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LOWER-BOUND ESTIMATES FOR EIGENVALUE OF THE LAPLACE
OPERATOR ON SURFACES OF REVOLUTION

Chi-Tien Lin

Abstract. In this paper, we estimate eigenvalues of the Laplace operator on
surfaces of revolution. We first reduce our Laplace eigenvalue problems to
the corresponding Sturm-Liouville eigenvalue problems. Two variational in-
equalities are then used to obtain lower-bound estimates for eigenvalues of
the corresponding Sturm-Liouville problems. Based on the relationship be-
tween eigenvalues of the Laplace problems and the Sturm-Liouville problems,
we obtain lower-bound estimates for eigenvalues of the mixed and Neumann
problems of the Laplace operator (Theorem 1 and Theorem 2). Indeed, our
estimate in the first case is optimal.

1. INTRODUCTION AND PRELIMINARY

The classical eigenvalue problems have been studied systematically since 1850’s
which mainly came from the study of accoustic theory and of vibrating elastic
membranes. Pioneer mathematicians are, for example, J.W.S. Rayleigh, R. Courant,
G. Polya, G. Szego, L.E. Payne, M.G. Krein, M. Berger, C. Bandle, J.R. Kuttler,
V.G. Sigillito, S.Y. Cheng and S.T. Yau. The first remarkable eigenvalue estimate
is the lower-bound estimate for the first eigenvalue, ¸1, of the Dirichlet problem
to the Laplace operator, the Faber-Krahn inequality: The circular region has the
smallest ¸1 of all regions with the same area, namely,

¸1 ¸ 2¼

A
j20;

where j0 is the first positive zero of the 0th Bessel function and A is the area. Unlike
upper-bound estimates, lower-bound estimates for an eigenvalue is difficult to obtain.
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For details and a literature review, the reader should consult the monograph of Polya
and Szego [7], the books of Bandle [1] and Chavel [2], the excellent review articles
by Payne [6] and by Kuttler and Sigillito [4], and the reference therein.

In [9], Shen and Shieh studied the first eigenvalue of the Dirichlet problem to
the Laplace operator over spherical bands on the unit sphere. Introducing area of the
spherical band as a new variable, they can reduce the two-dimensional eigenvalue
problem to a one-dimensional Sturm-Liouville eigenvalue problem by method of
separation of variables and prove that the first eigenvalue attains its maximum when
the spherical band is symmetric to the equator. They also prove the monotonicity
of this first eigenvalue when the spherical band moves to the unit sphere, and
generalize this result to the surface of revolution by a smooth strictly increasing
generating function, f(x), on the interval [0;1] with f 0(0) = 0.

Instead of qualitative study, in this paper, we use Shen and Shieh’s methodology
to study lower-bound estimates for eigenvalues of mixed and Neumann problems
to the Laplace operator on surfaces of revolution. At first we reduce the Laplace
eigenvalue problems to the eigenvalue problems of corresponding Sturm-Liouville
operators via the method of separation of variables. By introducing surface area as
a new variable, we obtain a self-adjoint Sturm-Liouville operator. Two Troesch’s
variational inequalities are then used to obtain lower-bound estimates for eigenvalues
of the Sturm-Liouville problems. Based on the correspondence of eigenvalues for
the Laplace problems and the Sturm-Liouville problems, we obtain lower-bound
estimates for eigenvalues of the Laplace problems. Indeed, we obtain lower-bound
estimates for the first eigenvalue of the mixed problems of the Laplace operator
(Theorem 1) and lower-bound estimates for the first positive eigenvalue with odd
multiplicity of the Neumann problem of the Laplace operator (Theorem 2). In the
mixed problem case, the equality is achieved if and only if the surface is a cylinder.
Thus our estimate is an optimal one.

The paper is organized as follows. In the end of this section, we introduce some
basic facts concerning Laplace eigenvalue problems and Sturm-Liouville eigenvalue
problems. In x2, we demonstrate how to reduce the Laplace equation to a cor-
responding Sturm-Liouville equation through separation of variables and changing
variables. We also discuss the relationship between the eigenvalues of the Laplace
operator and eigenvalues of the corresponding Sturm-Liouville operator. In x3, we
apply Troesch’s variational inequalities to get our lower-bound estimates for eigen-
values of mixed and Neumann problems of the Laplace operator. Our estimates are
new and is optimal in some case, which is a different research direction to Shen
and Shieh’s one.

We now turn to a brief introduction to the theory of eigenvalue problems for the
Laplace operator and the Sturm-Liouville operator. The reader should consult [2,
8] for details.
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For a general multi-dimensional Riemannian manifold, the eigenvalue problems
of the Laplace operator is to find an eigenvalue ¸ and an associated nontrivial
eigenfunction ª(x) which satisfies

¢ª + ¸ª = 0(1)

with associated boundary conditions. In general, there are three kinds of homo-
geneous boundary conditions, namely, Dirichlet, Neumann and mixed boundary
conditions.

The ¸-eigenspace,E¸, is the vector space of eigenfunctions corresponding to the
eigenvalue ¸, and the dimension of each ¸-eigenspace is known as the multiplicity
of the eigenvalue ¸. For each one of the above Laplace eigenvalue problem, the set
of eigenvalues consists of an increasing sequence tending to1 and bounded below
by 0. Each eigenspace is of finite dimension. Therefore it will be convenient to list
the eigenvalues as

0 · ¸1 · ¸2 · ¸3 · ¢ ¢ ¢ !1

with each eigenvalue repeated according to its multiplicity. In particular, for the
Dirichlet and mixed eigenvalue problems, 0 < ¸1 < ¸2; while 0 = ¸1 < ¸2 for the
Neumann problems [2].

For the one-dimensional case, let (®;¯) be a finite open interval. The eigenvalue
problem for the Sturm-Liouville operator is to find an eigenvalue ¸ and a nontrivial
eigenfunction f(x) satisfy the equation

d

dx

µ
p(x)

d

dx
f(x)

¶
+ (¸q(x)¡ r(x))f(x) = 0;(2)

with associated boundary conditions. Here p(x); q(x) and r(x) are continuous and
both p(x) and q(x) are positive. In general, three kinds of boundary conditions are
imposed, namely, Dirichlet, Neumann and mixed boundary conditions. Compared
to multi-dimensional cases, results for the Sturm-Liouville eigenvalue problems are
simpler: Each eigenspace is of multiplicity one and the eigenvalues can be listed as
an increasing sequence bounded below and tending to 1,

¸1 < ¸2 < ¸3 < ¢ ¢ ¢ ! 1:

Note that ¸1 is bounded below by 0 if r(x) is non-negative.
We end this section by stating the Rayleigh’s theorem or the minimum princi-

ple which plays an important role in the study for the eigenvalue problems. For
simplicity, we state the form for the Sturm-Liouville eigenvalue problems: The nth
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eigenvalue ¸n can be characterized as

¸n = inf
u(x) 2W(®; ¯)R ¯

® u(x)uk(x)dx= 0;
k = 1; 2; : : : n¡ 1:

R ¯
®

£
p(x)[ ddxu(x)]

2 + r(x)u2(x)
¤
dx

R ¯
®
q(x)u2(x)dx

(3)

where uk(x) is the k-th eigenfunction, W (®; ¯) is an appropriate space depending
on the boundary condition. The above quotient is called the Rayleigh quotient [3].
Note that an upper-bound for ¸1 can be obtained easily by evaluating the Rayleigh
quotient with an arbitrary test function u(x). Consult, for example, [5].

2. REDUCTION TO THE STURM-LIOUVILLE PROBLEM

We now demonstrate the reduction of the Laplace eigenvalue problem to
the Sturm-Liouville eigenvalue problem. The main ingredients are the method of
separation of variables and changing variables.

Let y = f(x) with f(x) > 0; x 2 (®;¯) be a C2 curve and  be the surface of
revolution generated by this curve, with a parameterization

f(x; f(x)cos(µ); f(x)sin(µ)) : x 2 (®;¯); 0 · µ · 2¼g:

Then the Laplace operator on the surface S can be formulated by

¢sª(x; µ) =
1

w(x)f(x)

µ
@

@x

µ
f(x)

w(x)

@

@x

¶
+

@

@µ

µ
w(x)

f(x)

@

@µ

¶¶
ª(x; µ);(4)

where w(x) =
p

1 + (f 0(x))2 [2].
By separation of variables, let ª(x; µ) = u(x)v(µ) and substitute it into the

Laplace eigenvalue problem (1), we obtain

1

w(x)f(x)

d

dx

µ
f(x)

w(x)

d

dx
u(x)

¶
+

µ
¸¡ k2

f(x)2

¶
u(x) = 0 ® < x < ¯;(5)

d2

dx2
v(µ)+ k2v(µ) = 0; 0 < µ < 2¼ and v(0) = v(2¼); v0(0) = v0(2¼):(6)

in which k is a nonnegative integer. Note that for each k, v(µ) is a linear combination
of sin(kµ) and cos(kµ) and equation (5) is of Sturm-Liouville type.

Introduce the surface area as a new variable, [9],

y(x) = 2¼

Z x

®
w(t)f(t)dt;(7)
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and define

h(y) = u(x(y)); g(y) = f(x(y)); z(y) = 4¼2g(y)2:

Then (5) becomes a self-adjoint Sturm-Liouville equation

d

dy

µ
z(y)

d

dy
h(y)

¶
+

µ
¸¡ k2

g(y)2

¶
h(y) = 0:(8)

Remark 1. The function z(y) preserves several geometric properties of the
generating function f(x). For example, if f(x) is decreasing z(y) is also decreasing;
if f(x) is concave, so is z(y). These properties are important for our lower-bound
estimates for eigenvalues.

When a boundary condition is imposed on the Laplace eigenvalue problem (1),
there is a corresponding boundary condition to the Sturm-Liouville equation (8). For
example, the corresponding boundary conditions of the Sturm-Liouville equation (8)
to the mixed boundary condition

ª(®; µ) = 0 =
@

@º
ª(¯;µ) µ 2 R(9)

and the Neumann boundary condition

@

@º
ª(®; µ) = 0 =

@

@º
ª(¯;µ) µ 2 R(10)

of the Laplace eigenvalue problem (1) are h(0) = 0 = h
0
(A): and h0(0) = 0 =

h
0
(A) respectively. Here @

@º denotes the outer normal derivative.
Before we discuss the relationship between eigenvalues of the Laplace operator

(1) and the eigenvalues of the corresponding Sturm-Liouville operator (8), let us
consider a simple example. Let S be the cylinder generated by f(x) = c; x 2 (®; ¯),
and ¸n be the nth eigenvalue of the Laplace operator (1) with the Neumann boundary
conditions (10). Then the corresponding Sturm-Liouville eigenvalue problem is

(
4¼2c2h

00
(x) + (¸¡ k2

c2 )h(x) = 0;

h
0
(0) = 0 = h

0
(A);

(11)

where ° = ¯ ¡ ® and A = 2¼c° is the surface area of the cylinder. For each k,
let ºkn be the nth eigenvalue of the above eigenvalue problem (11). Then ºkn =
k2

c2 + (n¡1)2¼2

°2 with eigenspace spanned by cos((n¡1)¼
A x). By completeness, each

eigenvalue for the Laplace eigenvalue problem, ¸m, corresponds to one eigenvalue
of the Sturm-Liouville eigenvalue problem, ºkn for some n and k. Thanks to the
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monotonicity of eigenvalues for Sturm-Liouville eigenvalue problems, it is not hard
to see that ¸1 = 0 = º0

1 . For ¸2 , it could be º0
2 = (¼° )2 or º1

1 = (1
c)

2. If
¸2 = º0

2 <= º1
1 , then the multiplicity of ¸2 is 1 or 3. Otherwise it is of multiplicity

2 with the eigenspace generated by cos( ¼Ax) cos µ and cos( ¼Ax) sin µ:

By a similar argument, we can conclude

Lemma 1. The first eigenvalue of the Laplace eigenvalue problem (1) with
Dirichlet’s or mixed boundary condition is exactly the first eigenvalue of the Sturm-
Liouville eigenvalue problem (8) with k = 0 and the corresponding boundary
condition.

The first positive eigenvalue with odd multiplicity for the Laplace eigenvalue
problem (1) with the Neumann boundary condition (10) is the first positive eigen-
value º0

2 of the corresponding Sturm-Liouville eigenvalue problem (8) with k = 0

and the Neumann boundary condition.

We now turn to investigate on lower-bound estimates for eigenvalues of the
Laplace eigenvalue problems (1).

3. LOWER-BOUND ESTIMATES FOR EIGENVALUES

In this section, we derive our main theorems concerning the lower-bound esti-
mates for eigenvalues of Laplace eigenvalue problems (1). According to Lemma
1, all we need to do is to obtain a lower-bound estimate of the corresponding
Sturm-Liouville eigenvalue problems (8). These estimates can be obtained through
variational inequalities. In this paper, two inequalities due to Troesch [10] are used
to obtain lower-bound estimates for eigenvalues of Laplace eigenvalue problems
(1) with mixed and Neumann boundary conditions. For completeness, we state
Troesch’s inequalities below.

Lemma 2. Let g(x) be a continuous; piecewise smooth function on [0;1] and
h(x) be a positive; concave function with piecewise smooth derivative hx(x). In
addition; if we assume that g(0) = 0 and hx(0)· 0; then the inequality

R 1
0 h(x)(gx(x))2dxR 1

0 h(x)dx
R 1
0 g(x)

2dx
¸ ¼2

4
;

holds. Moreover, the equality holds if and only if h(x) is a constant and g(x) =
cont: sin( ¼x2 ).

Lemma 3. Let g(x) be a continuous, piecewise smooth function on [0;1] and
h(x) be a positive; concave function with piecewise smooth derivative hx(x). In
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addition, if we assume that
R 1
0 g(x)dx= 0 then the inequality

R 1
0 h(x)(gx(x))2dxR 1

0 h(x)dx
R 1
0 g(x)2dx

¸ j21
2

holds; where j1 ¼ 3:832 is the first positive zero of the first-order Bessel function
J1(x). Moreover, the equality holds if and only if h(x) = x and g(x) = J0(j1

p
x);

or h(x) = 1¡ x and g(x) = J0(j1
p

1 ¡ x).

Let f(x) be a positive, concave and non-increasing function on (®;¯) and ¸1 be
the first eigenvalue of the Laplace eigenvalue problems (1) with the mixed boundary
condition (9) on the surface of revolution S generated by f(x). Let h(y) be an
eigenfunction of the first eigenvalue of the corresponding Sturm-Liouville eigenvalue
problem (8) with the corresponding mixed boundary condition. By Lemma 2, we
have the following lower-bound estimate:

¸1=

RA
0
z(y)(h

0
(y))2dy

RA
0 h(y)2dy

¸ 1

4
¼2A¡3

Z A

0

z(y)dy

=
1

4
¼2A¡3

Z ¯

®
(2¼f(x))2(2¼)w(x)f(x)dx

= 2¼5A¡3

Z ¯

®
f(x)3

q
1 + (f 0(x))2dx;

where A is the area of the band region . Note that the equality holds if and only
if z(y) is constant, say °2 with ° > 0, and h(y) = sin( ¼y2A) i.e., the generating
function f(x) = °

2¼ and u(x) = sin(
¼(x¡®)
2(¯¡®)). In that case, the surface is a cylinder.

In other words, the optimality, ¼2

4(¯¡®)2
, is achieved if and only if  is a cylinder.

Ttheorem 1. Let f(x) be a positive; concave and non-increasing function on
(®;¯) and ¸1 be the eigenvalue of the Laplace eigenvalue problems (1) with the
mixed boundary condition (7) on the surface of revolution S generated by f(x)
with surface area A. Then

¸1 ¸ 2¼5A¡3

Z ¯

®
f(x)3

q
1 + (f 0(x))2dx(12)

Moreover; equality holds if and only if S is a cylinder. In that case; ¸1 = ¼2

4(¯¡®)2
.
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If we drop the assumption on non-increasing of the generating function f(x) and
let ¸ be the first positive eigenvalue with odd multiplicity of the Laplace eigenvalue
problems (1) with the Neumann boundary condition (10) on the surface S, then by
Lemma 1 and Troesch’s second inequality (Lemma 3), we get a lower-bound for
the eigenvalue ¸.

¸=
1

2
j21A

¡3

Z A

0
z(y)dy

= 4¼3j21A
¡3

Z ¯

®
f(x)3

q
1 + (f 0(x))2 dx

We state this result as our second theorems:

Theorem 2. Let f(x) be positive and concave and ¸ be the first positive
eigenvalue with odd multiplicity of the Laplace eigenvalue problems (1) with the
Neumann boundary condition (10) on the surface S with surface area A. Then

¸ > 4¼3j21A
¡3

Z ¯

®
f(x)3

q
1 + (f

0
(x))2dx(13)

where j1 ¼ 3:832 is the first positive zero of the first-order Bessel function J1(x).

We end this paper by a final remark on optimal case in Theorem 2.

Remark 2. The optimality of (13) in the Theorem 2 is not achievable. An coun-
terexample is: For the cylinder generated by f(x) = °; the first positive eigenvalue
with odd multiplicity of the Laplace eigenvalue problems (1) with the Neumann
boundary condition (10) is ¸ = (¼° )

2 which is larger than 1
2(

j1
° )2, the lower-bound

obtained in theorem 2. Indeed, in Troesch’s Lemma 3, the optimality was ob-
tained by z(y) = ay and h(y) = bJ0(j1

p
y) which contradicts to the positivity of

z(y) = f(x(y)). Actually, one can easily check that, h(y) = J0(j1
p
y) does sat-

isfy the Sturm-Liouville equation (8) with ¸ =
j21
2 but fails to satisfy the boundary

condition h0(0) = 0.
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