

which implies by Ia that $\delta_i(z, Tz') = 0$. By the fact that T and J are compatible and $\delta_i(Tz', Jz') = \delta_i(z, z) = 0$ we have $H_i(JTz', TJz') = 0$ hence JTz' = Jz = TJz' = Tz. By (1) we have

$$F(\delta_i(Sx_{2n}, Tz), d_i(Ix_{2n}, Jz), \delta_i(Ix_{2n}, Sx_{2n}), \\ \delta_i(Jz, Tz), d_i(Ix_{2n}, Tz), d_i(Jz, Sx_{2n})) \le 0.$$

Then as $n \to \infty$ we get

$$F(\delta_i(z,Tz),\delta_i(z,Tz),0,0,\delta_i(z,Tz),\delta_i(z,Tz)) \le 0$$

which implies

$$F(\delta_i(z, Tz), \dots, \delta_i(z, Tz)) \le 0$$

a contradiction of I3 if $\delta_i(z, Tz) \neq 0$. thus $Tz = \{z\} = Jz$.

Now select a point z'' in X with Iz'' = z = Tz. Thus by (1) we have successively

$$F(\delta_i(Sz'', Tz), d_i(Iz'', Jz), \delta_i(Iz'', Sz''), \delta_i(Jz, Tz), d_i(Iz'', Tz), d_i(Jz, Sz'')) \le 0$$

$$F(\delta_i(Sz'', z), \delta_i(z, Sz), \delta_i(z, Sz''), \delta_i(z, z), \delta_i(z, z), \delta_i(z, Sz'')) \le 0$$

which implies

$$F(\delta_i(Sz'', z), \dots, \delta_i(z, Sz'')) \le 0$$

a contradiction of I3 if $\delta_i(Sz'', z) \neq 0$. Thus z = Sz'', ISz'' = Iz and $\delta_i(Sz'', Iz'') = 0$. Since S and I are compatible, so $H_i(ISz'', SIz'') = 0$ and z = Sz = SIz'' = ISz'' = Iz that is Iz = z. This proves that the point z is a common fixed point of S, T, I and J with $Sz = Tz = \{z\}$. The uniqueness of the common fixed point of I, J, S and T follows from Theorem 1.

Remark 1. If we replace the uniform space (X, u) in Theorem 1-Theorem 4 by a metric space (i.e. a metricable uniform space), then Theorem 1-Theorem 4 of V. Popa and D. Türkoglu [18] will follow as special cases of our results.

4. APPLICATION TO LOCALLY CONVEX SPACES

Let (X, τ) be a locally convex linear topological space whose topology is τ generated by a family of seminorms $\{p_i : i \in I_0\}$ so that the collection

$$\{V(i,r): i \in I_0, r > 0\},\$$

where $V(i,r) = \{x \in X : p_i(x) < r\}$ is a neighborhood base for τ . Then the family $P^* = \{p_i : i \in I_0\}$ is called an augmented associated family for τ .

Now, for each $i \in I_0$, the function $d_i : X \times X \to \mathbb{R}$ defined by $d_i(x, y) = p_i(x - y)$ for all $x, y \in X$ is a pseudometric on X. Thus the family $P^* = \{p_i : i \in I_0\}$ determines a unique uniformity u on X and the uniform topology of X coincides with the locally convex topology τ of the space (see Shaefer [23]).

For any nonempty subsets A and B of X, we have

(3)
$$d_i(x, A) = \inf\{p_i(x - a) : a \in A, i \in I_0\},\\\delta_i(A, B) = \sup\{p_i(a - b) : a, b \in A, i \in I_0\}.$$

Then using an idea of Tarafdar [26] we have the following result as an application of Theorem 2-Theorem 4.

Theorem 5. Let I, J be single valued functions of a complete Hausdorff locally convex linear topological space X into X and S, T be set valued functions of a locally convex linear topological (X, τ) into 2^X satisfying the conditions of Theorem [2-4] with d_i and δ_i as indicated above (3). Then S, T, I, J have at most one common fixed point.

Remark 2. When the results of Remark 1 and Examples 1,2,3,4 are considered, consequently, including some fixed point theorems can be obtained.

Duran Turkoglu

ACKNOWLEDGMENT

The author is thankful to the referees for their valuable comments in modifying the first version of this paper.

References

- S. P. Acharya, Some results on fixed points in uniform space, *Yokohama Math. J.*, 22 (1974), 105-116.
- V. V. Angelov, Fixed point theorem in uniform spaces and applications, *Czechoslovak Math. J.*, 37(112) (1997), 19-32.
- 3. T. Banzaru and B. Rendi, *Topologies on spaces of subsets and multivalued mappings*, Mathematical Monographs 63, University of Timisora, 1997.
- 4. T. H. Chang, Fixed point theorems for contractive type set valued mappings, *Math. Japanica*, **38** (1993), 675-690.
- 5. L. B. Ciric, On contractive type mappings, Math. Balkanica., 1 (1971), 52-57.
- B. Fisher, Common fixed points of mappings and multivalued mappings, *Rostock Math. Kolloq.*, 18 (1981), 69-77.
- A. Ganguly, Fixed point theorems for three maps in uniform spaces, *Indian J. Pure Appl. Math.*, **17(4)** (1986), 476-480.
- N. Gheorghiu, Contraction theorems in uniform spaces (Romanian), Stud. Cerc. Math., 19 (1967) 119-123.
- 9. T. L. Hicks, Set Valued Mappings on Metric Space, *Indian J. Pure Appl. Math.*, **22(4)** (1999), 269-271.
- T. L. Hicks and B. E. Rhoades, Fixed points and continuity for multivalued mappings, *Internat. J. Math. Math. Sci.*, **15(1)** (1992), 15-30.
- 11. G. Jungck, Compatible mapping and common fixed points, *Internat J. Math.Math. Sci.*, **12** (1989), 257-262.
- 12. S. N. Mishra, A note on common fixed points of multivalued mappings in uniform spaces, *Math. Sem. Notes Kobe Univ.*, **9** (1981), 341-347.
- 13. S.N. Mishra, On common fixed points of multimappings in uniform spaces, *Indian J. Pure Appl. Math.*, **13(5)** (1982), 606-608.
- 14. S. N. Mishra, Fixed points of contractive type multivalued mappings in uniform spaces, *Indian J. Pure Appl. Math.*, **18(4)** (1987), 283-289.
- 15. S. N. Mishra and S.L. Singh, Fixed points of multivalued mappings in uniform spaces, *Bull. Calcutta Math. Soc.*, **77** (1985), 323-329.

- 16. D. V. Pai and P. Veeramani, Fixed point theorems for multi-mappings, *Yokohama Math. J.*, **28** (1980), 7-14.
- 17. D. V. Pai and P. Veeramani, Fixed point theorems for multi-mappings, *Indian J. Pure Appl. Math.*, **11(7)** (1980), 891-896.
- V. Popa and D. Türkoglu, Some Fixed Point Theorems For Hybrid Contractions Satisfying an Implicit Relation, Universitatea Din Bacau Studii Şi Cercetari Ştiinţifice Seria: Matematica Nr. 8, 1998, pp. 75-86.
- K. Qureshi and S. Upadhyay, Fixed point theorems in uniform spaces, *Bull. Calcutta Math. Soc.*, 84 (1992), 5-10.
- 20. I. A. Rus, Fixed point theorems for multi valued mappings in complete metric spaces, *Math. Japonica*, **20** (1975), 21-24.
- S. Sessa, On weak commutativity conditions in a fixed point considerations, *Publ. Math.*, 38(46) (1982), 149-153.
- 22. S. Sessa and B. Fisher, Common fixed points of weakly commuting mappings, *Bull. Polish Acad. Sci. Math.*, **36** (1987), 341-349.
- 23. H. H. Shaefer, Topological vector spaces, Macmillan, New York, 1966.
- 24. R. E. Smithson, Fixed points for contractive multi-functions, *Proc. Amer. Math. Soc.*, 27 (1971), 192-194.
- 25. E. Tarafdar, An approach to fixed point theorems on uniform spaces, *Trans. Amer. Math. Soc.*, **191** (1974), 209-225.
- 26. E. Tarafdar, On a fixed point theorem on locally convex linear topological spaces, *Monatshefte fur Mathematik*, **82** (1976), 341-344.
- 27. W. J. Thron, Topological structures, Holt, Rinehart and Winston, New York, 1966.
- 28. D. Turkoglu, H. Aslan and S. N. Mishra, A fixed point theorem for multivalued mappings in uniform space, *Journal of Concrete and Applicable Mathematics*, **5** (2007), 331-336.
- 29. D. Türkoglu and B. Fisher, Fixed point of multivalued mapping in uniform spaces, *Proc. Indian Acad. Sci. (Math. Sci.)*, **113(2)** (2003), 183-187.
- 30. D. Turkoglu and B. Fisher, Related fixed points for set-valued mappings on two uniform spaces, *Internat J. Math. Math. Sci.*, **69** (2004), 3783-3791.
- 31. D. Turkoglu and B. E. Rhoades, A general fixed point theorem for multivalued mapping in uniform spaces, *Rocky Mount. J. Math.*, to appear.
- 32. D. Turkoglu, O. Özer and B. Fisher, Some fixed point theorems for set valued mappings in uniform spaces, *Demonstratio Math, XXXII*, **2**, (1999), 395-400.
- 33. C. S. Wong, A fixed point theorem for a class mappings, *Math. Ann.*, **204** (1973), 97-10.

Duran Turkoglu

Duran Turkoglu Department of Mathematics, Faculty of Science and Arts, University of Gazi, 06500-Teknikokullar, Ankara, Turkey E-mail: dturkoglu@gazi.edu.tr