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ON PERTURBATION OF K-REGULARIZED RESOLVENT FAMILIES

Carlos Lizama and Justino Sánchez

Abstract. In this paper we study additive perturbations of a linear Volterra
integral equation defined in a Banach space X by means of k-regularized
resolvent families. We give also a representation formula for the generator of
such family, under certain conditions on the scalar kernel k(t).

1. INTRODUCTION

Consider the following Volterra equation of convolution type

u(t) =

Z t

0
a(t ¡ s)Au(s)ds+ f(t); t ¸ 0(1.1)

where A is a closed and linear operator defined on a Banach space X.
Let k 2 C(R+) be a scalar kernel. We recall that a family fR(t)gt¸0 µ B(X)

is called a k-regularized resolvent for (1.1) if the following conditions are satisfied

(R1) R(t) is strongly continuous on R+ and R(0) = k(0)I:

(R2) R(t)x 2 D(A) and AR(t)x =R(t)Ax for all x 2 D(A) and t ¸ 0:

(R3) The k-regularized resolvent equation holds

R(t)x= k(t)x+

Z t

0
a(t¡ s)AR(s)xds;

for all x 2 D(A); t ¸ 0:

The notion of k-regularized resolvent has been recently introduced in [7] as well
as some properties investigated (see [8]). In this paper we mainly study additive
perturbations of (1.1), which generalize a theorem of A. Rhandi [11].
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In the first part, under the assumption that jk(t)j is increasing and satisfies the
condition lim sup

t!0+

kR(t)k
jk(t)j <1 we also give a characterization of the domain of the

given operator A in terms of the k-regularized resolvent family. In particular, we
obtain the representation of A as the generator of an ®-times integrated semigroup.

2. THE DOMAIN OF A

Using the resolvent method in order to study (1.1), that is, assuming the existence
of a family of bounded and linear operators fS(t)gt¸0 which satisfy conditions (R1)-
(R3) with k(t) ´ 1, it is natural to ask how to characterize the domain D(A) of the
given operator A in terms of the resolvent family. This is important, for instance,
in order to study the Favard class in perturbation theory (see [4]).

For very special cases the answer to the above question is well known. For
instance, when a(t) = 1 or a(t) = t, A is the generator of a C0-semigroup fT(t)gt¸0

or a cosine family fC(t)gt2R and we have:

D(A) =
n
x 2 X : lim

t!0+

T (t)x¡x
t

exists
o

and
D(A) =

n
x 2X : lim

t!0

C(t)x¡x
t2

exists
o

respectively (see [10]).
Recently, a reasonable formula for the generator of resolvent families has been

established by assuming very mild conditions on the kernel a(t): See [4] Theorem
2.5 and assumption 2.3.

On the other hand, a new type of operator family has been applied to the study
of (1.1). The so called k-regularized resolvent introduced in [7] (see also [5])
generalizes the concept of resolvent family as well as many others. For instance,
integrated semigroups, integrated resolvent families and convoluted semigroups falls
into the framework of a k-regularized resolvent family.

The main objective in this section is to give a characterization for the domain
of the operator A in (1.1) in terms of the k-regularized resolvent fR(t)gt¸0 and the
kernel k(t), in the case where jk(t)j is increasing and limsupt!0+ kR(t)k=jk(t)j <
1. As a remarkable consequence, for k(t) = t®

¡(®+1) and a(t) ´ 1 we obtain the
representation of A as the generator of an ®-times integrated semigroup which is of
the growth of t®.

In what follows, we will consider the following assumption on a 2 L1
loc(R+),

and k 2C(R+).

(Ha) There exists ²a;k > 0 and ta;k > 0 such that for all 0 < t · ta;k¯̄
¯̄
Z t

0
a(t¡ s)k(s)ds

¯̄
¯̄¸ ²a;k

Z t

0
ja(t ¡ s)k(s)jds:
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The following is the main result in this section.

Theorem 2.1. Let A be a closed and densely defined operator on a Banach
spaceX. Suppose (1:1) admits a k-regularized resolvent fR(t)gt¸0 such that jk(t)j
is increasing and satisfies

lim sup
t!0+

kR(t)k
jk(t)j <1:

Then under assumption (Ha) we have

a) D(A) =
n
x 2 X : lim

t!0+

R(t)x¡ k(t)x
(k ¤ a)(t) exists

o

b) lim
t!0+

R(t)x¡ k(t)x
(k ¤ a)(t) =Ax for all x 2 D(A).

Proof. Let z 2 D(A). Then by (R2)-(R3), strong continuity of R(t) and the
fact that jk(t)j is increasing we obtain

°°°°
R(t)z

k(t)
¡ z
°°°°=

1

jk(t)j

°°°°
Z t

0

a(t¡ s)AR(s)zds

°°°°

·
µZ t

0
ja(t ¡ s)jkR(s)k

jk(s)j ds
¶
kAzk:

Hence, kR(t)z
k(t) ¡ zk ! 0 as t ! 0+ for all z 2 D(A). The denseness of D(A)

and limsup
t!0+

kR(t)k
jk(t)j <1 imply that it actually holds for all z 2 X: Thus, for every

z 2 X and ² > 0 there is 0 < t(²; z) <minfta;k; 1g such that

°°°R(t)z

k(t)
¡ z
°°° < ²(2.1)

for all t 2 (0; t(²; z)):
Next, we will prove the assertions (a) and (b).
Define the set eD(A) : = fx 2X : lim

t!0+

R(t)x¡k(t)x
(k¤a)(t) existsg.

Let x 2D(A) be given and define z =Ax. We get in particular from (2.1)
°°°°
R(t)Ax

k(t)
¡Ax

°°°° < ²;(2.2)
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for all t 2 (0; t(²;Ax)). Therefore, using (R3) and (Ha) we have for all ¿ 2
(0; t(²;Ax)):

°°°°
R(¿)x¡ k(¿)x

(k ¤ a)(¿) ¡Ax
°°°°

=
1

j(k ¤ a)(¿)j

°°°°
Z ¿

0
a(¿ ¡ s)AR(s)xds¡

Z ¿

0
a(¿ ¡ s)k(s)Axds

°°°°

=
1

j(k ¤ a)(¿)j

°°°°
Z ¿

0
a(¿ ¡ s)k(s)

hR(s)

k(s)
Ax¡Ax

i
ds

°°°°

· 1

j(k ¤ a)(¿)j
Z ¿

0
ja(¿ ¡ s)k(s)j²ds =

²

²a;k
:

We conclude that x 2 eD(A), that is D(A)µ eD(A) and (b) holds.
On the other hand, let x 2 eD(A) be given. Then

lim
t!0+

R(t)x¡ k(t)x
(k ¤ a)(t) = y

exists and, for given ² > 0 and all t 2 (0; t(²;x)), we have by (2.1) and (Ha)°°°°
1

(k ¤ a)(t)
Z t

0
a(t¡ s)R(s)xds¡ x

°°°°

=
1

j(k ¤ a)(t)j

°°°°
Z t

0
a(t ¡ s)R(s)xds¡

Z t

0
a(t ¡ s)k(s)xds

°°°°

=
1

j(k ¤ a)(t)j

°°°°
Z t

0
a(t ¡ s)k(s)

·
R(s)

k(s)
x¡x

¸
ds

°°°°

· ²

j(k ¤ a)(t)j
Z t

0
ja(t ¡ s)k(s)jds · ²

²a;k
:

This proves that 1
(k¤a)(t)

R t
0 a(t¡ s)R(s)xds ¡! x as t ¡! 0+.

Next, observe that by (R3)
°°°°A
·

1

(k ¤ a)(t)
Z t

0
a(t¡ s)R(s)xds

¸
¡ y
°°°°

=

°°°°
1

(k ¤ a)(t)
Z t

0

a(t¡ s)AR(s)xds¡ y
°°°°

=

°°°°
R(t)x¡ k(t)x

(k ¤ a)(t) ¡ y
°°°° ;

where the right hand side goes to zero as t ¡! 0+. Since A is closed, we obtain
x 2 D(A) and Ax = y. This proves the theorem.

Remarks.
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1. If a(t) = t¯ and k(t) = t®

¡(®+1) ; ® >¡1 then, by making use of the formula

t® ¤ t¯ = ¡(®+1)¡(¯+1)
¡(®+¯+1) t®+¯+1 for ® >¡1 and ¯ >¡1, we obtain

R(t)x¡ k(t)x
(k ¤ a)(t) =

¡(®+¯ +2)

¡(®+ 1)¡(¯ + 1)

·
¡(®+1)R(t)x¡ t®x

t®+¯+1

¸
:

Moreover, note that assumption (Ha) is satisfied with ²a;k = 1.

2. For k(t) = t®

¡(®+1) and a(t) ´ 1, R(t) is an ®-times integrated semigroup
and our assumption is implied by the condition

kR(t)k ·Mt®; t ¸ 0

which is satisfied in a longer number of examples (see [3] Theorem 4.2).

By taking ¯ = 0 or ¯ = 1 in remark 1, we obtain the following results.

Corollary 2.2. Let A be a closed and densely defined operator on a Banach
space X. Assume A is the generator of an ®-times integrated semigroup fT (t)gt¸0

such that kT(t)k ·Mt®. Then

Ax = lim
t!0+

¡(®+2)

¡(®+1)

½
¡(®+1)T (t)x¡ t®x

t®+1

¾
;

for all x 2 D(A).

Corollary 2.3. Let A be a closed and densely defined operator on a Ba-
nach space X. Assume A is the generator of an ®-times integrated cosine family
fC(t)gt¸0 such that kC(t)k ·Mt®. Then

Ax= lim
t!0+

¡(®+ 3)

¡(®+ 1)

½
¡(®+ 1)C(t)x¡ t®x

t®+2

¾
;

for all x 2 D(A).

Remarks.

1. Assertion (b) of Theorem 2.1 was proved for resolvent families in Proposition
2.2(i) of J.-C. Chang and S.-Y. Shaw [1] and for n-times integrated solution
families in Proposition 2.2(c) of H. Liu and S.-Y. Shaw [2].

2. Corollaries 2.2 and 2.3 were proved for the case ® = n ¸ 0 in Lemmas 3.5
and 4.4 of J.-C. Chang and S.-Y. Shaw [2].
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3. PERTURBATION

In order to settle a well formulated theory for k-regularized resolvents, we must
establish three basic results; a generation theorem, an approximation theorem and
a perturbation theorem. The first was given in [7] whereas the second was the
objective in the paper [8]. In this section we will study the perturbation problem.

Let k 2 C(R+) and a 2 L1
loc(R+) be scalar kernels which we will assume to

be Laplace transformable. Our main hypothesis is the following :

(H) There exists b 2L1
loc(R+) such that

bb(¸) =
ba(¸)
bk(¸)

;

for Re¸ sufficiently large.
For example, if 1

k̂( )̧
is locally analytic in C1+ and k(1) 6= 1 then there is a

function c 2 L1(R+) such that 1
k̂(¸)

= k(1)+ ĉ(¸) (see [10] Lemma 10.1). Hence,
if we define b(t) = (a ¤ c)(t) + k(1)a(t) we obtain that (H) is satisfied.

Let A be a closed and densely defined operator on a complex Banach spaceX.
Consider the following Volterra equation

(V E;A;a;k) u(t) = k(t)x+

Z t

0
a(t¡ s)Au(s)ds; t ¸ 0; x 2 D(A):(3.1)

Suppose there exists a k-regularized resolvent family fR(t)gt¸0 for (V E;A;a;k)
of type (M; !), that is, there is constants M ¸ 0 and ! 2 R such that

kR(t)k ·Me!t:

Let B : (D(A);k ¢ kA) ¡! X be a linear operator. Our main objective is to study
conditions in order to guarantee the existence of a k-regularized resolvent family
for the perturbed equation (V E;A+B; a;k):

The following is the main result.

Theorem 3.1. Under hypothesis (H), assume (V E;A;a;k) admits a k-regularized
resolvent family fR(t)gt¸0 of type (M;!) and suppose that there exists constants
¹ > ! and ° 2 [0; 1) such that

Z 1

0
e¡¹r

°°°°B
Z r

0
b(r¡ s)R(s)xds

°°°° dr · °kxk; x 2D(A):(3.2)

Then (V E;A+B;a;k) admits a k-regularized resolvent family fS(t)gt¸0 on
X such that kS(t)k · M

1¡°e
¹t. In addition,

S(t)x=R(t)x+

Z t

0
S(t ¡ r)B

Z r

0
b(r¡ s)R(s)xdsdr; x 2 D(A):(3.3)



On Perturbation of K-Regularized Resolvent Families 223

Proof. The proof follows closely [11], Theorem 1.1.
We define inductively operators Tn(t) 2 B(X)(n = 0; 1;2; : : : ), t ¸ 0, with

the following properties:

(a) t ¡! Tn(t) is strongly continuous.

(b) kTn(t)k · °nMe¹t, t ¸ 0.

Let T0(t) : =R(t) (clearly satisfies (a) and (b)). Assume now that the claim is
true for n. For x 2 D(A) we define

Tn+1(t)x :=

Z t

0
Tn(t ¡ r)B

Z r

0
b(r¡ s)R(s)xdsdr:

Obviously t ¡! Tn+1(t)x is continuous and by (b) and (3.2), we obtain

kTn+1(t)xk=

°°°°
Z t

0
Tn(t ¡ r)B

Z r

0
b(r¡ s)R(s)xdsdr

°°°°

·
Z t

0

kTn(t ¡ r)k
°°°°B
Z r

0

b(r¡ s)R(s)xds

°°°° dr

· °nM

Z t

0
e¹(t¡r)

°°°°B
Z r

0
b(r¡ s)R(s)xds

°°°° dr

= °nMe¹t
Z t

0

e¡¹r
°°°°B
Z r

0

b(r¡ s)R(s)xds

°°°°dr

· °n+1Me¹tkxk:

Since D(A) is dense, Tn+1(t) can be extended uniquely to an operator eTn+1(t)
(also denoted Tn+1(t)) which satisfies (a) and (b).

Let S(t) :=
1P
n=0

Tn(t). We note that S(t) is well defined since

1X

n=0

kTn(t)k ·Me¹t
1X

n=0

°n =
M

1 ¡ ° e
¹t:

Moreover, kS(t)k · M
1¡°e

¹t.
Using (a) and (b) we see that for each x 2 D(A), the map t ¡! S(t)x is
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continuous and

S(t)x=
1X

n=0

Tn(t)x

= T0(t)x+
1X

n=1

Tn(t)x

=R(t)x+

1X

n=0

Tn+1(t)x

=R(t)x+
1X

n=0

µZ t

0
Tn(t¡ r)B

Z r

0
b(r ¡ s)R(s)xdsdr

¶

=R(t)x+

Z t

0

1X

n=0

Tn(t¡ r)B
Z r

0
b(r¡ s)R(s)xdsdr

=R(t)x+

Z t

0
S(t¡ r)B

Z r

0
b(r¡ s)R(s)xdsdr:

In particular S(0)x =R(0)x= k(0)x for all x 2D(A). Since D(A) is dense, we
conclude S(0) = k(0)I .

So, by [7] Proposition 3.1, it remains to show that (¸ ¡ ¸ba(¸)(A +B)) :
D(A) ¡! X is invertible for ¸ > ¹ and

(I¡ ba(¸)(A+B))¡1x=
1

bk(¸)

Z 1

0
e¡¸tS(t)xdt; x 2 X:

For this, let x 2X and define

H(¸)x=

Z 1

0
e¡¸tS(t)xdt and H(¸;A)x=

Z 1

0
e¡¸tR(t)xdt = bk(¸)(I¡ba(¸)A)¡1:

Then we define

Hk(¸)x =
1

¸bk(¸)
H(¸)x and Hk( ;̧A)x =

1

¸bk(¸)
H(¸;A)x:

Note that Hk(¸) is a bounded operator because S(t) is exponentially bounded.
Moreover,

kHk(¸)k=
1

j̧bk(¸)j

°°°°
Z 1

0
e¡ ţS(t)dt

°°°°

· 1

j̧bk(¸)j

Z 1

0

e¡¸tkS(t)kdt

· 1

j̧bk(¸)j
M

1 ¡ °
Z 1

0
e¡(¸¡¹)tdt

=
M

(1 ¡ °)(¸¡¹) j̧bk(¸)j
:
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Now we observe that for x 2 D(A),

Hk(¸)x¡Hk( ;̧ A)x =
1

¸bk(¸)
(H(¸)x¡H(¸;A)x);

and it is easy to see that H(¸)¡H(¸;A) =bb(¸)H(¸)BH(¸;A). Then

Hk(¸)x¡Hk( ;̧ A)x=
bb(¸)
¸bk(¸)

H(¸)BH(¸;A)x

=
H(¸)

¸bk(¸)
bb(¸)BH(¸;A)x

=Hk(¸)bb(¸)BH(¸;A)x:

So, since D(A) is dense on X, one has

Hk(¸)¡Hk( ;̧ A) = Hk(¸)bb(¸)BH(¸;A);

equivalently
Hk(¸)(I ¡bb(¸)BH(¸;A)) = Hk(¸;A):

But H(¸;A) = bR(¸), then for x 2 D(A) we obtain

kbb(¸)BH(¸;A)xk= kB bR(¸)bb(¸)xk

= kB [R ¤ b(r)(¸)xk

=

°°°°B
Z 1

0
e¡ ŗ

Z r

0
b(r¡ s)R(s)xdsdr

°°°°

·
Z 1

0
e¡¹r

°°°°B
Z r

0
b(r¡ s)R(s)xds

°°°°dr

· °kxk; 0 · ° < 1:

Then (I ¡bb(¸)BH( ;̧ A))¡1 exist and is bounded.
So, Hk(¸) = Hk(¸;A)(I¡bb(¸)BH( ;̧ A))¡1 gives us that

(¸¡ ¸ba(¸)(A+B))Hk(¸)

= (¸¡ ¸ba(¸)(A+B))Hk( ;̧ A)(I ¡bb(¸)BH( ;̧ A))¡1

= ((¸¡¸ba(¸)A)Hk(¸;A)¡ ¸ba(¸)BHk(¸;A)) ¢ (I ¡bb(¸)BH(¸;A))¡1

= (I ¡ ¸ba(¸)BHk(¸;A))

Ã
I ¡ ba(¸)bk(¸)

BH(¸;A)

!¡1
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= (I ¡¸ba(¸)BHk(¸;A))

Ã
I¡ ¸ba(¸)BH(¸;A)

¸bk(¸)

!¡1

= I:

This proves that (¸¡¸ba(¸)(A+B)) is invertible and satisfies

(I¡ ba(¸)(A+B))¡1x=
1

bk(¸)

Z 1

0
e¡¸tS(t)xdt; x 2 X:

Corollary 3.2. If B 2 B(X) and there exists b such that b ¤ k = a; then
(V E;A+B;a;k) admits a k-regularized resolvent family on X.
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