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CHARACTERIZATION OF THE WEIGHTED LIPSCHITZ FUNCTION
BY THE GARSIA-TYPE NORM ON THE UNIT BALL

Hong Rae Cho!, Su-Mi Kwon and Jinkee Lee?

Abstract. The space BMOA can be characterized by the boundedness of
Garsia norm. In this paper like as the BMOA function we characterize the
holomorphic weighted Lipschitz function by the boundedness of the Grasia-
type norm on the unit ball in C".

1. INTRODUCTION AND STATEMENT OF RESULTS

Let E be a bounded subset of RY. Let w be a majorant, i.e., a non-negative
continuous increasing function on (0,%p), where ¢y is large enough, such that
limsup,_,g+ w(t) = 0 and that w(t)/t non-increasing (¢ > 0). Then the weighted
Lipschitz space A, (FE) is defined by the requirement

(1.1 [f(2) = f(y)] < Mw(jz —yl), =,y € E.

The norm || f{|a,, gz, is defined as the smallest M in (1.1).

Weighted Lipschitz spaces have been studied by many authors (see [2-6, 8, 9],
and references in their papers).

In this paper, we deal with the case where E is the unitball B = {z € C™; |z| <
1}, f is holomorphic in B and continuous up to the boundary S = 9B, and w is a
majorant satisfying

(12) /Ot @ds < Clw(t) (0<t<l),
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(13) t/oo W08) 4 < Clowlt) (0<t<1).

A majorant is henceforth called fast (resp., slow) if condition (1.2) (resp., (1.3)) is
fulfilled. Following Dyakonov a majorant is called regular if it is both fast and
slow.

A real function w, defined on some interval, is called almost increasing if there
exists a constant C' such that z < y implies w(x) < Cw(y). (An almost decreasing
function is defined similarly.)

Remark 1.1. (i) We assume that w is a majorant satisfying the conditions:

t .
(1.4) % is almost increasing for some o > 0
and
w(t) . .
(1.5) 7 is almost decreasing for some 0 < 8 < 1.

We know that for a majorant conditions (1.2) (resp., (1.3)) and (1.4) (resp., (1.5))
are equivalent.

(i) A non-trivial example of the majorant satisfying conditions (1.4) and (1.5)
is of the form w(t) = t*(1 + |logt|)® where 0 < a < 1 and 8 € R.

From now on we assume that w is a regular majorant. By the same argument
as the proofs of Lemma 10.1.6 in [9] or Lemma 6.4.8 in [10], we can prove that
for a harmonic function f on B it follows that

1 - |7]

1.6 ~
(1.6 1w~ sup |

. M)wm)\] |

Let Rf be the radial derivative of a holomorphic function f in B defined by

It is obvious that [R f(z)| < |V f(z)| on B. Even though these two gradients have
no the same size, we can see that (see Proposition 3.1)
1 — || 1 — ||

.7 e d premeyiig) (z)‘] ~sup [w(l mypy

R -

By (1.6) and (1.7), we obtain the following.
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Theorem 1.2. If f is a holomorphic function on B, we have

Nw B ~ 1:

T‘ZD\Rf(Z)\ -

We recall that

1flla,(s) = LM [£(C) = f(O] < Mw([C = &), ¢, €S}

Theorem 1.3. Let C[f] be the Cauchy transform of f on S. Then

1—
(18) sup | RG] £ 1y

By (1.8), we see that || f||x,B) and || f[[a,(s) are equivalent for holomorphic
function f € C(B).

For 0 < p < oo the Hardy space HP consists of holomorphic functions f in B
such that

sup /S FrOPdo(C) < oo,

0<r<1

where do is the surface measure on S, normalized so that o(S) = 1.
For any ¢ € S and r > 0, the non-isotropic ball in S with center ¢ and radius
r > 0 is the set

QG ={¢eS:1-<¢e> V<
Let BMOA denote the space of functions f in H? such that

1 e
sng(Q)/Q\f faltdo < o,

where

1
fQ:m/QfdJ

is the average of f over () and the supremum is taken over Q@ = Q((,r) for all
(€ Sandallr>D0.
With each point z € B we associate the Poisson kernel

1— |2
¢ — 2>

(1.9) P(z,¢) = , CEeS.
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The Poisson integral of a function f € L'(S) is defined, as usual, by

/f P(z,{)do(¢), = € B.

Further, with f € H' we associate the nonnegative function

Gr(2) = PIfI(2) = [f(2)], z € B.

The Garsia norm is defined by
Iflle = sup{gfz(z)1/2 :2z€BY}, fe H?.

It is proved that f € BMOA if and only if the Garsia norm of f is finite.

One-dimensional case was proved by Garsia (see [7]) and the n-dimensional case
by Sh. Axler and J. Shapiro (see [1]).
We define the Garsia-type norm by

1

(1.10) HfHG,w:sup{mgfg(z)lﬂ:zeB}, feH

Theorem 1.4. Let f € H?. Ifw and w?* are regular, then | f|| s m) ~ || fllc.w-

Like as estimates for the classical Lipschitz case we need some key integral
estimates proved in Section 2. They are non-trivial and not proved by the same
methods as the classical Lipschitz case.

2. INTEGRAL ESTIMATES

In this section we prove some basic integral estimates that will be used in the
proofs of main results.

Lemma 2.1. We have

(1 — Ju]) w1~ |2))
| Koemr Wiw) 2 ’

)L = (z, )"+

where dV is the volume measure on B, normalized so that V(B) = 1.

Proof. By the polar coordinate and the inequality in [10, Proposition 1.4.10],
we have

(1) ) .
o T / i an e g
<
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Note that 1 — r|z| = (1 —r) + (1 — |z|) — (1 — |2])(1 — 7). Thus we have

1 w(l—r) B 1 w(s) .
A u—mu—aaﬂ“ﬁﬁsw+u—vw—u—vw¢“

by putting 1 — r = s. We decompose the integral by two parts as following
/1 w(s) d B /1 1 / w(s)
S ds
o sls+ (1—lz)—(1—]z[)s] 12 85 + (1=|z[) = (1—|z[)s]

For the first part we have

) -y () . 1—|#| w(s) s
o= sram e A+( \md

1|Z|
Nl—z\/

< wd—z))
~ol-e

Now for the second part we have

o o IR
In = /1—|z| sls+ (1 —1z]) = (1 — \z\)S]d < /1—|z| ERES 2]

We use the regular condition of w at the last step of estimates for two parts of the
integral. Thus we complete the proof. ]

Lemma 2.2. We have

[ 20D g < Ul
¢

es |1 —(z, Q)1 AR Sl

Proof. For % = z/|z| we let
So={CeS:[1-(2,0|<1-[z[}
and
Si={¢eS: 27 (1—[z)) <1- (£ <2(1— |2}, j=1,2,--

Then

— U S;
j=0
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We decompose

w1 ={z 0N
/CES 1=z C ‘nﬂ Z/es \1— 2, C \”’Ll da(g)_

Note that 1— 2| < [1—(z, ()] < [1=(z, B)|+[1= (2, Q)| = 1=|2[+[1- (%, ()| <
2(1 —|z|) for ¢ € Sp. Thus |1 — (2,{)| ~ 1 — |z| on Sy. Therefore we obtain
w(|1 = (20l w(l—|2])
/cesoW do(Q) ~ om0
1—
sy
w(l —[2])

1=z

For j=1,2,---, we have on S;
1= (20l <1—={z2)[+[1- (%0
=1=[z[+[1-(z0)|
<1l—1z]4+27(1—|2|)
<2-27(1—|z|)
and
1= (Z01<[1=(z2)[+[1- (20
=1=[z[+[1-(z0)|
<2[1- (2,0l
We note that
A <L (2O S L= (=l <2(1—|z) on §;
for j =1,2,---. Thus it follows that
1 —(2,¢)|~27(1—|2]) on Sjj=1,2,--.

Hence we obtain

S 0D 4 < i ey [ 2O
/ w0 S |

es, |1 = (2, Q! (3, C)[nH1
i1 _|» a(8;)
SW(Q (1 ‘ ‘))(QJ_l(l_ ‘z‘))n—l—l
(27 (1 —|2])"

~ W(Qj(l - ‘Z‘)) (2j_1(1 — ‘z‘))n-f—l

L L@ - ED)
21—
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Note that -

(27(1—| 2t 1—|
Zw (1—120) 5/ z‘))dt
2i(1— |z]) 2t(1 — |2|)

7=1
By putting s = 2¢, we have

= “‘)sds

Therefore the proof is complete. ]

If we use Lemma 2.2, by the same argument as the proof of Theorem 6.4.9 in
[10], we get Theorem 1.3.
We recall that Z = z/|z| € S for z € B.

Lemma 2.3. Let z € B, then

Proof. Let g be a function of one complex variable. Then for € S, we have

Lottcmdote) =" [ | (1= luly2g(w) aa(w).

By the unitary invariance of do and \§—61\2 =2Re (1-¢) for ( = (¢, -+, Cn),
Gi=x+1y, r=|z| and & = (1,0,---,0), we have

wllc=el) oy [elE=aD
LT 0= [ @

n—l/ w(v2v1 =)

(1 —2rz+r2)»

vi-a? 1—95) 2 2\n—2
1— 2?2 —y?)"~
//1302 2rw—|—r2)( 7=y dy dv

</( W(VT=7)

~ (1 =2rz 4+ r2)n

( fI,'2 _ y2)n—2 dx dy

(1—2®)"3/2 dz

< 1 /000 w((é; I;f)tn—gﬂ dt.

1—r
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To obtain the last inequality, use 1 — 22 < 2(1 — z),
31—=2rz+7r)>1 -2+ (1 —1r)?
and put 1 — 2 = (1 — r)%t. We have

/OO w((1—r)V) 312 g — / w((l - r)\/%)tn—B/Q dt
0 ) 0

(t+1)m (t+1)n
w((l—r)\/f) n—3/2
+/1 ~Er 32 gt
= (D) + (ID).

Estimating the two integrals, we see that the first right-hand side is

3

Lw —-r 3 Loyn—3
(I)=/0 Mt”—i dt§w(1—r)/0 (ti

(t+1)» t+1)"
Sw(l—r).

By putting (1 — )/t = s, the second term is

(I1) = /loo 7“’((; IV -t gy < (1- 1) /loo W5 g

-r ((1—7)2+ 32)%

g(l—r)/looﬂj)ds

=T

Sw(l—r).

Thus we get the result. ]
3. HARDY-LITTLEWOOD TYPE CHARACTERIZATION

Proposition 3.1. Let f be holomorphic in B with Rf € L*(B). We have

sup | v @]~ sup | LR

2B [w(1 —[2]) -€B

Proof. By the reproducing property of the Bergman projection, it follows that

Rf(2) = /B e _7?5 (Z;)RHCZV(w).
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Thus we have

and so that

0 1 dt
azj / Rf(w)dVw /oa_zj[u—wz,w»nﬂ]?

B w w (n+1)w,
= JyRiwav) /0 0tz w2
We know that

/01 @ Z:ﬁw o= [(1 T 1]

_ e(z,w)
(1= (2, w))ntt’

where e € C*°(C™ x C"). It follows that

of ' / 1

—(2)| S Rf(w)|m———dV(w
)| 5 [ IRy

|w]

1 . (1~ Ju]) .
S o [ R, i oV @

w(1— 2] ]
ST S}ip[w(l fup) S )‘]

by using Lemma 2.1. Thus we get

1— |z 1— |z
sup | Vi < s | L s
2B [w(l—\Z\) (1—1z[)
and the converse inequality is obvious. ]

By (1.6) and Proposition 3.1, we complete the proof of Theorem 1.2.
4. CHARACTERIZATION OF THE WEIGHTED LIPSCHITZ NORM BY
USING THE GARSIA NORM
We recall that Z = z/|z| € S for z € B.
Lemma 4.1. Let f € A,(S) and z € B, then

Pf(2) = RIS 1 laus) w(t = 12]).
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Proof. We have

— 122 e
P ‘/f T jLn MAGI= L
2\2

\2” = f()] do(C)

=
S 1y (1~ 12P) / LD oo

S 1 fllag w1 = [2])

where the last inequality relies on Lemma 2.3.

Proof of Theorem 1.4. (i) For n,( € S, a straight calculation in the Poisson

kernel (1.9) shows that

g 1 —r2

Or \|rn—¢[*

< 1
|rn — ¢|?"

Then we have the radial derivative of the Poisson integral formula

00| -

I | [ 5 PUOLSO) - )] do(0)
(101

— RIS - £(2)
T o0

Thus we have

(- LDPRC) 5 | a

which implies that || f[[ A, B) S ||IfllGw-
For the converse we let ( € S and z € B. Then

1F(O) = F(R)] < [f(Q) = FO)+1f(2) — f(2)]
S llauwUC = 2) + [ flla, )@ (1 = [2])

where we use Lemma 4.1 to estimate the second inequality.
By (4.1), we still have

(4.1)

@2) £ = FP SR e@w¢ — 207 + 1R, s)w — |2D*
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Integrating (4.2) against P(z, ()do, we arrive at

w(|¢ = 2])2
%W/S\f(C)—f(Z)PP(z,C) da(()gﬂfuiw(s)/sM 40 (0)

¢ — 2|2
do(Q)
+IfI1? aw(l—]z])? | ——=
R 12? |
w(l — |z[)?
SHfH?\w(S)l_i‘z‘-
Therefore we have || f|lcw < Hf”Aw(B)- [
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