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SOME FIXED POINT THEOREMS FOR HYBRID CONTRACTIONS
IN UNIFORM SPACE

Duran Turkoglu

Abstract. In this paper we prove new fixed point theorems for multi valued
mappings with an implicit relations on complete uniform space.

1. INTRODUCTION

Uniform spaces form a natural extension of metric spaces. An exact analogue
of the well-known Banach contraction principle in uniform spaces was obtained
independently by Acharya [1], Gheorghiu [8] and Tarafdar [25]. Since then a
number of fixed point theorems for single-valued and multi-valued mappings using
various contractive conditions in this setting have been obtained ([2, 7, 12-17, 19,
25, 26, 28-33]). In this paper we first prove a fixed point theorem for a multi-valued
mapping from an orbitally complete uniform space to its hyperspace. Subsequently,
an application to locally convex spaces is also presented.

Let (X, u)be a uniform space. A family P = {di : i ∈ I0} of pseudometrics
on X with indexing set I0, is called an associated family for the uniformity u if
the family

β = {V (i, r) : i ∈ I0, r > 0}
where

V (i, r) = {(x, y) : x, y ∈ X, di(x, y) < r} ,

is a subbase for the uniformity u. We may assume β itself to be base by adjoin-
ing finite intersections of members of β, if necessary. The corresponding family
of pseudometrics is called an augmented associated family for u. An augmented
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associated family for u will be denoted by P∗. For details the reader is referred to
Tarafdar [25] and Thron [27]. Now onward, unless otherwise stated, X will denote
a uniform space (X, u) defined by P∗.

Let A be a nonempty subset of a uniform space X. Define

∆∗(A) = sup{di(x, y) : x, y ∈ A, i ∈ I0},

where {di : i ∈ I0} = P ∗. Then ∆∗(A) is called an augmented diameter of A.
Further, A is said to be P ∗-bounded if ∆∗(A) < ∞ (see [12]). Let

2X = {A : A is a nonempty P∗ − bounded subset of X}.

For any nonempty subsets A and B of X , define

di(x, A) = inf{di(x, a) : a ∈ A, i ∈ I0}

δi(A, B) = sup {di(a, b) : a ∈ A, b ∈ B, i ∈ I0} .

The function δi satisfies the following conditions

(i) δi(A, B) = δi(B, A) ≥ 0, δi(A, B) = 0 implies that A = B and this set
consists only one point.

(ii) δi(A, B) ≤ δi(A, C) + δi(C, B) for A, B, C ∈ 2X .

Also, if A = {a} we write δi(A, B) = δi(a, B) and furthermore B = {b} we write
δi(A, B) = δi(a, b) = di(a, b).

A sequence {An} of sets in 2X is said to converge to the subset A of X if the
following two conditions are satisfied:

(i) For each point in a in A, there is a sequence {an} such that an ∈ An for all
n and an → a.

(ii) For every ε > 0, there is an integer N such that An ⊆ Aε for n ≥ N , where

Aε = ∪
x∈A

U(x) = {y ∈ X : di(x, y) < ε for some x in A, i ∈ I0}.

In such a case, A is said to be limit of the sequence {An} and we write
lim

n→∞An = A or An → A as n → ∞.

The mapping F : X → 2X is said to be continuous at x0 ∈ X if whenever
{xn} is a sequence of points in X converging to x, the sequence {Fxn} in 2X

converges to Fx in 2X . We say that F is a continuous mapping of X into 2X if F
is continuous at each point x in X.

The usual definition of a fixed point x of a set valued mapping F is that x ∈ Fx.
A good reference, for theorems in this setting is the paper by [3, 5, 6, 16, 17, 24].
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For A, B ∈ 2X we define

Hi(A, B) = max{sup
x∈A

di(x, B), sup
x∈B

di(x, A)}.

Let (X, u) be a uniform space and let U ∈ u be an arbitrary entourage. For
each subset A of X , define

U [A] = {y ∈ X : (x, y) ∈ U for some x ∈ A}.
The uniformity 2u on 2X is defined by the base

2β = {Ũ : U ∈ u}
where

Ũ = {(A, B) ∈ 2X × 2X : A × B ⊆ U} ∪ ∆

(Here ∆ denotes the diagonal of X × X).
The augmented associated family P∗ also induces a uniformity u∗ on 2X defined

by the base
β∗ = {V ∗(i, r) : i ∈ I0, r > 0},

where
V ∗(i, r) = {(A, B) ∈ 2X × 2X : δi(A, B) < ε} ∪ ∆.

The uniformities 2u and u∗on 2X are uniformly isomorphic. The space (2X , u∗)
is thus a uniform space called the hyperspace of (X, u).

Let S and T be two self mapping of (X, u). S and T to be weakly com-
muting if di(STx, TSx) ≤ di(Tx, Sx) for all x in X . S and T to be compat-
ible if lim

n
di(STxn, TSxn) = 0 whenever {xn} is a sequence in X such that

lim
n

Sxn = lim
n

Txn = x for some x ∈ X . Clearly, commuting mappings are weakly
commuting and weakly commuting mappings are compatible, but neither implica-
tions are reversible.

Definition 1. Let S : X → 2X be a set valued function and let I : X → X be
a single valued function. We say that S and I commute weakly if

Hi(SIx, ISx)≤ δi(Ix, Sx)

for x in X .

Definition 2. Let S : X → 2X a set valued function and let I : X → X be a
single valued function. We say that S and I are compatible if lim

n
Hi(SIxn, ISxn) =

0 whenever {xn} is a sequence in X such that lim
n

δi(Ixn, Sxn) = 0. In particular,
Hi(SIx, ISx) = 0 if δi(Ix, Sx) = 0 by taking xn = x for all n.
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Definition 3. A set valued S : X → 2X is said to be continuous if for any
sequence {xn} in X with {xn} → x as n → ∞, we have lim

n
Hi(Sxn, Sx) = 0.

For fixed point theory of multi valued mappings, we refer to Hicks [9], Hicks
and Rhoades [10] and references therein (also, see [18] for some related results).

2. IMPLICIT RELATIONS

Let � be the set of real continuous functions F (t1, ..., t6) : R6
+ → R satisfying

the following conditions:

(I1) F is nonincreasing in variables t2, ..., t6.

(I2) There exists h ∈ (0, 1) such that for every u, v ≥ 0 with
[(Ia)] F (u, v, v, u, u + v, 0) ≤ 0

or
[(Ib)] F (u, v, u, v, 0, u+ v) ≤ 0

we have u ≤ hv.

(I3) F (u, ..., u) > 0, ∀u > 0.

Example 1. F (t1, ..., t6)=t1 − k max{t2, t3, t4, 1
2 (t5+t6)} where k∈(0, 1).

(I1) Obviously.
(I2) Let u > 0 be and F (u, v, v, u, u+ v, 0) = u − k max{v, v, u, 1

2 (u + v) ≤ 0.
If u ≥ v then u ≤ ku < u, a contradiction. Thus u < v and u ≤ kv = hv

where h = k ∈ (0, 1). Let u > 0 and F (u, v, u, v, 0, u+ v)≤ 0 then u ≤ hv.
If u = 0 then u ≤ hv.

(I3) F (u, ..., u) = u(1− k) > 0, ∀u > 0.

Example 2. F (t1, ..., t6) = t21−c1 max{t22, t23, t24}−c2 max{t3t5, t4t6}−c3t5t6
where c1 > 0, c2, c3 ≥ 0; c1 + 2c2 < 1 and c1 + c2 + c3 < 1.

(I1) Obviously.
(I2) Let u > 0 be and F (u, v, v, u, u+v, 0) = u2−c1 max{u2, v2}−c2v(u+v) ≤

0. If u ≥ v then u2(1 − c1 − c2) ≤ 0 which implies c1 + 2c2 ≥ 1, a
contradiction. Thus u < v and u ≤ (c1+2c2)v = hv, where h = c1+2c2 < 1.

Let u > 0 and F (u, v, u, v, 0, u + v)≤0 then u≤hv. If u = 0 then u≤hv.

(I3) F (u, ..., u)=u2(1 − c1 − c2 − c3) > 0, ∀u > 0.

Example 3. F (t1, ..., t6) = t21 − t1(at2 + bt3 + ct4) − d(t5t6), where a >

0; b, c, d≥ 0 and a + b + c + d < 1.

(I1) Obviously.
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(I2) Let u > 0 be and F (u, v, v, u, u + v, 0) = u2 − u(av + bv + cu) ≤ 0 then
u ≤ a+b

1−cv = h1v where h1 = a+b
1−c < 1. Let u > 0 be and F (u, v, u, v, 0, u+

v) = uh2 ≤ −u(av + bu + cv) ≤ 0 which implies u ≤ a+c
1−bv = h2v where

h2 = a+c
1−b < 1. Therefore, u ≤ hv where h = max{h1, h2} < 1. If u = 0

then u ≤ hv.

(I3) F (u, ..., u) = u2(1− a − b − c) > 0, ∀u > 0.

Example 4. F (t1, ..., t6) = t31 − at21t2 − bt1t3t4 − ct25t6 − dt5t
2
6 where a >

0; b, c, d≥ 0 and a + b + c + d < 1.

(I1) Obviously.
(I2) Let u > 0 be and F (u, v, v, u, u+ v, 0) = u3 − au2v − bu2v ≤ 0. Then u ≤

(a+ b)v = hv, where h = a+ b < 1. If u > 0 and F (u, v, u, v, 0, u+ v)≤ 0
then u ≤ hv. If u = 0 then u ≤ hv.

(I3) F (u, ..., u) = u3(1− a − b − c − d) > 0, ∀u > 0.

The purpose of this paper is to prove some fixed point theorems for hybrid
contractions satisfying an implicit relations on uniform spaces.

3. FIXED POINT THEOREMS

Theorem 1. Let (X, u) be a Hausdorff uniform space and let I, J be two
single valued mappings from X into itself, S, T : X → 2 X be two set valued
mappings satisfying the inequality

(1) F (δi(Sx,Ty), di(Ix,Jy), δi(Ix,Sx), δi(Jy,Ty), di(Ix,Ty), di(Jy,Sx))≤0

for all x, y in X and i ∈ I0, where F satisfies property I3. Then S, T, I, J have at
most one common fixed point.

Proof. Let y ∈ X be a common fixed point of I, J, S and T . By (1) we have

F (δi(Sy, Ty), di(Iy, Jy), δi(Iy, Sy), δi(Jy, Ty), di(Iy, Ty), di(Jy, Sy))

= F (δi(Sy, Ty), 0, δi(y, Sy), δi(y, Ty), 0, 0)≤ 0

and thus
F (δi(Sy, Ty), ..., (δi(Sy, Ty)) ≤ 0

a contradiction of I3 if δi(Sy, Ty) 
= 0. Thus δi(Sy, Ty) = 0. Since y ∈ Sy and
y ∈ Ty then Sy = Ty = {y}.
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Suppose that I, J, S, T have to common fixed points z and y. Then by (1) we
have successively:

F (δi(Sy, Tz), di(Iy, Jz), δi(Iy, Sy), δi(Jz, Tz), di(Iy, T z), di(Jz, Sy)) ≤ 0

F (di(y, z), di(y, z), 0, 0, di(y, z), di(y, z)) ≤ 0

and
F (di(y, z), ..., di(y, z)) ≤ 0

a contradiction of I3 if y 
= z. Thus y = z.

Theorem 2. Let (X, u) be a complete Hausdorff uniform space and let I, J

be two single valued mappings from X into itself and S, T : X → 2 X be two set
valued mappings satisfying the conditions:

(a) S(X) ⊂ J(X) and T (X) ⊂ I(X),
(b) I or J is continuous,
(c) S and I as well T and J are compatible,
(d) the inequality (1) holds for all x, y in X and i ∈ I 0, where F ∈ �, then

S, T, I and J have a unique common fixed point z in X. Moreover, Sz =
Tz = {z} = Iz = Jz.

Proof. Suppose x0 an arbitrary point inX. Then since (a) holds we can define a
sequence {xn} recursively as follows Jx2n+1 ∈ Sx2n = z2n; Ix2n+2 ∈ Tx2n+1 =
z2n+1.

Let U ∈ u be an arbitrary entourage. Since β is a base for u, there exists
V (i, r) ∈ β such that V (i, r) ⊆ U. By (1) we have successively

F (δi(Sx2n, Tx2n+1), di(Ix2n, Jx2n+1), δi(Ix2n, Sx2n), δi(Jx2n+1, Tx2n+1),

di(Ix2n, Tx2n+1), di(Jx2n+1, Sx2n)) ≤ 0

F (δi(z2n,z2n+1), δi(zn−1,z2n), δi(z2n−1,z2n), δi(z2n,z2n+1), δi(z2n−1,z2n+1), 0)≤0

F (δi(z2n, z2n+1), δi(zn−1, z2n), δi(z2n−1, z2n), δi(z2n, z2n+1),

δi(z2n−1, z2n) + δi(z2n, z2n+1), 0)) ≤ 0.

By Ia we have
δi(z2n, z2n+1) ≤ hδi(z2n−1, z2n).

Similarly, we have successively

F (δi(Sx2n, Tx2n−1), di(Ix2n, Jx2n−1), δi(Ix2n, Sx2n), δi(Jx2n−1, Tx2n−1),

di(Ix2n, Tx2n−1), di(Jx2n−1, Sx2n)) ≤ 0

F (δi(z2n−1,z2n), δi(z2n−1,z2n−2), δi(z2n−1,z2n), δi(z2n−2,z2n−1), 0, δi(z2n−2,z2n))≤0
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F (δi(z2n−1, z2n), δi(z2n−1, z2n−2), δi(z2n−1, z2n), δi(z2n−2, z2n−1), 0,

δi(z2n−2, z2n−1) + δi(z2n−1, z2n)) ≤ 0.

By Ib we have
δi(z2n−1, z2n) ≤ hδi(z2n−2, z2n−1)

and so δi(z2n, z2n+1) ≤ h2nδi(x0, Sx0).
By a routine calculation follows that for r > 0, there is n0(r) ∈ N such that

for m, n ≥ n0(r) we have δi(zm, zn) < r.
Let un ∈ zn, um ∈ zm, since di(un, um) ≤ δi(zm, zn) < r and hence (un, um) ∈

U for all n, m ≥ n0(r). Therefore the sequence {un} is Cauchy sequence in the
di− uniformity on X .

Let Sp = {Un : n ≥ n0(r)} for all positive integer n0(r) and let β be the filter
basis {Sp : p = 1, 2, ...}.Then since {un} is a di− Cauchy sequence for each i ∈ I0,

it is easy to see that the filter basis β is Cauchy filter in the uniform space (X, u). To
see this we first note that family {V (i, r) : i ∈ I0, r > 0} is a base u as P ∗ = {di :
i ∈ I0}. Now, since {un} is a di− Cauchy sequence in X , there exists a positive
integer n0(r) such that di(un, um) < r for m ≥ n0(r), n ≥ n0(r). This implies
that Sp × Sp ⊂ V (i, r). Thus given any U ∈ u, we can find a Sp ∈ β such that
Sp ×Sp ⊂ U. Hence β is a Cauchy filter in (X, u). Since (X, u) complete uniform
space, the Cauchy filter β = {Sp} converges to some point say z in X . The point
z is independent of the choice of un. So Ix2n → z, Jx2n+1 → z, δi(Sxn, z) → 0
and δi(Tx2n+1, z) → 0 as n → ∞. Assume that I is continuous. Then we have
I2x2n → Iz and δi(ISxn, Iz) → 0 as n → ∞. Since S and I are compatible and
δi(Ixn, Sx2n) → 0 as n → ∞, we have

δi(SIxn, Iz) = Hi(SIx2n, Iz) ≤ Hi(SIx2n, ISx2n) + Hi(ISx2n, Iz)

≤ Hi(SIx2n, ISx2n) + δi(ISx2n, Iz)

and so δi(SIx2n, Iz) → 0 as n → ∞.
For any n ∈ N , we have from (1)

F (δi(SIx2n, Tx2n+1), di(I2x2n, Jx2n+1), δi(I2x2n+1, SIx2n), δi(Jx2n+1, Tx2n+1),

di(I2x2n, Tx2n+1), di(Jx2n+1, SIx2n)) ≤ 0.

As n → ∞ we get

F (di(Iz, z), di(Iz, z), 0, 0, di(Iz, z), di(Iz, z)) ≤ 0

which implies

F (di(Iz, z), di(Iz, z), di(Iz, z), di(Iz, z), di(Iz, z), di(Iz, z)) ≤ 0
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a contradiction of I3 if di(Iz, z) 
= 0. Thus z = Iz.

Similarly, for any n ∈ N , we have
F (δi(Sz, Tx2n+1), di(Iz, Jx2n+1), δi(Iz, Sz), δi(Jx2n+1, Tx2n+1),

di(Iz, Tx2n+1), di(Jx2n+1, Sz)) ≤ 0.

As n → ∞, we get

F (δi(Sz, z), 0, δi(z, Sz), 0, 0, δi(z, Sz)) ≤ 0.

By Ib follows that δi(Sz, z) = 0 and thus Sz = {z}.
By S(X) ⊂ J(X) there exists w ∈ X such that Jw = z ∈ Sz. Then TJw =

Tz. Now by (1) we have successively

F (δi(Sz, Tw), di(Iz, Jw), δi(Iz, Sz), δi(Jw, Tw), di(Iz, Tw), di(Jw, Sz)) ≤ 0

F (δi(z, Tw), 0, 0, δi(z, Tw), δi(z, Tw), 0) ≤ 0.

By Ia follows that δi(z, Tw) = 0. Since T and J are compatible and δi(Tw, Jw) =
0, we get δi(Tw, Jw) = Hi(TJw, JTw) = 0. It implies Tz = Jz. By (1) we have
successively

F (δi(Sz, Tz), di(Iz, Jz), δi(Iz, Sz), δi(Jz, Tz), di(Iz, T z), di(Jz, Sz)) ≤ 0

F (δi(z, T z), δi(z, T z), 0, 0, δi(z, T z), δi(z, T z)) ≤ 0

F (δi(z, T z), δi(z, T z), δi(z, T z), δi(z, T z), δi(z, T z), δi(z, T z)) ≤ 0

a contradiction of I3 if δi(z, T z) 
= 0. Thus δi(z, T z) = 0 which implies Tz = {z}.
Hence the point z is a common fixed point of S, T, I and J with Sz = Tz =

{z}. By Theorem 1, z is the unique common fixed point of I, J, S and T . The
proof for J continuous is similar.

Theorem 3. Let (X, u) be a complete Hausdorff uniform space and let I, J

be mappings from X into itself and for any a ∈ A, S a, Ta : X → 2X be set valued
mappings with ∪

a∈A
Sa(X) ⊂ J(X) and ∪

a∈A
Ta(X) ⊂ I(X) such that

(2)
F (δi(Sax, Tby), di(Ix, Jy), δi(Ix, Sax),

δi(Jy, Tby), di(Ix, Tby), di(Jy, Sax)) ≤ 0

for all x, y in X and i ∈ I0, a, b ∈ A where F ∈ �. If for all a in A, Sa and I , Ta

and J are compatible and if either I or J is continuous then {S a}a∈A, {Ta}a∈A,
I and J have a unique common fixed point z in X . Moreover S az = Taz = {z}
for all a in A.
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Proof. Using the result of Theorem 2, we have that for any a ∈ A there is a
unique point za in X such that Iza = Jza = {za} and Saza = Taza = {za}. Now
for all a, b in A, we have by (2)

F (δi(Saza, Tbzb), di(Iza, Jzb), δi(Iza, Saza),

δi(Jzb, Tbzb), di(Iza, Tbzb), di(Jzb, Saza)) ≤ 0

= F (di(za, zb), di(za, zb), 0, 0, di(za, zb), di(zb, za)) ≤ 0

and

F (di(za, zb), di(za, zb), di(za, zb), di(za, zb), di(za, zb), di(zb, za)) ≤ 0

which implies by I3 that za = zb.

Theorem 4. Let (X, u) be a complete Hausdorff uniform space and let I, J
be mappings from X into itself S, T : X → 2 X be set valued mappings satisfying
the conditions:

(a) S(X) ⊂ J(X) and T (X) ⊂ I(X),
(b) S is continuous,
(c) S and I as well T and J are compatible,
(d) the inequality (1) holds for all x, y in X,

(e) δi(Sx, Sx) ≤ δi(x, Sx) holds for all x, y in X and i ∈ I0, then S, T, I and J

have a unique common fixed point z in X. Further Sz = Tz = Iz = Jz =
{z}.

Proof. Define the sequence {xn} as in Theorem 2 so that Ix2n → z, Jx2n+1 →
z, δi(Sx2n, z) → 0 and δi(Tx2n+1, z) → 0 as n → ∞ and so δi(Sx2n, Ix2n) → 0
as n → ∞. Since S is continuous we have Hi(SIx2n, Sz) → 0 and Hi(SJx2n+1,
Sz) → 0 as n → ∞. now by the inequality

Hi(ISx2n, Sz) ≤ Hi(ISx2n, SIx2n) + Hi(SIx2n, Sz)

and the fact that S and I are compatible we get Hi(ISx2n, Sz) → 0 as n → ∞.

Since Jx2n+1 ∈ Sx2n, by (1) we have successively

F (δi(SJx2n+1, Tx2n+1), di(IJx2n+1, Jx2n+1), δi(IJx2n+1, SJx2n+1),

δi(Jx2n+1, Tx2n+1), di(IJx2n+1, Tx2n+1), di(Jx2n+1, SJx2n+1)) ≤ 0

F (δi(SJx2n+1, Tx2n+1), δi(ISx2n, Tx2n+1), δi(ISx2n, SJx2n+1),

δi(Jx2n+1, Tx2n+1), δi(ISx2n, Tx2n+1), di(Jx2n+1, SJx2n+1)) ≤ 0.
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Passing the limit as n → ∞ we get

F (δi(Sz, z), δi(Sz, z), δi(Sz, z), 0, δi(Sz, z), δi(Sz, z)) ≤ 0

and by (e) and I1

F (δi(Sz, z), δi(Sz, z), δi(Sz, z), δi(Sz, z), δi(Sz, z), δi(Sz, z)) ≤ 0

a contradiction if δi(Sz, z) 
= 0. It follows that Sz = {z}. Let z′ be a point in X
with Jz ′ = z = Sz we have successively

F (δi(SJx2n+1, T z′), di(IJx2n+1, Jz′), δi(IJx2n+1, SJx2n+1), δi(Jz′, T z′),

di(IJx2n+1, T z′), di(Jx2n+1, SJx2n+1)) ≤ 0

F (δi(SJx2n+1, T z′), δi(ISx2n, Jz′), δi(ISx2n, Jz′), δi(Jz′, T z′),

δi(ISx2n, T z′), di(Jx2n+1, SJx2n+1)) ≤ 0.

Then as n → ∞ we get

F (δi(z, T z′), 0, 0, δi(z, T z′), δi(z, T z′), 0) ≤ 0

which implies by Ia that δi(z, T z′) = 0. By the fact that T and J are compatible
and δi(Tz′, Jz′) = δi(z, z) = 0 we have Hi(JTz′, TJz′) = 0 hence JTz′ = Jz =
TJz′ = Tz. By (1) we have

F (δi(Sx2n,T z), di(Ix2n,Jz), δi(Ix2n,Sx2n),

δi(Jz,Tz), di(Ix2n,T z), di(Jz,Sx2n))≤0.

Then as n → ∞ we get

F (δi(z, T z), δi(z, T z), 0, 0, δi(z, T z), δi(z, T z)) ≤ 0

which implies
F (δi(z, T z), ..., δi(z, T z)) ≤ 0

a contradiction of I3 if δi(z, T z) 
= 0. thus Tz = {z} = Jz.
Now select a point z′′ in X with Iz ′′ = z = Tz. Thus by (1) we have succes-

sively

F (δi(Sz′′, T z), di(Iz′′, Jz), δi(Iz′′, Sz′′), δi(Jz, Tz), di(Iz′′, T z), di(Jz, Sz′′))≤0

F (δi(Sz′′, z), δi(z, Sz), δi(z, Sz′′), δi(z, z), δi(z, z), δi(z, Sz′′)) ≤ 0

which implies
F (δi(Sz′′, z), ..., δi(z, Sz′′)) ≤ 0
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a contradiction of I3 if δi(Sz′′, z) 
= 0. Thus z = Sz ′′, ISz′′ = Iz and δi(Sz′′, Iz′′)
= 0. Since S and I are compatible, so Hi(ISz′′, SIz′′) = 0 and z = Sz = SIz′′ =
ISz′′ = Iz that is Iz = z. This proves that the point z is a common fixed point of
S, T, I and J with Sz = Tz = {z}. The uniqueness of the common fixed point of
I, J, S and T follows from Theorem 1.

Remark 1. If we replace the uniform space (X, u) in Theorem 1-Theorem 4
by a metric space (i.e. a metricable uniform space), then Theorem 1-Theorem 4 of
V. Popa and D. Türkoglu [18] will follow as special cases of our results.

4. APPLICATION TO LOCALLY CONVEX SPACES

Let (X, τ) be a locally convex linear topological space whose topology is τ
generated by a family of seminorms {pi : i ∈ I0} so that the collection

{V (i, r) : i ∈ I0, r > 0},

where V (i, r) = {x ∈ X : pi(x) < r} is a neighborhood base for τ. Then the
family P∗ = { pi : i ∈ I0} is called an augmented associated family for τ.

Now, for each i ∈ I0, the function di : X×X → R defined by di(x, y) = pi(x−
y) for all x, y ∈ X is a pseudometric on X. Thus the family P ∗ = {pi : i ∈ I0}
determines a unique uniformity u on X and the uniform topology of X coincides
with the locally convex topology τ of the space (see Shaefer [23]).

For any nonempty subsets A and B of X , we have

(3)
di(x, A) = inf{pi(x − a) : a ∈ A, i ∈ I0},

δi(A, B) = sup{pi(a − b) : a, b ∈ A, i ∈ I0}.
Then using an idea of Tarafdar [26] we have the following result as an application
of Theorem 2-Theorem 4.

Theorem 5. Let I, J be single valued functions of a complete Hausdorff
locally convex linear topological space X into X and S, T be set valued functions
of a locally convex linear topological (X, τ) into 2 X satisfying the conditions of
Theorem [ 2 -4] with d i and δi as indicated above (3). Then S, T, I, J have at
most one common fixed point.

Remark 2. When the results of Remark 1 and Examples 1,2,3,4 are considered,
consequently, including some fixed point theorems can be obtained.
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