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NUMERICAL RANGE AND PONCELET PROPERTY

Hwa-Long Gau¤ and Pei Yuan Wu¤

Abstract. In this survey article, we give an expository account of the recent
developments on the Poncelet property for numerical ranges of the compres-
sions of the shift S(Á). It can be considered as an updated and more advanced
edition of the recent expository article published in the American Mathematical
Monthly by the second author on this topic. The new information includes:
(1) a simplified approach to the main results (generalizations of Poncelet,
Brianchon–Ceva and Lucas–Siebeck theorems) in this area, (2) the recent dis-
covery of Mirman refuting a previous conjecture on the coincidence of Poncelet
curves and boundaries of the numerical ranges of finite-dimensional S(Á), and
(3) some partial generalizations by the present authors of the above-mentioned
results from the unitary-dilation context to the normal-dilation one and also
from the finite-dimensional S(Á) to the infinite-dimensional.

1. INTRODUCTION

In recent years, the research on the numerical ranges of finite matrices and
bounded operators has been very active, thanks to the biennially convened WONRA
(Workshop on Numerical Ranges and Numerical Radii). (For more information on
this, check the webpage http://www.resnet.wm.edu/»cklixx/wonra02.html.) One
area of investigations concerns the numerical ranges of the finite-dimensional com-
pressions of the shift. It was discovered that the boundaries of their numerical
ranges possess the Poncelet property, meaning that there exist infinitely many poly-
gons with the property that each has all its vertices on the unit circle and all its sides
tangent to the asserted boundary. This yields an unexpected link between the 20th
century subject of numerical range and some 19th century gems of projective geom-
etry. An expository account of this development was given in [36], which explains
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the pertinent results in a historical context. The purpose of this survey is to update
this previous account by providing a simplified approach and expounding the recent
discoveries. Chief among the latter is the one by Mirman that not every algebraic
convex curve in the open unit disc which has the Poncelet property arises as the
boundary of the numerical range of the asserted operator, thus refuting a previous
conjecture on identifying such numerical ranges by the Poncelet property. We will
also elaborate on our recent attempts in generalizing the main results in this area
to more general contexts such as general convex polygons instead of polygons with
vertices on the unit circle and general compressions of the shift instead of mere the
finite-dimensional ones.

In Section 2 below, we start with a brief review of the definition and basic
properties of numerical ranges of operators on a Hilbert space. We also discuss
the notion of dilation and its connection with numerical ranges. Section 3 then
treats numerical ranges of finite matrices. Here the extra tool of the Kippenhahn
curve proves very useful. It involves the point-line duality of the projective plane.
Section 4 considers the compressions of the shift, whose numerical ranges will be
the main focus of this paper. Several different representations of such operators, one
analytic and two matricial, are presented, each of which has its merit in exposing
certain properties of their numerical ranges. Section 5 gives the main results on the
Poncelet property for the numerical ranges of the compressions of the shift on finite-
dimensional spaces. There are three of them: generalizations of the Poncelet porism
(on the existence of infinitely many interscribing polygons between two ellipses),
Brianchon–Ceva theorem (on the condition for the tangent points of an inscribing
ellipse of a triangle), and Lucas–Siebeck theorem (on the relation between zeros of
a polynomial and its derivative). We then move on to the partial generalizations of
these results in Section 6.

2. NUMERICAL RANGE

Let A be a (bounded linear) operator on a complex Hilbert space H. The
numerical range of A is the set W (A) ´ fhAx;xi : x 2 H;kxk = 1g in the
complex plane, where h¢; ¢i denotes the inner product in H. In other words, W (A)
is the image of the unit sphere fx 2 H : kxk = 1g of H under the (bounded)
quadratic form x 7! hAx; xi. Some properties of the numerical range follow easily
from the definition. For one thing, the numerical range is unchanged under the
unitary equivalence of operators: W (A) = W(U ¤AU) for any unitary U . It also
behaves nicely under the operation of taking the adjoint of an operator: W (A¤) =
fz : z 2 W (A)g. More generally, this is even the case when taking the affine
transformation: if

f(x+ iy) = (a1x+ b1y + c1) + i(a2x+ b2y + c2)



Numerical Range and Poncelet Property 175

is an affine transformation of the complex plane C, where x; y and aj ; bj and
cj ; j = 1; 2, are all real and the latter satisfy a1b2 6= a2b1, and if we define f(A)
to be

(a1Re A+ b1Im A+ c1I) + i(a2Re A+ b2Im A+ c2I);

where Re A = (A+A¤)=2 and Im A = (A¡A¤)=(2i) are the real and imaginary
parts of A, respectively, then W (f(A)) = f(W(A))´ ff(z) : z 2W (A)g. Thus
the numerical range can be considered as an affine property of the operator. In the
study of numerical ranges, the reduction through affine transformations is a handy
tool in many situations.

The most important property of the numerical range is that W (A) is always
convex. This is the celebrated Toeplitz–Hausdorff Theorem from 1918–19 [32, 16].
Over the years, there are numerous proofs and generalizations of this fact. The
usual proof is to first reduce it to the case of 2-by-2 matrices (since the definition of
convexity involves only two points at a time) and show that the numerical range of
the latter is a closed elliptic disc or one of its degenerate forms (circular disc, line
segment or a single point). Indeed, if A =

h
a b
0 c

i
, then W (A) is the elliptic disc

with foci a and c and minor axis of length jbj. An easy proof of this is to reduce
A to

h
0 1
0 0

i
via some affine transformation and check directly that the latter has

numerical range fz 2C : jzj · 1=2g (cf. [20]).
The numerical range is a bounded set, but it is not closed in general. For

example, if S is the (simple) unilateral shift on l2:

S(x0;x1; : : : ) = (0;x0;x1; : : : );

then W (S) equals the open unit disc D = fz 2 C : jzj < 1g. However, if the
operator A acts on a finite-dimensional space, then W (A) is obviously closed and
hence compact. For an arbitrary operator A, the closure of its numerical range
W(A) always contains the spectrum ¾(A). Hence the numerical range gives a
rough estimate of the location of the spectrum. This is one of the reasons to study
the numerical range and provides its main applications. If A is normal, then W (A)
equals ¾(A)^, the convex hull of ¾(A). Thus, in particular, if A is a normal (finite)
matrix, then its numerical range is a closed polygonal region whose vertices are
some of the eigenvalues of A.

A natural question in the study of numerical ranges is to determine which non-
empty bounded convex set is the numerical range of some operator on a separable
Hilbert space. (Note that if nonseparable Hilbert spaces are allowed, then every
such set is the numerical range of some normal operator; compare [27].) Even more
intricate is to determine, for each positive integer n, the numerical ranges of opera-
tors on an n-dimensional space. Although many necessary/sufficient conditions are
known, a complete characterization is beyond reach at this moment. One condition
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on the boundary of the numerical range is worth noting. If 4 is a closed convex
subset of the plane, then every nondifferentiable point of the boundary @4 of 4 has
two distinct supporting lines of4 with angle less then ¼ such that the closed section
formed by them contains 4. Such a point is called a corner of 4. According to
this definition, the endpoints of a line segment are corners. A result of Donoghue
[8, Theorem 1] says that a corner ¸ of W (A) which also belongs to W (A) is a
reducing eigenvalue of A. The latter means that there is a nonzero vector x such
that Ax = ¸x and A¤x = ¸x. The proof of this makes use of the geometric fact
that an elliptic disc which contains ¸ and is contained in W (A) must be reduced to
a line segment. It follows that if A is an n-dimensional operator, then W(A) can
have at most n corners. This gives a certain constraint on the shape of the numerical
range of a finite-dimensional operator. Using the condition for the equality case of
the Cauchy–Schwarz inequality, we may prove the analogous result that any point
¸ in W (A) satisfying j j̧ = kAk is a reducing eigenvalue of A.

Associated with the numerical rangeW (A) is the quantity w(A), the numerical
radius of A, defined by supfjzj : z 2W (A)g. For example, if S is the unilateral
shift, then w(S) = 1, and if A is normal, then w(A) = supfjzj : z 2 ¾(A)g.

We say that the operator A on space H dilates to B on K or B compresses to A
if there is an isometry V from H to K such that A = V ¤BV . It is easily seen that
this is equivalent to B being unitarily equivalent to a 2-by-2 operator matrix of the
form

h
A ¤
¤ ¤

i
. The notion of dilation and compression is closely related to that of

numerical range. For one thing, the numerical range itself can be described in terms
of dilation. Namely, for any operator A, the numerical range ofA is the same as the
set of complex numbers ¸ for which the 1-by-1 matrix [¸] dilates to A. On the other
hand, if A is an operator which dilates to B, then W(A) is contained in W(B).
Hence a judicious choice of a nicely behaved B can yield useful information on
the numerical range of A. One type of dilation which will be fully exploited in our
derivations in Sections 5 and 6 is the unitary dilation of contractions. The classical
result in this respect is Halmos’s dilation: every contraction A (kAk · 1) can be
dilated to the unitary operator

·
A (I ¡AA¤)1=2

(I ¡A¤A)1=2 ¡A¤
¸

(cf. [15, Problem 222 (a)]). With more care, the unitary dilation can be achieved
in a most economical way: if A is a contraction on H, then A can be dilated to
a unitary operator U from H ©K1 to H © K2 with K1 and K2 of dimensions
dA¤ ´ dim ran (I ¡AA¤)1=2 and dA ´ dim ran (I ¡A¤A)1=2 , respectively, and,
moreover, in this case dA¤ and dA are the smallest dimensions of such spaces K1

and K2. Here dA and dA¤ are called the defect indices of the contraction A. They
provide a measure on how far A deviates from the unitary operators and play a
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prominent role in the unitary dilation theory.
Properties of numerical ranges of operators are discussed in [15, Chapter 22];

those for finite matrices are in [17, Chapter 1]. The two classic monographs [4]
and [5] treat the numerical ranges of elements of normed algebras; the more recent
[14] emphasizes applications to numerical analysis.

3. NUMERICAL RANGE OF FINITE MATRIX

For the study of numerical ranges of finite matrices, the matrix-theoretic proper-
ties can be exploited to yield special tools which are not available for general oper-
ators. One such tool is the characteristic polynomial of the pencil xRe A+ yIm A
associated with any matrix A. This can be utilized in two different ways to
yield W (A) or its boundary. One is via Kippenhahn’s result that the numerical
range of A coincides with the convex hull of the real points of the dual curve of
det (xRe A + yIm A + zI) = 0. In this way, the classical algebraic curve theory
can be brought to bear on the study here. On the other hand, a parametric repre-
sentation of the boundary @W (A) can also be obtained from the largest eigenvalue
of cosµRe A+ sinµ Im A yielding useful information on W(A). Here we give a
brief account of both approaches.

Let CP2 be the complex projective plane consisting of all equivalence classes
[x;y;z] of ordered triples of complex numbers x;y and zwhich are not all zero. Two
such triples [x;y;z] and [x0; y0; z 0] are equivalent if x = ¸x0; y = ¸y0 and z = ¸z0

for some nonzero ¸. The point [x;y;z] (z 6= 0) in homogeneous coordinates can
be identified with (x=z;y=z) in nonhomogeneous coordinates. On the other hand,
the point (u;v) becomes [u; v; 1] in homogeneous coordinates. In this way, C2 is
embedded in CP2 . If p(x; y; z) is a homogeneous polynomial of degree d in x;y
and z, then the set of points [x; y;z] in CP2 satisfying the equation p(x;y;z) = 0

is an algebraic curve of order d. If C is such a curve, then its dual C¤ is defined
by

C¤ = f[u;v;w] 2 CP2 : ux+ vy+ wz = 0 is a tangent line of Cg:

In this case, C¤ is also an algebraic curve of order at most d(d¡ 1) and d is called
the class of C¤. It is known that the dual of C¤ is C itself. The point [x0; y0; z0]
is a focus of C if it is not equal to [1;§i; 0] and the lines through [x0; y0; z0] and
[1;§i;0] are tangent to C at points other than [1;§i; 0]. In general, if a curve is of
class d and is defined by an equation with real coefficients, then it has d real foci
and d2¡ d complex ones, counting multiplicity.

For an n-by-n matrix A, let

pA(x; y;z) = det (xRe A+ yIm A+ zIn)
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and let C(A) denote the dual curve of pA(x;y;z) = 0. Since pA is a real homo-
geneous polynomial of degree n, the curve C(A) is given by a real polynomial of
degree at most n(n¡ 1), is of class n, and has n real foci [aj ; bj ;1]; j = 1; : : : ; n,
which correspond exactly to the n eigenvalues aj + ibj of A. The connection of
C(A) with the numerical range W (A) is provided by a result of Kippenhahn [19]:
W (A) is the convex hull of the real points of the curve C(A), namely, W (A) is
the convex hull of the set fa + ib 2 C : a;b 2 R, ax+ by + z = 0 is tangent
to pA(x; y; z) = 0g. Kippenhahn’s result can be easily verified by noting that
x = max ¾(Re (e¡iµA)) is a supporting line of W (Re (e¡iµA)) for any real µ.
Since it can be shown that @W (A) contains only finitely many line segments, the
above result implies that @W(A) is piecewise algebraic, that is, it is the union of
finitely many algebraic curves.

There is another way to make the above to be more revealing. For any nonempty
compact convex subset 4 of the plane, there is a natural parametrization of its
boundary @4. For any µ;0 · µ · 2¼, let Lµ be the ray from the origin which
has inclination µ from the positive x-axis, and let Mµ be the supporting line of 4
which is perpendicular to Lµ. If d(µ) is the signed distance from the origin to Mµ,
then @4 can be “parametrized” by ®(µ) = (x(µ); y(µ)), where

x(µ) = d(µ) cosµ ¡ d0(µ) sin µ;

y(µ) = d(µ) sinµ + d0(µ) cosµ:

It can be shown that d(µ) is differentiable for almost all µ and is equal to maxfRe (e¡iµz) :
z 2 4g. In particular, if 4 = W(A) for some operator A, then

d(µ)= max ¾(Re (e¡iµA))

= max ¾(cosµRe A +sinµ Im A)

for all µ. This shows that, for a finite matrixA, the degree-n polynomial pA(cosµ; sinµ;z)
in z has ¡d(µ) as a zero. As an example, if A is the 3-by-3 matrix diag (1; i; 0),
then

d(µ) =

8
>><
>>:

cosµ if 0 · µ · ¼
4 or 3

2¼ · µ · 2¼;

sin µ if ¼
4 · µ · ¼;

0 if ¼ · µ · 3
2¼;

and the natural parametrization of @W (A) (= the triangle with vertices 1; i and 0)
is given by

®(µ) =

8
>><
>>:

1 if 0 < µ < ¼
4 or 3

2¼ < µ < 2¼;

i if ¼
4 < µ < ¼;

0 if ¼ < µ < 3
2¼:
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In particular, this shows that the natural parametrization is not a parametrization
in the usual sense: it does not traverse the line segments on the boundary, but the
convex hull of its image equals @4.

4. COMPRESSION OF THE SHIFT

Compressions of the shift are a class of operators studied intensively in the
1960s and ’70s. Playing a role analogous to the companion matrices in the rational
form for finite matrices, they are the building blocks in the “Jordan form” (under
quasisimilarity) for the class of C0 contractions. The whole theory is subsumed
under the dilation theory for contractions on Hilbert spaces developed by Sz.-Nagy
and Foiaş. The standard reference is the monograph [31]; a more complete account
of the theory of C0 contractions is given in [3].

We start by noting that the unilateral shift S has another representation as
(Sf)(z) = zf(z) for f in H2, the Hardy space of square-summable analytic
functions on D. This analytic model of S facilitates a complete description of
its invariant subspaces. Indeed, according to the celebrated theorem of Beurling
(1949), all nonzero invariant subspaces of S are of the form ÁH2 for some inner
function Á (Á is inner if it is bounded and analytic on D with jÁ(eiµ)j = 1 for almost
all real µ). The compression of the shift S(Á) is the operator on H(Á) ´H2ªÁH2

defined by
S(Á)f = P (zf(z));

where P denotes the (orthogonal) projection fromH2 onto H(Á). Thus S(Á) is the
operator in the lower-right corner of the 2-by-2 operator matrix representation of

S =

· ¤ ¤
0 S(Á)

¸
on H2 = ÁH2©H(Á):

This class of operators was first studied by Sarason [30] and has been under intensive
investigation over the past 35 years. In particular, it is known that kS(Á)k = 1;S(Á)
is cyclic (there is a vector f (= 1 ¡ Á(0)Á) in H(Á) such that

WfS(Á)nf : n ¸
0g = H(Á)), and its commutant fS(Á)g0 (´ fX on H(Á) : XS(Á) = S(Á)Xg)
and double commutant fS(Á)g00 (´ fY on H(Á) : YX = XY for every X in
fS(Á)g0g) are both equal to ff(S(Á)) : f 2 H1g. The inner function Á is the
minimal function of S(Á) in a sense similar to the minimal polynomial of a finite
matrix, that is, it is such that (a) Á(S(Á)) = 0, and (b) Á is a factor of any function
f in H1 for which f(S(Á)) = 0. An operator A is (unitarily equivalent to) a
compression of the shift if and only if it is a contraction, both An and A¤n converge
to 0 in the strong operator topology, and the defect indices dA and dA¤ are both
equal to one. It follows from these conditions that the compression of the shift is
irreducible, that is, it can have no nontrivial reducing subspace.
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For finite matrices, the characterization of compressions of the shift is even
easier: A is such an operator if and only if it is a contraction, it has no eigenvalue
of modulus one and dA = 1. In this case, A is unitarily equivalent to S(Á) with Á
the finite Blaschke product

Á(z) =
nY

j=1

z ¡ aj
1¡ ajz ;

where aj’s are the eigenvalues of A in D. We let Sn denote the class of such
matrices. An example in Sn is Jn, the n-by-n nilpotent Jordan block

2
66664

0 1
¢ ¢
¢ ¢
¢ 1

0

3
77775

with the corresponding inner function Á(z) = zn. By the results in Section 2,
matrices in Sn admit unitary dilations on an (n+ 1)-dimensional space. For this
reason, Sn-matrices are called matrices admitting unitary bordering or UB-matrices
by Mirman (cf. [22, 23, 24]). Since S(Á) is defined by its minimal function Á,
we infer that for any n points a1; : : : ; an in D (not necessarily distinct) there is a
matrix in Sn, unique up to unitary equivalence, with the aj’s as its eigenvalues. A
more specific description of a matrix in Sn with eigenvalues the aj’s is given by
[aij ]

n
i;j=1 , where

aij =

8
>><
>>:

aj if i = j;

[
Qj¡1
k=i+1(¡ak)](1 ¡jaij2)1=2(1¡ jajj2)1=2 if i < j;

0 if i > j:

(1)

This matricial representation was first discovered by Young [37, p. 235] (cf. also
[29, p. 201], [22, Theorem 4] and [11, Corollary 1.3]). In particular, it follows that
S2 consists of 2-by-2 matrices which are unitarily equivalent to a matrix of the form

"
a (1 ¡jaj2)1=2(1 ¡jbj2)1=2

0 b

#

with a and b in D. There is another representation for matrices in Sn which is
useful for our discussions in Section 5. If A is in Sn, then it has the singular-value
decomposition A = UDW , where U and W are unitary and D is a diagonal matrix



Numerical Range and Poncelet Property 181

diag (1; : : : ; 1; a) with 0 · a < 1. The equality WAW ¤ = (WU )D shows that A
is unitarily equivalent to (WU )D, a matrix of the form

[f1 : : : fn](2)

whose columns fj satisfy kfjk = 1 for 1 · j · n¡ 1; kfnk < 1 and fj ? fk for
1 · j 6= k · n. Conversely, a matrix of the above form with no eigenvalue of
modulus one is in Sn.

From the information we have so far on the compressions of the shift, we can
already deduce certain properties of their numerical ranges. Let A be a matrix in Sn.
Then W (A) must be contained in the open unit disc D. This is because if ¸ in W (A)
is such that j j̧ = 1 (= kAk), then it will be a reducing eigenvalue of A, which
contradicts the irreducibility of A. On the other hand, by Donoghue’s result and the
irreducibility of A, we may deduce that the boundary of W (A) is a differentiable
curve. In the subsequent sections, we will discuss other finer properties of W (A).

5. PONCELET PROPERTY

The recent establishment of a link between the numerical ranges of matrices
in Sn and some classical geometric results from the 19th century was achieved by
Mirman [22, 24, 23, 25] and the present authors [9, 10, 11, 12]. Here we give a
brief account of this development.

Our first result has to do with a geometric theorem of Poncelet. In his treatise
of 1822 [28], there is contained the following result, called Poncelet’s porism or
Poncelet’s closure theorem: if C and D are ellipses in the plane with C inside
D, and if there is one n-gon circumscribed about C and inscribed in D, that is,
the n-gon has n sides all tangent to C and n vertices on D, then for any point
¸ on D there is one such circumscribing-inscribing n-gon with ¸ as a vertex.
This is a porism because the assertion says that some property (the existence of a
circumscribing-inscribing n-gon) either fails or, if it holds for one instance, succeeds
infinitely many times. It is a closure theorem since, from any point ¸ on D, we
draw a tangent line to C, which intersects D at another point, then repeat this
process by drawing tangent lines from successive points obtained in this fashion,
and obtain the resulting closed n-gon when the nth tangent line reaches back to

.̧ Viewed dynamically, this gives a configuration of rotating n-gons with different
shapes but all sharing this circumscribing-inscribing property. Since the appearance
of this result, a huge literature has been developed to the explanation, exposition
and generalization of it. A comprehensive survey of this topic can be found in [6].
In the above situation, we may normalize the outer ellipse D as the unit circle @D
via some affine transformation and the inner ellipse C is transformed into one in D
with the n-Poncelet property. More precisely, for n ¸ 3, we say that a curve ¡ in
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D has the n-Poncelet property if for every point ¸ on @D there is an n-gon which
circumscribes about ¡, inscribes in @D and has ¸ as a vertex. It is natural to ask
whether there are curves other than ellipses in D which also have the n-Poncelet
property. The next theorem provides more of such examples.

Theorem 5.1. For any matrix A in Sn and any point ¸ on @D; there is a
unique (n+ 1)-gon which circumscribes about @W (A); inscribes in @D and has
¸ as a vertex. In fact; such (n + 1)-gons P are in one-to-one correspondence
with the (unitary-equivalence classes of) unitary dilations U of A on an (n +1)-
dimensional space; under which the n+1 vertices of P are exactly the eigenvalues
of the corresponding U.

This theorem appeared in [22, Theorem 1] and [9, Theorem 2.1]. The easy part
of the proof is to show that every (n+ 1)-dimensional unitary dilation of a matrix
A in Sn has distinct eigenvalues which form an (n+ 1)-gon inscribed in @D and
circumscribed about W(A) with each side tangent to @W (A) at exactly one point.
To show that such (n+1)-gons run over every point of @D takes more work. Instead
of outlining its details, we resort to the matrix representations (1) and (2) for A to
give the specific (n+1)-dimensional unitary dilations U . If A is represented as in
(1), then U can be taken as [bij ]

n+1
i;j=1, where

bij =

8
>>>>><
>>>>>:

aij if 1 · i; j · n;

¸[
Qj¡1
k=1(¡ak)](1 ¡jaj j2)1=2 if i = n+1 and 1 · j · n;

[
Qn
k=i+1(¡ak)](1¡ jaij2)1=2 if j = n+1 and 1 · i · n;

¸
Qn
k=1(¡ak) if i = j = n+ 1

(3)

for some ¸ in @D. Here ¸ acts as a parameter for the unitary dilations U . On the
other hand, if A is as (2), then U can be

"
f1 : : : fn¡1 fn g

0 : : : 0 ¸a ¸kfnk

#
;(4)

where j j̧ = 1; a = (1 ¡kfnk2)1=2 > 0 and

g =

( ¡(a=kfnk)fn if fn 6= 0;

any unit vector orthogonal to f1; : : : ; fn¡1 if fn = 0:

Both (3) and (4) can be used to prove that the (n + 1)-gons with vertices the
eigenvalues of U cover all points of @D (the latter is in [9, Theorem 2.1]).
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Theorem 5.1 yields additional properties for the numerical ranges of matrices in
Sn.

Corollary 5.2. Let A be a matrix in Sn. Then

(a) W (A) is contained in no m-gon inscribed in @D for m · n,

(b) w(A) > cos(¼=n),

(c) Re A and Im A have simple eigenvalues, and

(d) the boundary of W (A) contains no line segment and is an algebraic curve.

Here (a) is an easy consequence of the (n+ 1)-Poncelet property of @W (A),
(b) follows from (a), (c) is a consequence of, besides the Poncelet property, the
interlacing of the eigenvalues of Re A and Re U for any (n + 1)-dimensional
unitary dilation U of A, and finally (d) follows from (c) by way of Kippenhahn’s
result. All assertions except (d) are in [9].

If A is in Sn, so is e¡iµA for any real µ. Hence the eigenvalues of Re (e¡iµA)
are all distinct by Corollary 5.2 (c). The curves ¡j ; j = 1; : : : ;n, described by
®j(µ) = (xj(µ); yj(µ)) with

xj(µ) = j̧(µ) cosµ¡ 0̧
j(µ) sin µ;

yj(µ) = j̧(µ) sinµ +¸0j(µ) cos µ;

where j̧(µ) is the jth largest eigenvalue of Re (e¡iµA), are expected to have a
Poncelet-type property just as ¡1

^ = @W (A) does. This is indeed the case and is
proved in [22, Theorem 8]. Note that, in this case, ¡j and ¡n¡j+1 coincide for
any j, and if U = diag (b1; : : : ; bn+1) is a unitary dilation of A, where the bj’s are
arranged counterclockwise around @D, then, for each j, the not-necessarily-convex
(n + 1)-gon b1 bj+1 b2j+1 : : : bnj+1 (bp = bq if p ´ q (mod n+ 1)) has all its
sides [bkj+1; b(k+1)j+1] tangent to ¡j . A detailed analysis of such curves, called a
package of Poncelet curves, has been carried out by Mirman [22, 24]. Among other
things, he showed that in this situation there is associated a probability measure ¹
on the unit circle @D given by

¹(4) =
1

2¼(n+ 1)

Z

4
1 +

nX

j=1

1¡ jajj2
jeiµ ¡ aj j2

dµ

for any Borel subset 4 of @D, where aj’s are the eigenvalues of A. The measure
¹ is invariant under the function

f(eiµ) = intersection of @D and the “right-hand” tangent line from eiµ to @W (A)
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on @D in the sense that ¹(4) = ¹(f¡1(4)) for any4. In particular, this implies
that if the chord [eiµ1 ; eiµ2] (µ1 < µ2) of @D is tangent to ¡j , then

1

2¼(n+1)

Z µ2

µ1

1 +
nX

j=1

1¡ jaj j2
jeiµ ¡ aj j2dµ =

j

n+1
; j = 1; : : : ; n:

Reversing this procedure, we may start with a number ½; 0 < ½ < 1, and a proba-
bility measure ¹ on @D with density h and consider the function f on @D which
sends eiµ1 to eiµ2 if Z µ2

µ1

h(eiµ)dµ = ½:

Then the measure ¹ is f -invariant for the envelope ¡ of the chords [eiµ1; eiµ2]. The
curve ¡ is in general not convex and the interscribing polygons between ¡ and
@D will “close” exactly when ½ is a rational number. (The idea of the invariant
measure for the Poncelet property originates from a paper of King [18].) Based on
this, Mirman obtained an example with ½ = 1=3 and

h(eiµ) =
1

2¼

³
1 +

1

2
cosµ

´

of a nonalgebraic convex curve ¡ which has the 3-Poncelet property (cf. [24,
Section 1.3.1]). This means that not every convex curve in D with the (n + 1)-
Poncelet property arises from the boundary of W (A) for some A in Sn. A further
exploitation of this idea yields even an example of an algebraic curve with such
properties (cf. [23, Example 1]). This refutes a conjecture made in [24, Problem
2] and [9, Conjecture 5.1]. We note on the side that an (n+ 1)-Poncelet curve
in D which is also an ellipse must be the boundary of W (A) for some Sn-matrix
A (cf. [22, Theorem 10b] and [12, Corollary]). There remains the problem of
completely characterizing the numerical ranges of Sn-matrices. The modified from
of [9, Conjecture 5.1] that a nonempty closed convex subset of D whose boundary
is an algebraic curve of class at most n and has the (n+1)-Poncelet property is the
numerical range of some matrix in Sn seems a safe bet.

We now move on to the next theorem, which gives the condition on the tangent
points of the (n +1)-gon with the boundary of the numerical range of a matrix in
Sn.

Theorem 5.3. Let bj ; j = 1; : : : ; n + 1; be n + 1 distinct points arranged
counterclockwise around the unit circle and let cj ; j = 1; : : : ; n + 1; be points
in the open chords (bj ; bj+1); respectively (bn+2 ´ b1): Then a necessary and
sufficient condition for the existence of a matrix A in Sn with W (A) circumscribed
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by the (n+ 1)-gon b1 : : : bn+1 at the tangent points c1; : : : ; cn+1 is that

n+1Y

j=1

jcj ¡ bj j =
n+1Y

j=1

jcj ¡ bj+1j:(5)

Moreover; in this case the matrix A is unique up to unitary equivalence.

The case n = 2 can be proved by using the classical Brianchon and Ceva
theorems in projective and affine geometries. It was also treated by Williams [33,
Theorem 1] by way of numerical range. The general case is in [22, Theorem 7] and
[9, Theorem 3.1], though not stated explicitly as above. An analogous result holds
for the tangent points of each of the curves ¡k; k = 1; : : : ;n, in which case cj is
required to lie on (bj ; bj+k) and (5) is replaced by

n+1Y

j=1

jcj ¡ bj j =
n+1Y

j=1

jcj ¡ bj+kj

(cf. [22, Theorem 9]).
The proof of this theorem can be based on another representation of matrices in

Sn.

Lemma 5.4. Sn consists of matrices which are compressions of some unitary
matrix diag (b1; : : : ; bn+1) with distinct bj’s to an n-dimensional subspace whose
orthogonal complement in Cn+1 is generated by a unit vector x = (x1; : : : ;xn+1)T

with nonzero xj’s.

This lemma can be proved easily. In contrast to the representation (1) for A
in Sn, the present one takes advantage of the diagonal form of its unitary dilation
while (1) yields explicitly the upper-triangular form of A.

If A in Sn is represented as in Lemma 5.4, then it is not difficult to show that
the tangent points cj of the (n + 1)-gon b1 : : : bn+1 with @W (A) are given by
hAyj ; yji with the unit vectors

yj =
xj+1ej ¡ xjej+1

(jxj j2 + jxj+1j2)1=2
; j = 1; : : : ; n;

where ej is the vector in Cn whose jth component is 1 and all other components
are 0, and en+1 ´ e1 . A simple computation then yields that

jcj ¡ bjj
jcj ¡ bj+1j =

jxj j2
jxj+1j2 ;
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from which (5) follows easily. Reversing the above recipe, we can prove the converse
by defining

xj =
(
Qn
k=j tk)

1=2

(
Pn

i=1

Qn
k=i tk)

1=2
; j = 1; : : : ;n;

where
tk =

jck ¡ bkj
jck ¡ bk+1j

for each k , and x and A accordingly. The uniqueness of A can be proved along
this line.

The following corollary is an easy consequence of the uniqueness proof above.

Corollary 5.5. Matrices A and B in Sn are unitarily equivalent if and only if
W (A) =W (B).

This approach to Theorem 5.3 and Corollary 5.5 via Lemma 5.4 is much simpler
than the one we adopted in [9]. It also has the advantage of being easily adapted to
the generalizations to the normal-dilation case, which we will discuss in Section 6.

Theorem 5.3 concerns the determination of A in Sn by the circumscribing (n+
1)-gon of W (A) and the tangent points. The next theorem does the same with
tangent points replaced by foci of @W(A).

Theorem 5.6. Let aj ; j = 1; : : : ; n; be points in D and let bj; j = 1; : : : ;n+1;
be distinct points arranged counterclockwise around @D. Then a matrix in Sn with
eigenvalues aj’s has its numerical range circumscribed about by the (n+ 1)-gon
b1 : : : bn+1 if and only if

®j + ¯n+1®n+1¡j = ¯j for j = 1; : : : ;dn=2e;(6)

where ®j and ¯j denote the jth elementary symmetric functions of the a’s and b’s
given by

nX

j=0

(¡1)j®jz
n¡j =

nY

k=1

(z ¡ ak); ®n+1 = 0

and
n+1X

j=0

(¡1)j¯jz
n+1¡j =

n+1Y

k=1

(z¡ bk);

respectively, and dn=2e denotes the smallest integer ¸ n=2.

This is proved in [11, Theorem 2.5] by computing the characteristic polynomial

z
nY

j=1

(z ¡aj)¡¸
nY

j=1

(1 ¡ajz)
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of the matrix representation (3) for the (n+1)-dimensional unitary dilations of an
A in Sn. A special case of the preceding theorem is the following generalization of
the Lucas–Siebeck result.

Theorem 5.7. Let p be a degree-(n + 1) polynomial whose distinct zeros
b1; : : : ; bn+1 all have modulus one. Arrange the bj’s counterclockwise around @D.
If A is a matrix in Sn with eigenvalues the zeros of the derivative p0; then the
numerical range of A is circumscribed about by the (n+1)-gon b1 : : : bn+1 at the
tangent points (bj + bj+1)=2; j = 1; : : : ; n+1 (bn+2 ´ b1).

This is a refinement of both Lucas’s theorem that zeros of the derivative of
a polynomial are contained in the convex hull of the zeros of the polynomial and
Siebeck’s result (1864) that if b1; b2 and b3 are the distinct zeros of a cubic poly-
nomial and a1 and a2 are zeros of its derivative, then there is an ellipse with foci
a1 and a2 which is inscribed in the triangle 4b1b2b3 at the midpoints of its three
sides (cf. [21, p. 9]).

This theorem, originally appearing in [11, Theorem 2.1] as a corollary of The-
orem 5.6, has now a simpler proof (for the assertion on the tangent points), due
to Mirman [25], based on the representation in Lemma 5.4. Indeed, if U = diag
(b1; : : : ; bn+1) and x = (1=

p
n+1; : : : ;1=

p
n+ 1)T , then the compression B of

U to the orthogonal complement of x in Cn+1 is in Sn and has numerical range cir-
cumscribed about by the (n+1)-gon at the midpoints (bj+bj+1)=2; j = 1; : : : ; n+1.
It remains then to show that B has the same eigenvalues as A.

Information on the numerical ranges of matrices in Sn can be carried over to that
on numerical ranges of general matrices. We conclude this section with one such
example. This carrying-over depends on an extension theorem of C0 contractions.
For convenience, we adapt it here for the finite-dimensional case.

Theorem 5.8. Let A be an n-by-n contraction with all eigenvalues in D; let
m be the degree of the minimal polynomial of A; and let d be the defect index
rank (In¡A¤A). Then A can be extended to a matrix of the form B ©¢ ¢ ¢©B (d
times); where B is in Sm whose minimal polynomial is the same as A. Moreover;
if @W (A) \ @W(B) 6= ;; then A has B as a direct summand.

Here “extension” and “direct summand” are meant to be under a unitary equiv-
alence.

The first part (even its C0 version) is essentially contained in [26, Lemma 4]
(cf. also [34, Theorem 1.4]). A simpler proof can be obtained along the line of [15,
Solution 152]. The second assertion is in [10, Lemma 3.3]; whether its C0 version
is true seems unknown.

An application of the preceding theorem is the following generalization of Corol-
lary 5.5 and [35, Theorem 1].
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Theorem 5.9. Let A be in Sn and B be an n-by-n matrix. Then A and B are
unitarily equivalent if and only if B is a contraction and W (A) = W (B).

This theorem can in turn be applied to obtain a characterization of matrices in
Sn in terms of the (n+1)-Poncelet property for their numerical ranges.

Theorem 5.10. An n-by-n contraction A belongs to Sn if and only if its
numerical range W (A) is contained in D and has the (n+ 1)-Poncelet property.

Finally, the promised result on the numerical ranges of general matrices. The
next theorem gives a sharp estimate on the inradius of the numerical range. Recall
that the inradius of a compact convex subset 4 of the plane is the radius of the
largest circular disc contained in 4.

Theorem 5.11. For any n-by-n matrix A, the inradius of W(A) is less than
or equal to kAk cos (¼=(n + 1)). It is equal to this quantity if and only if A is
unitarily equivalent to kAkJn.

This is a consequence of Theorem 5.8 and the fact that the inradius of an
(n+ 1)-polygonal region inscribed in @D is less than or equal to cos (¼=(n+ 1)).

The previous three theorems all appear in [9].

6. GENERALIZATIONS

Two lines of generalizations of the results in Section 5 will be reported here.
One concerns replacing the unitary dilation by the more general normal dilation.
It turns out that two of the three major results in Section 5 (Theorems 5.3 and
5.7) can be generalized to this setting. Another generalization concerns the general
compressions of the shift instead of the finite-dimensional ones. In this case, the
situation is more intricate and our endeavor is less successful.

We start with the normal-dilation generalization. Emulating the representation of
Sn-matrices in Lemma 5.4, we consider a normal matrix N = diag (b1; : : : ; bn+1)
with distinct bj’s which are such that each is a corner of their convex hull and are
arranged in a counterclockwise direction. The following is the analogue of Theorem
5.3 in the present setting.

Theorem 6.1. Let N be as above and let cj be a point on the open line
segment (bj ; bj+1); j = 1; : : : ; n+1 (bn+2 ´ b1). Then there is a vector x in Cn+1

with all components nonzero such that the compression A of N to the orthogonal
complement of x in Cn+1 has numerical range W (A) tangent to (bj ; bj+1) at cj
for all j if and only if

n+1Y

j=1

jcj ¡ bjj =
n+1Y

j=1

jcj ¡ bj+1j:
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Moreover, in this case such an A is unique up to unitary equivalence.

This can be proved along the line of arguments provided in Section 5 for The-
orem 5.3. The proof of necessity has recently appeared in [1, Theorem 1].

Condition (6) in Theorem 5.6 relating the eigenvalues of a matrix A in Sn
and those of its (n+ 1)-dimensional unitary dilations U are equivalent to the one
derivable from (7) in the next theorem. The difference is that before it is obtained
from the upper-triangular form of A while now it is from the diagonal form of U .

Theorem 6.2. Let N be as before; let x = (x1; : : : ;xn+1)
T be a unit vector in

Cn+1 with all xj’s nonzero; and let A be the compression of N to the orthogonal
complement of x in Cn+1 . Then the characteristic polynomial of A is given by

n+1X

j=1

jxj j2(z ¡ b1) : : : (z ¡ bj¡1)(z ¡ bj+1) : : : (z ¡ bn+1):(7)

This theorem can be proved by reducing it to the computation of the charac-
teristic polynomial of a rank-one perturbation of N. The latter was discovered by
Anderson [2, Theorem 0]. Theorem 5.7 corresponds to the special case of Theorem
6.2 when all the xj’s are equal to 1=

p
n+ 1 (cf. [25]).

The above normal-dilation generalizations will appear in [13].
We now move to the second line of generalizations of the results in Section

5. In this respect, we only have some limited success. Recall that a general inner
function Á has a canonical factorization as cÁ1Á2 , where c is a complex number
with jcj = 1, Á1 is a Blaschke product

Á1(z) =
1Y

n=1

an
janj

z¡ an
1¡ anz

with zeros an in D satisfying
P

n(1 ¡janj)<1 and Á2 is a singular function

Á2(z) = exp

µ
¡
Z 2¼

0

eiµ + z

eiµ ¡ zd¹(µ)
¶
;

where ¹ is a positive measure on @D which is singular with respect to the Lebesgue
measure on @D. If A = S(Á) is the compression of the shift on H =H2ª ÁH2,
then the unitary dilations ofA on a spaceK containing H with dim KªH = 1 can
be identified and parametrized via results of Clark [7] on rank-one perturbations of
S(Á). Indeed, in [7, Section I], there is defined, for any (nonconstant) inner function
Á and any ¸ in @D, a unitary operator U¸ on H2 ª ÃH2 by

(U¸f)(z) =

(
zf(z) if f ? Á;
¸ if f = Á;

(8)
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where Ã is the inner function Ã(z) = zÁ(z). Such U¸’s are singular unitary
operators and are exactly the rank-one perturbations of S(Ã).

Theorem 6.3. Let A = S(Á) on H = H2 ª ÁH2 for some (nonconstant)
inner function Á. Then every unitary dilation U of A on a space K containing H
with dim K ªH = 1 is unitarily equivalent to U¸ in (8) for some ¸ in @D, and,
conversely, for any ¸ in @D, there is a unitary dilation U of A of the above type
which is unitarily equivalent to U¸ . Moreover, if the set

E =

(
z 2 @D :

X

n

1¡ janj2
jz¡ anj2 +

Z 2¼

0

d¹(µ)

jz¡ eiµ j2 =1
)

is countable, where an’s are zeros of Á in D and ¹ is the singular measure on @D
associated with Á, then U¸ is unitarily equivalent to diag (dn) with dn not in E and
satisfying dnÁ(dn) = ¸ for all n. In this case, each side of the (infinite) polygon
formed by the dn’s intersects W (A) at a single point.

In the situation of countable E, we expect that the numerical range of A be
equal to the intersection of the numerical ranges of the U¸’s. If this is indeed
the case, then we would obtain an infinite-dimensional analogue of Theorem 5.1.
Unfortunately, we haven’t been able to prove this due to some technical difficulties.
The points in E act as the accumulation points of the vertices dn of the (infinite)
polygons associated with the various U¸’s. For the Blaschke product

Á1(z) =
1Y

n=1

z ¡ (1 ¡ 1
n2 )

1¡ (1 ¡ 1
n2 )z

and the singular function

Á2(z) = exp

µ
z +1

z ¡ 1

¶
;

the corresponding E’s are both equal to the singleton f1g. If Á is a finite Blaschke
product

Á(z) =
nY

j=1

z ¡ aj
1¡ ajz ; jaj j < 1 for all j;

then using the relation ajÁ(aj) = ¸ for all j we can easily derive condition (6),
thus yielding an alternative proof of Theorem 5.6. On the other hand, it may happen
that the numerical range of S(Á) is equal to D, in which case the Poncelet property
of @W(S(Á)) does not make sense. One example of such a phenomenon is for Á
to be the Blaschke product with zeros (1¡ (1=n2)) exp (inµ0), where µ0 is a fixed
irrational multiple of 2¼.
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This is what we have so far on this fascinating topic. The connection between
the numerical range and Poncelet property forms a fertile soil, which has already
nourished some very interesting developments. Its further progress is highly antici-
pated.

Added in proof. After the acceptance of this article, there appeared in the
literature several other papers with pertinent information on the topics discussed
here: [38] gives a much simpler proof of Theorem 5.8, [39] generalizes the unitary
dilations for Sn-matrices to invertible dilations, which still capture the main features
of the Poncelet property, and, finally, [40] gives some auxiliary results which become
more revealing when viewed through the prism of the Poncelet property.
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