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STRONG CONVERGENCE THEOREMS BY THE VISCOSITY
APPROXIMATION METHOD FOR A COUNTABLE FAMILY

OF NONEXPANSIVE MAPPINGS

Misako Kikkawa and Wataru Takahashi

Abstract. In this paper, we extend Moudafi’s result in a Hilbert space to
that in a Banach spaces. Then, we introduce implicit and explicit sequences
for an infinite family of nonexpansive mappings in Banach spaces and prove
strong convergence theorems for finding a common fixed point of the family
of mappings.

1. INTRODUCTION

Let E be a Banach space and let C be a closed convex subset of E . Then a
mapping T from C into itself is called nonexpansive if

‖Tx− Ty‖ ≤ ‖x − y‖, ∀x, y ∈ C.

For a mapping T of C into itself, we denote by F (T ) the set of fixed points of
T , i.e., F (T ) = {x ∈ C : Tx = x}. Let f be a function of C into itself. Then,
f is said to be a-contractive on C if there exists a constant a ∈ (0, 1) such that
‖f(x)− f(y)‖ ≤ a‖x − y‖ for all x, y ∈ C. We denote that Cont(C) is the set of
all contractions on C. In 1967, Browder [3] obtained the following:

Theorem 1.1. Let H be a Hilbert space and let C be a closed convex
subset of H . Let T be a nonexpansive mapping of C into itself such that F (T ) is
nonempty. Let x0 be an arbitrary point of C and define S n : C → C by

Snx = (1− αn)Tx + αnx0

for all x ∈ C and n ∈ N, where 0 < αn < 1. Then the following hold:
Received January 31, 2006, accepted September 7, 2006.
Communicated by Mau-Hsiang Shih.
2000 Mathematics Subject Classification: 47H09.
Key words and phrases: Nonexpansive mapping, Fixed point, Viscosity approximation method.

583



584 Misako Kikkawa and Wataru Takahashi

(i) Sn has a unique fixed point un ∈ C;
(ii) if αn → 0, then the sequence {un} converges strongly to PF (T )x0 where

PF (T ) is the metric projection onto F (T ).

After Browder’s result, such a problem has been investigated by many authors:
for instance, see Marino and Trombetta [8] and Takahashi and Kim [17]. In 2000,
Moudafi [9] proved the following strong convergence theorem:

Theorem 1.2. Let H be a Hilbert space and let C be a closed convex
subset of H . Let T be a nonexpansive mapping of C into itself such that F (T ) is
nonempty and let f be a-contractive of C into itself. Let

(1) xn =
1

1 + εn
Txn +

εn

1 + εn
f(xn),

where {εn} is a sequence in (0, 1) and εn → 0. Then {xn} converges strongly to
the unique solution x̂ ∈ C of the variational inequality

x̂ ∈ F (T ) such that 〈(I − f)x̂, x̂− x〉 ≤ 0, ∀x ∈ F (T ),

i.e., x̂ = PF (T )f(x̂).

Further, in 2004, Xu [20] extended Moudafi’s result in the framework of a
Hilbert space to that in a uniformly smooth Banach space.

In this paper, motivated by Moudafi’s result, we first extend Moudafi’s result
in a Hilbert space to that in a Banach space (Theorem 3.1). Next, we prove a
strong convergence theorem for finding a common fixed point of an infinite family
of nonexpansive mappings. Finally, using Theorem 3.1, we consider the problem of
finding a zero of an accretive operator.

2. PRELIMINARIES AND LEMMAS

We denote by N the set of all natural numbers and by R and R
+ the sets of

all real numbers and all nonnegative real numbers, respectively. A Banach space
E is called uniformly convex if for any two sequences {xn}, {yn} in E such that
‖xn‖ = ‖yn‖ = 1 and limn→∞‖xn + yn‖ = 2, limn→∞‖xn − yn‖ = 0 holds. A
closed convex sebset of C of a Banach space E is said to have normal structure
if for each bounded closed convex subset of K of C which contains at least two
points, there exists an element of K which is not a diametral point of K. It is well
known that a closed convex subset of a uniformly convex Banach space has normal
structure and a compact convex subset of a Banach space has normal structure. The
following result was proved by Kirk [7].



Convergence Theorems by the Viscosity Approximation Method 585

Theorem 2.1. Let E be a reflexive Banach space and let C be a nonempty
bounded closed convex subset of E which has normal structure. Let T be a non-
expansive mapping of C into itself. Then F (T ) is nonempty.

Let E be a Banach space and let E∗ be its dual, that is, the space of all
continuous linear functionals f on E . The duality mapping J from E into 2E∗ is
defined by

J(x) = {f ∈ E∗ : f(x) = ‖x‖2 = ‖f‖2}
for every x ∈ E . The norm of E is said to be Gâteaux differentiable if

(2) lim
t→∞

‖x + ty‖ − ‖x‖
t

exists for each x, y ∈ SE = {x ∈ E : ‖x‖ = 1}. The norm of E said to
be uniformly Gâteaux differentiable if for each y in SE , the limit (2) is attained
uniformly for x ∈ SE . If a Banach space E has a Gâteaux differentiable norm, then
the duality mapping J is single valued. Further, we have

‖x‖2 − ‖y‖2 ≥ 2〈x− y, J(y)〉

for everyx, y ∈ E; see [15]. Let µ be a mean on N, i.e., a continuous linear
functional on l∞ satisfying ‖µ‖ = 1 = µ(1). We know that µ is a mean on N if
and only if

inf
n∈N

an ≤ µ(f) ≤ sup
n∈N

an

for each f = (a1, a2, . . . , ) ∈ l∞. Occasionally, we use µn(an) instead of µ(f).
A Banach limit µ is a mean µ on N satisfying µn(an) = µn(an+1). Let f =
(a1, a2, · · · , ) ∈ l∞ with an → a and let µ be a Banach limit on N. Then,
µ(f) = µn(an) = a; see [15] for more details. Further, we know the following
result [16].

Lemma 2.2. Let C be a nonempty closed convex subset of a Banach space E
with a uniformly Gâteaux differentiable norm, let {xn} be a bounded sequence of
E and let µ be a mean on N. Let z ∈ C. Then

µn‖xn − z‖2 = min
y∈C

µn‖xn − y‖2

if and only if µn〈y − z, J(xn − z)〉 ≤ 0 for all y ∈ C, where J is the duality
mapping of E .

We also know the following lemma [13].
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Lemma 2.3. Let a be a real number and let (a1, a2, · · · ) ∈ l∞ such that
µn(an) ≤ a for all Banach limits µ and lim supn→∞(an+1 − an) ≤ 0. Then,
lim supn→∞ an ≤ a.

Let T1, T2, . . . be infinite mappings of C into itself and let λ1, λ2, . . . be real
numbers such that 0 ≤ λi ≤ 1 for every i ∈ N. Then, for any n ∈ N, Takahashi
[14] (see also [12, 18 and 6]) defined a mapping Wn of C into itself as follows:

Un,n+1 = I,

Un,n = λnTnUn,n+1 + (1− λn)I,

Un,n−1 = λn−1Tn−1Un,n + (1 − λn−1)I,

...

Un,k = λkTkUn,k+1 + (1− λk)I,

Un,k−1 = λk−1Tk−1Un,k + (1 − λk−1)I,

...

Un,2 = λ2T2Un,3 + (1− λ2)I,

Wn = Un,1 = λ1T1Un,2 + (1− λ1)I.

Such a mapping Wn is called the W -mapping generated by Tn, Tn−1, . . . , T1 and
λn, λn−1, . . . , λ1.

Using [12] and [1], we obtain the following two lemmas.

Lemma 2.4. Let C be a nonempty closed convex subset of a Banach space E .
Let T1, T2, . . . be nonexpansive mappings of C into itself such that

⋂∞
i=1 F (Ti) is

nonempty and let λ1, λ2, . . . be real numbers such that 0 < λ1 ≤ 1 and 0 < λi ≤
b < 1 for any i = 2, 3, . . .. Then for every x ∈ C and k ∈ N, the limn→∞ Un,kx
exists.

Using Lemma 2.4, for k ∈ N, we define mappings U∞,k and U of C into itself
as follows:

U∞,kx = lim
n→∞ Un,kx

and
Ux = lim

n→∞ Wnx = lim
n→∞Un,1x

for every x ∈ C. Such a U is called the W -mapping generated by T1, T2, . . . , and
λ1, λ2, . . ..

Lemma 2.5. Let C be a nonempty closed convex subset of a strictly convex
Banach spaceE . Let T1, T2, . . . be nonexpansive mappings of C into itself such that
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⋂∞
i=1 F (Ti) is nonempty and let λ1, λ2, . . . be real numbers such that 0 < λ1 ≤ 1

and 0 < λi ≤ b < 1 for any i = 2, 3, . . .. LetWn(n = 1, 2, . . .) be theW -mappings
of C into itself generated by Tn, Tn−1, . . . , T1 and λn, λn−1, . . . , λ1 and let U be the
W -mapping generated by T1, T2, . . . and λ1, λ2, . . .. Then F (Wn) =

⋂n
i=1 F (Ti)

and F (U) =
⋂∞

i=1 F (Ti).

An operator A ⊂ E × E with domain D(A) = {z ∈ E : Az 
= ∅} and range
R(A) =

⋃{Az : z ∈ D(A)} is said to be accretive if for any xi ∈ D(A) and
yi ∈ Axi, i = 1, 2, there exists j ∈ J(x1 − x2) such that 〈y1 − y2, j〉 ≥ 0. A
mapping B ⊂ E × E is said to be c-strongly accretive if for any xi ∈ D(B) and
yi ∈ Bxi, i = 1, 2, there exists j ∈ J(x1−x2) such that 〈y1−y2, j〉 ≥ c‖x1−x2‖2,
where c > 0. If A is accretive, then we have

‖x1 − x2‖ ≤ ‖x1 − x2 + r(y1 − y2)‖

for all xi ∈ D(A) and yi ∈ Axi, i = 1, 2, and r > 0. An accretive operator A is
said to be m-accretive if R(I + rA) = E for all r > 0. If A is accretive, then we
can define, for any r > 0, a nonexpansive single valued mapping Jr : R(I +rA) →
D(A) by Jr = (I + rA)−1. It is called the resolvent of A. We also define the
Yosida approximation A r by Ar = (I − Jr)/r. We know that Arx ∈ AJrx for all
x ∈ R(I + rA) and ‖Arx‖ ≤ inf{‖y‖ : y ∈ Ax} for all x ∈ D(A) ∩ R(I + rA).
We also know that for an m-accretive operator A, we have A−10 = F (Jr) for all
r > 0. See [15] for more details.

3. STRONG CONVERGENCE THEOREM

We first prove the following strong convergene theorem which generalizes the
Browder’s convergence theorem. Our proof employs the methods of Reich [11],
Takahashi and Kim [17]; see [15].

Theorem 3.1. Let E be a uniformly convex Banach space with a uniformly
Gâteaux differentiable norm. Let C be a closed convex subset of E , and let T

be a nonexpansive mapping of C into itself such that F (T ) 
= ∅. Let f be an
a-contractive mapping of C into itself. For n ∈ N, define S n : C → C by

Snx = (1 − αn)Tx + αnf(x)

for each x ∈ C, where 0 < αn < 1. Then the following hold:

(i) Sn has a unique fixed point un in C;
(ii) if αn → 0, then the sequence {un} converges strongly to u ∈ F (T ).
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Further, for each f ∈ Cont(C), define P with P (f) = limn→∞ un. Then P (f)
solves the variational inequality

(3) 〈(I − f)P (f), J(P (f)− x)〉 ≥ 0 for any x ∈ F (T ).

Proof. (i) Let x, y ∈ C and n ∈ N, we have

‖Snx − Sny‖ ≤ (1 − αn)‖Tx− Ty‖ + αn‖f(x)− f(y)‖
≤ (1 − αn)‖x− y‖+ aαn‖x − y‖
= (1 − αn(1− a))‖x− y‖.

Then, since Sn is a contraction of C into itself, there exists a unique fixed point un

of Sn in C.

(ii) Let z ∈ F (T ). Since

‖un − z‖ = ‖(1− αn)(Tun − z) + αn(f(un) − z)‖
≤ (1− αn)‖un − z‖ + αn‖f(un) − z‖
≤ (1− αn)‖un − z‖ + αn{‖f(un)− f(z)‖+ ‖f(z)− z‖}
≤ (1− αn)‖un − z‖ + aαn‖un − z‖ + αn‖f(z)− z‖,

we have
‖un − z‖ ≤ 1

1− a
‖f(z)− z‖.

Since {un} is bounded, for any subsequence {uni} of {un}, we can define a real
valued function g on C given by

g(z) = µi‖uni − z‖
for any z ∈ C, where µ is a Banach limit. Define the set

M = {v ∈ C : g(v) = inf
z∈C

g(z)}.

Then M is nonempty, bounded, convex and closed; for more details, see [15].
Further, since

‖un − Tun‖ ≤ ‖(1− αn)Tun + αnf(un) − Tun‖
= αn‖Tun − f(un)‖

and Tun and f(un) are bounded, we obtain

(4) lim
n→∞‖un − Tun‖ = 0.
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For any v ∈ M , from (4), we have

µi‖uni − Tv‖ ≤ µi{‖uni − Tuni‖ + ‖Tuni − Tv‖}
≤ µi‖uni − v‖.

This implies that M is T -invariant. Therefore, from Theorem 2.1, we have a fixed
point z0 of T in M . Next, we show that {un} converges strongly to a fixed point
of T . Since z0 is a minimizer of the function g on C, by Lemma 2.2, we have

(5) µi〈z − z0, J(uni − z0)〉 ≤ 0

for all z ∈ C. Putting z = f(z0) in (5), we have

(6) µi〈f(z0)− z0, J(uni − z0)〉 ≤ 0.

Since

‖uni − z0‖2

= 〈uni − z0, J(uni − z0)〉
= (1 − αni)〈Tuni − z0, J(uni − z0)〉+ αni〈f(uni) − z0, J(uni − z0)〉
≤ (1 − αni)‖uni − z0‖2 + αni〈f(uni) − z0, J(uni − z0)〉,

we have ‖uni − z0‖2 ≤ 〈f(uni)− z0, J(uni − z0)〉 and hence

(7) µi‖uni − z0‖2 ≤ µi〈f(uni) − z0, J(uni − z0)〉,

where µ is a Banach limit. From (6) and (7), we have

µi‖uni − z0‖2

≤ µi〈f(uni) − f(z0), J(uni − z0)〉+ µi〈f(z0)− z0, J(uni − z0)〉
≤ µi〈f(uni) − f(z0), J(uni − z0)〉
≤ aµi‖uni − z0‖2.

This implies µi‖uni − z0‖2 = 0. So, we can choose a subsequence {unj} of {uni}
such that {unj} converges strongly to z0. In order to prove {un} converges strongly
to a fixed point of T , we assume that {unk

} → z and {unl
} → ẑ. Then, from

‖z − Tz‖ ≤ ‖z − unk
‖ + ‖unk

− Tz‖
≤ ‖z − unk

‖ + ‖(1 − αnk
)Tunk

+ αnk
f(unk

) − Tz‖
≤ 2‖z − unk

‖ + αnk
‖Tunk

− f(unk
)‖,
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we obtain z = Tz. Similarly, we have ẑ = T ẑ. Since, I−T is accretive, we have for
any w ∈ F (T ), 〈un −Tun, J(un −w)〉 ≥ 0. From un = (1−αn)Tun +αnf(un),
we have

(8) 〈Tun − f(un), J(un − w)〉 ≤ 0.

From (8), we have
〈Tunk

− f(unk
), J(unk

− ẑ)〉 ≤ 0

and
〈Tunl

− f(unl
), J(unl

− z)〉 ≤ 0.

So, we have 〈Tz − f(z), J(z − ẑ)〉 ≤ 0 and 〈T ẑ − f(ẑ), J(ẑ − z)〉 ≤ 0. Since
Tz = z and T ẑ = ẑ, we have

〈z − f(z), J(z − ẑ)〉 ≤ 0

and
〈ẑ − f(ẑ), J(ẑ − z)〉 ≤ 0.

This implies

‖z − ẑ‖2 ≤ 〈f(z)− f(ẑ), J(z − ẑ)〉 ≤ a‖z − ẑ‖2.

So, we obtain z = ẑ. Therefore, {un} converges strongly to a fixed point of T .
Now, we define a mapping P : Cont(C) → F (T ) by P (f) = limn→∞ un. Since
(I − f)un = −1−αn

αn
(I − T )un, we have

〈(I − f)un, J(un − x)〉 = −1−αn
αn

〈(I − T )un, J(un − x)〉
≤ 0

for all x ∈ F (T ). Taking the limit, we obtain

〈(I−f)P (f), J(P (f)−x)〉 ≤ 0.

Further, using the W -mapping, we obtain the following theorem.

Theorem 3.2. Let E be a uniformly convex Banach space with a uniformly
Gâteaux differentiable norm. Let C be a closed convex subset of E , and let {T n} be
a countable family of nonexpansive mappings of C into itself suth that

⋂∞
i=1 F (Ti)

is nonempty. Let f be a-contractive mapping of C into itself. Let b be a real
number with 0 < b < 1 and let λ1, λ2, . . . be real numbers such that 0 < λ1 ≤ 1
and 0 < λi ≤ b < 1 for every i = 2, 3, . . .. Let Wn(n = 1, 2, . . .) be W -mappings



Convergence Theorems by the Viscosity Approximation Method 591

of C into itself generated by Tn, Tn−1, . . . , T1 and λn, λn−1, . . . , λ1. Let U be the
W -mapping generated by T1, T2, . . . and λ1, λ2, . . . , i.e.,

Ux = lim
n→∞ Wnx = lim

n→∞Un,1x

for every x ∈ C. For n ∈ N, define Sn : C → C by

Snx = (1 − 1
n

)Ux +
1
n

f(x)

for each x ∈ C. Then the following hold:

(i) Sn has a unique fixed point un in C;

(ii) the sequence {un} converges strongly to u ∈ F (U). Further, for each f ∈
Cont(C), define P (f) = limn→∞ un.

Then P (f) solves the variational inequality

(9) 〈(I − f)P (f), J(P (f)− x)〉 ≥ 0 for any x ∈ F (U).

Next, using Theorem 3.2, we prove the following strong convergence theorem
for finding a common fixed point of a countable family of nonexpansive mappings.

Theorem 3.3. Let E be a uniformly convex Banach space with a uniformly
Gâteaux differentiable norm . Let C be a closed convex subset of E , and let
{Tn} be a countable family of nonexpansive mappings of C into itself such that⋂∞

i=1 F (Ti) is nonempty. Let f be a-contractive mapping of C into itself. Let b
be a real number with 0 < b < 1 and let λ1, λ2, . . . be real numbers such that
0 < λ1 ≤ 1 and 0 < λi ≤ b < 1 for every i = 2, 3, . . .. Let Wn(n = 1, 2, . . .) be
W -mappings of C into itself generated by T n, Tn−1, . . . , T1 and λn, λn−1, . . . , λ1.
Let U be the W -mapping generated by T1, T2, . . . and λ1, λ2, . . . , i.e.,

Ux = lim
n→∞ Wnx = lim

n→∞Un,1x

for every x ∈ C. Let {xn} be a sequence generated by{
x1 = x ∈ C,

xn+1 = αnf(xn) + (1− αn)Wnxn, n = 1, 2, . . . ,

where {αn} ⊂ [0, 1] satisfies limn→∞ αn = 0,
∑∞

n=1 αn = ∞ and
∑∞

n=1 |αn+1 −
αn| < ∞. Then, {xn} converges strongly to z = PF (U )f(z), where PF (U )is the
sunny nonexpansive retraction of C onto F (U).
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Proof. From Lemma 2.5, we obtain
⋂∞

n=1 F (Tn) =
⋂∞

n=1 F (Wn) = F (U).
For any u ∈ ⋂∞

i=1 F (Ti), we have

‖xn+1 − u‖ ≤ αn‖f(xn)− u‖ + (1 − αn)‖Wnxn − u‖
≤ αn{‖f(xn) − f(u)‖+ ‖f(u) − u‖} + (1 − αn)‖xn − u‖
≤ (1 − αn(1− a))‖xn − u‖ + αn(1− a) 1

1−a‖f(u)− u‖.

If ‖xn − u‖ ≤ 1
1−a‖f(u)− u‖, we obtain

‖xn+1 − u‖ ≤ 1
1 − a

‖f(u)− u‖.

If ‖xn − u‖ ≥ 1
1−a‖f(u)− u‖, we obtain

‖xn+1 − u‖ ≤ ‖xn − u‖.

So, we have {xn} is bounded. We also obtain {Wnxn} and {f(xn)} are bounded.
Next, we show that limn→∞‖xn+1 − xn‖ = 0. We have

‖Wnxn−1 − Wn−1xn−1‖ = ‖Un,1xn−1 − Un−1,1xn−1‖
≤ λ1‖Un,2xn−1 − Un−1,2xn−1‖

...

≤
n∏

i=1

λi‖Tnxn−1 − xn−1‖

≤ K(
n∏

i=1

λi)

where K = 2 supx∈C‖x‖.
So, we have

‖xn+1 − xn‖
= ‖αnf(xn) + (1− αn)Wnxn − (αn−1f(xn−1) + (1 − αn−1)Wn−1xn−1)‖
≤ (1− αn + a · αn)‖xn − xn−1‖ + K|αn − αn−1|

+(1 − αn−1)‖Wnxn−1 − Wn−1xn−1‖

≤ (1− αn + a · αn)‖xn − xn−1‖ + K|αn − αn−1|+ (1− αn−1)K ·
n∏

i=1

λi.
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For all m, n ∈ N, we have

‖xn+m+1 − xn+m‖
≤ (1 − αn+m + a · αn+m)‖xn+m − xn+m−1‖ + K|αn+m − αn+m−1|

+(1 − αn+m−1)K ·
n+m∏
i=1

λi

≤ (1 − (1 − a)αn+m){(1− (1 − a)αn+m−1)‖xn+m−1 − xn+m−2‖

+K|αn+m−1 − αn+m−2| + (1− αn+m−2)K ·
n+m−1∏

i=1

λi}

+K|αn+m − αn+m−1| + (1 − αn+m−1)K ·
n+m∏
i=1

λi

...

≤
n+m−1∏

k=m

(1 − (1 − a)αk+1)‖xm+1 − xm‖

+K
n+m−1∑

k=m

|αk+1 − αk| + K
n+m−1∑

l=m

(
l+1∏
i=1

λi)

≤
n+m−1∏

k=m

(1 − (1 − a)αk+1)‖xm+1 − xm‖

+K
n+m−1∑

k=m

|αk+1 − αk| + K
bm+1(1− bn)

1 − b
.

Therefore, from
∑∞

n=1 αn = ∞, we obtain

lim sup
n→∞

‖xn+1 − xn‖ = lim sup
n→∞

‖xn+m+1 − xn+m‖

≤ K
∞∑

k=m

|αk+1 − αk| + K
bm+1

1 − b

for all m ∈ N. Moreover, since
∑∞

n=1 |αn+1 − αn| < ∞, we have

lim sup
n→∞

‖xn+1 − xn‖ ≤ K lim
m→∞

∞∑
k=m

|αk+1 − αk| + K lim
m→∞

bm+1

1 − b

= 0,
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and hence

(10) lim
n→∞‖xn+1 − xn‖ = 0.

For each k ∈ N, let uk = 1
kf(uk) + (1− 1

k )Uuk. From Theorem 3.2, we know
that uk converges strongly to u = PF (U )f(u) as k → ∞. We obtain, for every
n, k ∈ N,

‖xn+1 − Uxk‖
= ‖αnf(xn) + (1 − αn)Wnxn − Uuk‖
≤ αn‖f(xn) − Uuk‖ + (1− αn){‖Wnxn − Wnuk‖ + ‖Wnuk − Uuk‖}
≤ K · αn + ‖xn − uk‖ + ‖Wnuk − Uuk‖.

Since limn→∞ αn = 0 and limn→∞‖Wnuk −Uuk‖ = 0, for each k ∈ N, we have

(11) µn‖xn − Uuk‖2 = µn‖xn+1 − Uuk‖2 ≤ µn‖xn − uk‖2,

where µ is a Banach limit. On the other hand, from xn − uk = 1
k (xn − f(uk)) +

(1 − 1
k )(xn − Uuk), we also have

(1 − 1
k
)2‖xn − Uuk‖2 ≥ ‖xn − uk‖2 − 2

k
〈xn − f(uk), J(xn − uk)〉

= ‖xn − uk‖2 − 2
k
〈xn − uk + uk − f(uk), J(xn − uk)〉

= (1− 2
k
)‖xn − uk‖2 +

2
k
〈f(uk)− uk, J(xn − uk)〉.

So, from (11), we have

(1− 1
k
)2µn‖xn − uk‖2 ≥ (1− 1

k
)2µn‖xn − Uuk‖2

≥ (1− 2
k
)µn‖xn − uk‖2 +

2
k
µn〈f(uk)−uk, J(xn−uk)〉.

This implies that

(12)
1
2k

µn‖xn − uk‖2 ≥ µn〈f(uk) − uk, J(xn − uk)〉.

Since {uk} converges strongly to u = PF (U )f(u) as k → ∞, from the uniformly
Gâteaux differentiability of the norm of E and (12), we have

0 ≥ µn〈f(u)− u, J(xn − u)〉,
where u = PF (U )f(u). By (10), we have

lim
n→∞ |〈f(u)− u, J(xn+1 − u)〉 − 〈f(u) − u, J(xn − u)〉| = 0
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Hence, from Lemma 2.3, we obtain

(13) lim sup
n→∞

〈f(u)− u, J(xn − u)〉 ≤ 0.

From xn+1 − u = αn(f(xn) − u) + (1 − αn)(Wnxn − u), we have

(1 − αn)2‖Wnxn − u‖2 ≥ ‖xn+1 − u‖2 − 2αn〈f(xn) − u, J(xn+1 − u)〉.
Hence,

‖xn+1 − u‖2 ≤ (1− αn)2‖Wnxn − u‖2 + 2αn〈f(xn) − u, J(xn+1 − u)〉
≤ (1− αn)2‖xn − u‖2 + 2αn〈f(xn)− f(u), J(xn+1 − u)〉

+2αn〈f(u) − u, J(xn+1 − u)〉
≤ (1− αn)2‖xn − u‖2 + 2αna‖xn − u‖‖xn+1 − u‖

+2αn〈f(u) − u, J(xn+1 − u)〉
≤ (1− αn)2‖xn − u‖2 + αna{‖xn − u‖2 + ‖xn+1 − u‖2}

+2αn〈f(u) − u, J(xn+1 − u)〉.
This implies that

‖xn+1 − u‖2

≤ (1− αn)2 + aαn

1− aαn
‖xn − u‖2 +

2αn

1 − aαn
〈f(u)− u, J(xn+1 − u)〉

≤ 1 − 2αn + aαn

1 − aαn
‖xn−u‖2+

α2
n

1 − aαn
M+

2αn

1 − aαn
〈f(u)−u, J(xn+1 − u)〉

≤ (1− 2(1− a)αn

1 − aαn
)‖xn − u‖2

+
2(1− a)αn

1 − aαn
{ αnM

2(1− a)
+

1
1 − a

〈f(u)− u, J(xn+1 − u)〉},

where M = supn‖xn − u‖2. Put βn = 2(1−a)αn

1−aαn
. We obtain

∑∞
n=1 βn = ∞ and

lim
n→∞βn = 0.

Let ε > 0. From (13), there exists m ∈ N such that αnM
2(1−a) ≤ ε

2 and

1
1 − a

〈f(u)− u, J(xn − u)〉 ≤ ε

2

for all n ≥ m. Then we have

‖xm+1 − u‖2 ≤ (1− βm)‖xm − u‖2 + (1− (1− βm))ε.
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Similarly, we have

‖xm+n − u‖2 ≤
m+n−1∏

k=m

(1 − βk)‖xm − u‖2 + (1 −
m+n−1∏

k=m

(1− βk))ε.

We know that
∑∞

k=m βk = ∞ implies
∞∏

k=m

(1 − βk) = 0. Therefore, we have

lim sup
n→∞

‖xn − u‖2 = lim sup
n→∞

‖xm+n − u‖2 ≤ ε.

Since ε > 0 is arbitary, we obtain

lim sup
n→∞

‖xn − u‖2 ≤ 0.

So, we conclude that {xn} converges strongly to u = PF (U )f(u).

4. APPLICATIONS

Let E be a Banach space and let A ⊂ E × E be an m-accretive operator. In
this section, we consider the problem of finding a point v ∈ E such that 0 ∈ Av.
Many researchers have studied the convergence properties of such a problem; see,
for instance, Bruck and Reich [4], Reich [10, 11], Kamimura and Takahashi [5].

On the other hand, there is the viscosity approximation method; for instance,
see Tikhonov in 1963 [19]. This method provide an efficient approach to many
problems of mathematical analysis; see, Attouch [2] and the references mentioned
there. The abstract setting of the viscosity approximation method is as follows: Let
f : E → (−∞,∞] be a real-valued function with some constraints. We consider
the minimization problem

min{f(x); x ∈ E}. · · · (MP)
In order to find a point of solution set of (MP), for ε > 0, we consider the approx-
imate minimization problem

min{f(x) + εg(x); x ∈ E}, · · · (AMP)
where g : E → [0,∞] called the viscosity function. Usually, the function g has
some properties like strict convexity, continuity and coresiveness. Motivated by this
method, we can prove the following theorem:

Theorem 4.1. Let E be a uniformly convex Banach space with a uniformly
Gâteaux differentiable norm. Let A ⊂ E × E be an m-accretive operator and
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let B ⊂ E × E be an m-accretive operator which is c-strongly accretive. Let
JA

r = (I + rA)−1 and let JB
r = (I + rB)−1 for all r > 0. For r > 0, let xr

satisfying

(14) Ar(xr) + rBr(xr) = 0,

where Ar = 1
r (I − JA

r ) and Br = 1
r (I − JB

r ). Then {xr} converges strongly to x̂

as r → 0, where x̂ = JA
r (x̂)

Proof. The viscosity formulation 0 = Ar(xr) + rBr(xr) can be rewritten as

xr =
1

1 + r
JA

r xr +
r

1 + r
JB

r xr.

Since JA
r is a nonexpansive mapping and JB

r is 1
1+rc -contractive, by Theorem 3.1,

we obtain xr → x̂ ∈ F (JA
r ).
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