TAIWANESE JOURNAL OF MATHEMATICS Vol. 5, No. 3, pp. 471-476, September 2001 This paper available online at http://www.math.nthu.edu.tw/tjm/

THE F. AND M. RIESZ THEOREM ON GROUPS

S. Koshi

Abstract. This is a survey work or an overview of recent developments of generalizations of the F. and M. Riesz theorem and Riesz sets on groups, emphasizing recent works on non-Abelian cases.

1. THE HELSON-LOWDENSLAGER'S THEOREM

Let G be a locally compact Abelian group and \hat{G} be the dual group of G, and let μ be a complex-valued regular measure on G. A subset $M \subset \hat{G}$ is called a Riesz set, if the condition that the Fourier transform $\hat{\mu}(\gamma)$, $\gamma \in \hat{G}$, vanishes off M (i.e., the spectrum of $\hat{\mu}$ is contained in M) implies that μ is absolutely continuous with respect to the Haar measure on G. The celebrated F. and M. Riesz's theorem is the following :

If G is the one-dimensional torus group T, then the subset $M = \{0, 1, 2,\}$ of the dual group of T is a Riesz set.

In other words, if μ is a measure on $T = [0, 2\pi)$ and the Fourier transform

$$\hat{\mu}(n) = \int\limits_{0}^{2\pi} e^{-nx} d\mu(x) = 0$$

for n < 0, then μ is absolutely continuous respect to the Lebesgue measure on T.

The first generalization of the F. and M. Riesz theorem was given by Helson and Lowdenslager [8], by which the original F. and M. Riesz theorem is easily proved.

Let G be a compact Abelian group whose dual group \hat{G} is an ordered group, i.e., there exists in \hat{G} a subsemigroup P with $P \cap (-P) = \{0\}$ and $P \cup (-P) = \hat{G}$. If we define $x \ge y$ for $x - y \in P$, then the relation \ge is a total order relation, by which \hat{G} is a totally ordered group.

Received May 30, 2000; revised August 30, 2000.

Communicated by M.-H. Shih.

²⁰⁰⁰ Mathematics Subject Classification: 43A46, 43A40.

Key words and phrases: F. and M. Riesz theorem, Riesz sets in dual objects.

Theorem 1 (Helson and Lowdenslager).

If μ is a measure on G and the Fourier transform $\hat{\mu}$ vanishes off P, then the absolutely continuous part μ_a and the singular part μ_s for the Haar measure m on G have the same property.

This theorem was further generalized by R. Doss [4] to the case of arbitrary locally compact Abelian groups.

Theorem 2 (Doss). Let G be a locally compact Abelian group such that \hat{G} is algebraically ordered, i.e., there exists a semigroup P in \hat{G} with

(1) $P \cup (-P) = \hat{G}$ and (2) $P \cap (-P) = \{0\}$. Let μ be a measure on G such that $\hat{\mu}(\gamma) = 0$ for $\gamma < 0$. Then

(I) $\hat{\mu}_a(\gamma) = \hat{\mu}_s(\gamma) = 0$ for $\gamma < 0$

(II) $\hat{\mu}_s(0) = 0.$

A reasonable proof of this theorem is found in Hewitt, Koshi and Takahashi [10]. On the other hand, the original proof by Doss is not perfect.

E. Hewitt, S. Koshi and Y. Takahashi [10] generalized this theorem in the following :

Theorem 3. Let G be a locally compact Abelian group and P a subsemigroup in \hat{G} such that $P \cup (-P) = \hat{G}$ and $\mu \in M_P(G)$. Then $\mu_a \in M_P(G)$ and $\mu_s \in M_P(G)$. $\mu \in M_P(G)$ means that μ is a measure on G with $\hat{\mu}(r) = 0$ for $r \notin P$.

The proof of this theorem is found in [10]. We must mention that under the conditions of the above theorem it is proved that if $\mu \in M_{P^c}(G)$, then μ_a and $\mu_s \in M_{P^c}(G)$.

In this note, we shall explain generalizations of these theorems in the case of non-Abelian groups.

2. RIESZ SETS IN DUAL OBJECT OF COMPACT GROUP

Let K be a compact group which is not necessarily Abelian and Σ_K be its dual object. Let M(K) be the space of complex-valued bounded regular measures on K. m_K stands for the Haar measure of K and Z(K) is the center of K. Let G be a closed subgroup of Z(K). Naturally, G is an Abelian group. Let \hat{G} be the dual group of G. For $\sigma \in \Sigma_K$, $U^{(\sigma)}$ denotes a continuous irreducible representation of K in σ with the representation space H_{σ} . It follows from Schur's lemma that there exists a map $\gamma : \Sigma_K \to \hat{G}$ such that

(2.1)
$$U_x^{(\sigma)} = (x, \gamma(\sigma))I$$

for $x \in G$ and $\sigma \in \Sigma_K$, where I is the identity operator on H_{σ} .

Let $\mu \in M(K)$. We shall denote by $\hat{\mu}$ the Fourier transform of μ , i.e., for $\sigma \in \Sigma_K$ and $\xi, \eta \in H_{\sigma}$,

(2.2)
$$\langle \hat{\mu}(\sigma)\xi,\eta\rangle = \int_{K} \langle \bar{U}_{x}^{(\sigma)}\xi,\eta\rangle d\mu(x),$$

where $\bar{U}_x^{(\sigma)} = D_{\sigma} U_x^{(\sigma)} D_{\sigma}$ and D_{σ} is a conjugation on H_{σ} . (cf. [11]).

For a measure μ in M(K), we can define $\operatorname{spec}(\mu)$ as usual, i.e., for a subset \triangle of Σ_K , $\operatorname{spec}(\mu) \subset \triangle$ means that $\hat{\mu}(\sigma) = 0$ for $\sigma \in \triangle^c$. We shall define a Riesz set \triangle in Σ_K (= dual object of K). A subset \triangle of Σ_K is called a Riesz set if any measure μ in M(K) such that $\operatorname{spec}(\mu) \subset \triangle$ becomes absolutely continuous with respect to the Haar measure on K.

Brummelhuis [2, 3] showed the following F. and M. Riesz theorem by using methods of Shapiro [4].

Theorem 4. Let K be a metrizable compact group, and let Z(K), the center of K, contain the circle group **T** as a closed subgroup. Let $\Delta \subset \Sigma_K$ satisfy the following two conditions.

(i) for each $m \in \mathbf{Z} = \hat{\mathbf{T}}, \{\sigma \in \Delta : \gamma(\sigma) = m\}$ is finite,

(ii) the set $\{\gamma(\sigma) : \sigma \in \Delta\}$ is bounded from below.

Then \triangle *is a Riesz set.*

H. Yamaguchi [18] has extended Theorem 4 in the following :

Theorem 5. Let \triangle be a subset of Σ_K with the following conditions : (i) For each $w \in \hat{G}$, $\{\sigma \in \triangle : \gamma(\sigma) = w\}$ is a Riesz set in \hat{G} . (ii) The set $\{\gamma(\sigma) : \sigma \in \triangle\}$ is a Riesz set in \hat{G} .

Then \triangle is a Riesz set.

We use and quote many notations from the book of Hewitt and Ross [11]. For a compact group K and its dual object Σ_K and for a closed subgroup of the center of K, we get a transformation group (G, K) in a natural way. For 0 , $<math>L^p(K)$ and $||f||_p$ for a function f on K are defined as usual.

By the Radon-Nikodym theorem, we can identify $L^1(K)$ with the space of absolutely continuous measures in M(K) (= the space of measures on K). C(K)denotes the space of continuous functions on K. For $\mu \in M(K)$, let $\mu = \mu_a + \mu_s$ be the Lebesgue decomposition of μ with respect to m_K . For $\tau \in \Sigma_K$, $\mathbf{T}_{\tau}(K)$ is the linear span of all functions $x \mapsto \langle U_x^{(\tau)} \xi, \eta \rangle$ for $\xi, \eta \in H_{\tau}$. Let $\mathbf{T}(K)$ be the space of functions generated by all $\mathbf{T}_{\tau}(K)$, whose elements are called trigonometric polynomials on K. For a subset E of Σ_K , let $M_E(K) = \{\mu \in M(K) : \operatorname{spec}(\mu) \subset E\}$. $\mathbf{T}_E(K)$ and $L_E^1(K)$ are similarly defined. Here, we shall give some definitions.

A subset E of Σ_K is a Riesz set if and only if $M_E(K) \subset L^1_E(K)$. Let 0 . A subset <math>E of Σ_K is called a $\Lambda(p)$ -set if for some 0 < q < p, there exists a constant C > 0 such that $||f||_p \leq C||f||_q$ for all $f \in \mathbf{T}_E(K)$.

S. Koshi

It is known that any $\Lambda(1)$ -set in Σ_K is a Riesz set.

For the Helson-Lowdenslager theorem (Theorem 1) in the Abelian case, H. Yamaguchi [18] succeeds to extend it to the non-Abelian case.

Theorem 6. Let K be a compact group (not necessarily Abelian) and let G be a closed subgroup of Z(K). Suppose \hat{G} is ordered and let P be a semigroup of non-negative elements by the order in \hat{G} with $P \cup (-P) = \hat{G}$ and $P \cap (-P) = \{0\}$. Let $\mu \in M(K)$, and let E be a $\Lambda(1)$ -set in Σ_K . Suppose, given $\epsilon > 0$, there exists a finite set $F_{\epsilon} \subset \Sigma_K$ such that whenever p(k) is a trigonometric polynomial in \mathbf{T}_A with $\|p\|_{\infty} \leq 1$, where $A = (F_{\epsilon} \cup E \cup \gamma^{-1}(P))^c$, we have $|\int_K p(k^{-1})d\mu(k)| \leq \epsilon$. Then we have :

- (i) spec $(\mu_s) \subset \gamma^{-1}(-P)$;
- (ii) if, in addition, $\mu \in M(K)$ has the property that $\lambda \star \mu$ is absolutely continuous with repect to the Haar measure m_K on K for all $\lambda \in L^1(G)$, then $\hat{\mu}_s = 0$ on $\gamma^{-1}(0)$.

In view of the condition (ii) of Theorem 6, we introduce the notation : $N(m_K) = \{\mu \in M(G) : \lambda \star \mu \text{ is absolutely continuous with respect to } m_K \text{ for all } \lambda \in L^1(G) \}$. For any measure $\nu \in M(K)$, we can similarly define the set of measures $N(\nu)$.

Yamaguchi [18] also obtained the following theorem :

Theorem 7. Let E be a $\Lambda(1)$ -set in Σ_K . Let μ be a measure in M(K) such that $\operatorname{spec}(\mu) \subset E \cup \gamma^{-1}(-P)$. Then the following hold :

(i) spec $(\mu_a) \subset E \cup \gamma^{-1}(-P)$.

(ii) spec(
$$\mu_s$$
) $\subset \gamma^{-1}(-P)$.

(iii) If in addition $\mu \in N(m_K)$, then $\hat{\mu} = 0$ on $\gamma^{-1}(0)$.

Theorem 7 is considered as a generalization of the theorem given by Pigno [12].

3. Key Lemma and Exmples

For the proof of Theorems 5, 6, and 7, it is better to start from Theorem 1 and Shapiro's method. Key lemmas of the proof are due to the disintegration method given by Bourbaki [1]. We shall show Lemma 1 as follows :

Lemma 1. Let μ be a measure on a compact metrizable group K and G be a closed subgroup of the center of K. Let π be the natural homomorphism from K onto K/G. Let $\eta = \pi(\mu)$ (= continuous image under π). Then there exists a family $\{\lambda_{\dot{x}}\}_{\dot{x}\in K/G}$ consisting of measures in M(K) with the following properties :

(1) $\dot{x} \rightarrow \lambda_{\dot{x}}(f)$ is a Borel measurable function for each bounded Borel measurable function f on K,

474

- (2) $supp(\lambda_{\dot{x}}) \subset \pi^{-1}(\{\dot{x}\}),$
- (3) $\|\lambda_{\dot{x}}\| \leq 1$,
- (4) $\mu(g) = \int_{K/G} \lambda_{\dot{x}}(g) d\eta(\dot{x})$ for each measurable function g on G.

Conversely, let $\{\lambda'\}_{\dot{X}\in K/G}$ be a family of measures in M(K) which satisfies (1), (2), and (4). Then we have

(5) $\lambda_{\dot{x}} = \lambda'_{\dot{x}}$ for almost all $\dot{x}(\eta)$.

This lemma is due to Bourbaki [1]. The same kind of lemma in the transformation group case is also obtained [15].

Next, we shall show some examples of Riesz sets in non-Abelian compact groups.

Example 1. Let $\mathbf{U}(2)$ and $\mathbf{SU}(2)$ be the unitary group and special unitary group of dimension 2, repectively. Let ρ be the map of $\mathbf{T} \times \mathbf{SU}(2)$ into $\mathbf{U}(2)$ with $\rho(\alpha, u) = \alpha u$.

Then ρ is an onto continuous homomorphism with kernel $\{(1, E), (-1, -E)\}$, where E is the unit matrix in $\mathbf{SU}(2)$. Evidently, $\mathbf{T} \cong \{e^{i\theta}E : 0 \leq \theta < 2\pi\} \subset Z(\mathbf{U}(2))$. Let $\mathbf{T}^{(\ell)}$ be as in [12, (29.13)] $(\ell = 0, 1/2.1, 3/2, ...)$. Let $\mathbf{U}(2)^{\wedge}$ and $\mathbf{SU}(2)^{\wedge}$ be the dual objects of $\mathbf{U}(2)$ and $\mathbf{SU}(2)$, respectively. Then $\mathbf{SU}(2)^{\wedge} = \{\mathbf{T}^{(\ell)} : \ell = 0, 1/2, 1, 3/2, ...\}$ and $\mathbf{U}(2)^{\wedge} = \{\tau_{n,\ell} : n = 1, 2, ... \text{ and } \ell = 0, 1/2, 1, 3/2, ..., n + 2\ell \text{ is an even integer } \}$, where $\tau_{n,\ell}(v) = e^{in\theta}\mathbf{T}_u^{(\ell)}$ for $v = e^{i\theta}u \in \mathbf{U}(2)$ for $u \in \mathbf{U}(2)$. (cf. [12, (29.48)]).

Let $\gamma : \mathbf{U}(\mathbf{2})^{\wedge} \to \hat{\mathbf{T}} \cong \mathbf{Z}$ be the map which appears in (2.1). Then $\gamma(n, \ell) = n$. Using Theorems 5, 6, and 7, we have the following facts.

- (i) For $\alpha > 0$, let $\triangle_{\alpha} = \{\tau_{n,\ell} \in \mathbf{U}(\mathbf{2})^{\wedge} : \ell < \alpha n\}$. Then \triangle_{α} is a Riesz set in $\mathbf{U}(\mathbf{2})^{\wedge}$.
- (ii) Let $\triangle = \{\tau_{n,\ell} \in \mathbf{U}(\mathbf{2})^{\wedge} : n \ge 0\}$. Let $\mu \in M(\mathbf{U}(\mathbf{2}))$, and suppose that $\operatorname{spec}(\mu) \subset \triangle$. Then, $\operatorname{spec}(\mu_a)$ and $\operatorname{spec}(\mu_s)$ are contained in \triangle .

REFERENCES

- 1. N. Bourbaki, *Integration, Elements de Mathematique*, Livre VI, Chapter 6, Paris, Herman, 1959.
- R. G. M. Brummelhuis, An F. and M. Riesz theorem for bounded symmetric domain, Ann. Inst. Fourier (Grenoble) 37 (1987), 135-150.
- R. G. M. Brummelhuis, A note on Riesz sets and lacunary sets, J. Austral. Math. Soc. 48 (1990), 57-65.
- R. Doss, On the Fourier-Stieltijes transforms of singular or absolutely continuous measures, *Math. Z.* 97 (1967), 77-84.

S. Koshi

- 5. R. Doss, On measures with small transforms, Pacific J. Math. 26 (1968), 258-263.
- C. Finet and V. Tardivel-Nachef, A variant of a Yamaguchi's result, *Hokkaido Math. J.* 21 (1992), 483-489.
- C. Finet and V. Tardivel-Nachef, Lacunary sets on transformation groups, *Hokkaido Math. J.* 23 (1994), 1-19.
- 8. H. Helson and D. Lowdenslager, Prediction theory and Fourier series in several variables, *Acta Math.* 99 (1958), 165-202.
- 9. E. Hewitt and S. Koshi, Orderings in locally compact Abelian groups and the theorem of F. and M. Riesz, *Math. Proc. Cambridge Philos. Soc.* **94** (1983), 441-457.
- 10. E. Hewitt, S. Koshi and Y. Takahashi, The F. and M. Riesz theorem revisited, *Math. Scand.* **60** (1987), 63-76.
- E. Hewitt nd K. A. Ross, *Abstract Harmonic Analysis*, Vol. II, New York-Heidelberg-Berlin, Springer-Verlag, 1970.
- 12. L. Pigno, A variant of the F. and M. Riesz theorem, J. London Math. Soc. 9 (1974), 368-370.
- 13. W. Rudin, Fourier Analysis on Groups, Intersciences, New York, 1962.
- 14. J. H. Shapiro, Subpaces of $L^p(G)$ spaned by characters, 0 ,*Israel J. Math.***29**(1978), 248-264.
- 15. H. Yamaguchi, The F. and M. Riesz theorem on certain transformation groups, *Hokkaido Math. J.* **17** (1988), 289-332.
- 16. H. Yamaguchi, The F. and M. Riesz theorem on certain transformation groups II, *Hokkaido Math. J.* **19** (1990), 345-357.
- 17. H. Yamaguchi, Absolute continuity of measures on compact transformation groups, *Hokkaido Math. J.* **22** (1993), 25-33.
- H. Yamaguchi, An F. and M. Riesz theorem on compact group, in: Transaction of German-Japanese Symposium on 'Infinite-Dimenional Harmonic Analysis' held in Tübingen, Verlag D.+M. Gräbner, Bamberg, 1996, pp. 249-273.
- 19. H. Yamaguchi, On the product of Riesz sets in dual objects of compact groups, preprint.

S. Koshi, Kitaku-Tonden 2-2-4-8, Sapporo, Japan E-mail: koshi@math.sci.hokudai.ac.jp