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THE F. AND M. RIESZ THEOREM ON GROUPS

S. Koshi

Abstract. This is a survey work or an overview of recent developements

of generalizations of the F. and M. Riesz theorem and Riesz sets on groups,

emphasizing recent works on non-Abelian cases.

1. THE HELSON-LOWDENSLAGER’S THEOREM

Let G be a locally compact Abelian group and Ĝ be the dual group of G, and
let µ be a complex-valued regular measure on G. A subset M ⊂ Ĝ is called a

Riesz set, if the condition that the Fourier transform µ̂(γ), γ ∈ Ĝ, vanishes off M

(i.e., the spectrum of µ̂ is contained in M ) implies that µ is absolutely continuous
with respect to the Haar measure on G. The celebrated F. and M. Riesz’s theorem

is the following :

If G is the one-dimensional torus group T , then the subset M = {0, 1, 2, ....}
of the dual group of T is a Riesz set.

In other words, if µ is a measure on T = [0, 2π) and the Fourier transform

µ̂(n) =

2π∫

0

e−nxdµ(x) = 0

for n < 0, then µ is absolutely continuous respect to the Lebesgue measure on T .
The first generalization of the F. and M. Riesz theorem was given by Helson and

Lowdenslager [8], by which the original F. and M. Riesz theorem is easily proved.

Let G be a compact Abelian group whose dual group Ĝ is an ordered group,

i.e., there exists in Ĝ a subsemigroup P with P ∩ (−P ) = {0} and P ∪ (−P ) = Ĝ.
If we define x ≥ y for x − y ∈ P , then the relation ≥ is a total order relation, by

which Ĝ is a totally ordered group.
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Theorem 1 (Helson and Lowdenslager).

If µ is a measure on G and the Fourier transform µ̂ vanishes off P, then the
absolutely continuous part µa and the singular part µs for the Haar measure m

on G have the same property.

This theorem was further generalized by R. Doss [4] to the case of arbitrary

locally compact Abelian groups.

Theorem 2 (Doss). Let G be a locally compact Abelian group such that Ĝ is

algebraically ordered, i.e., there exists a semigroup P in Ĝ with

(1) P ∪ (−P ) = Ĝ and (2) P ∩ (−P ) = {0}.
Let µ be a measure on G such that µ̂(γ) = 0 for γ < 0. Then
(I) µ̂a(γ) = µ̂s(γ) = 0 for γ < 0
(II) µ̂s(0) = 0.
A reasonable proof of this theorem is found in Hewitt, Koshi and Takahashi

[10]. On the other hand, the original proof by Doss is not perfect.

E. Hewitt, S. Koshi and Y. Takahashi [10] generalized this theorem in the

following :

Theorem 3. Let G be a locally compact Abelian group and P a subsemigroup

in Ĝ such that P ∪ (−P ) = Ĝ and µ ∈ MP (G). Then µa ∈ MP (G) and
µs ∈ MP (G). µ ∈ MP (G) means that µ is a measure on G with µ̂(r) = 0 for
r 6∈ P.

The proof of this theorem is found in [10]. We must mention that under the

conditions of the above theorem it is proved that if µ ∈ MP c(G), then µa and

µs ∈ MP c(G).
In this note, we shall explain generalizations of these theorems in the case of

non-Abelian groups.

2. RIESZ SETS IN DUAL OBJECT OF COMPACT GROUP

Let K be a compact group which is not necessarily Abelian and ΣK be its dual

object. Let M(K) be the space of complex-valued bounded regular measures on
K. mK stands for the Haar measure of K and Z(K) is the center of K. Let G be

a closed subgroup of Z(K). Naturally, G is an Abelian group. Let Ĝ be the dual

group of G. For σ ∈ ΣK , U (σ) denotes a continuous irreducible representation of

K in σ with the representation space Hσ. It follows from Schur’s lemma that there

exists a map γ : ΣK → Ĝ such that

U (σ)
x = (x, γ(σ))I(2.1)

for x ∈ G and σ ∈ ΣK , where I is the identity operator on Hσ.
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Let µ ∈ M(K). We shall denote by µ̂ the Fourier transform of µ, i.e., for

σ ∈ ΣK and ξ, η ∈ Hσ,

〈µ̂(σ)ξ, η〉=
∫

K

< Ū (σ)
x ξ, η > dµ(x),(2.2)

where Ū
(σ)
x = DσU

(σ)
x Dσ and Dσ is a conjugation on Hσ. (cf. [11]).

For a measure µ in M(K), we can define spec(µ) as usual, i.e., for a subset
4 of ΣK , spec(µ) ⊂ 4 means that µ̂(σ) = 0 for σ ∈ 4c. We shall define a Riesz

set ∆ in ΣK (= dual object of K). A subset 4 of ΣK is called a Riesz set if any

measure µ in M(K) such that spec(µ) ⊂ 4 becomes absolutely continuous with

respect to the Haar measure on K.
Brummelhuis [2, 3] showed the following F. and M. Riesz theorem by using

methods of Shapiro [4].

Theorem 4. Let K be a metrizable compact group, and let Z(K), the center
of K, contain the circle group T as a closed subgroup. Let 4 ⊂ ΣK satisfy the

following two conditions.

( i ) for each m ∈ Z = T̂, {σ ∈ 4 : γ(σ) = m} is finite,
(ii) the set {γ(σ) : σ ∈ 4} is bounded from below.

Then 4 is a Riesz set.

H. Yamaguchi [18] has extended Theorem 4 in the following :

Theorem 5. Let 4 be a subset of ΣK with the following conditions :

( i ) For each w ∈ Ĝ, {σ ∈ 4 : γ(σ) = w} is a Riesz set in Ĝ.

(ii) The set {γ(σ) : σ ∈ 4} is a Riesz set in Ĝ.
Then 4 is a Riesz set.

We use and quote many notations from the book of Hewitt and Ross [11]. For

a compact group K and its dual object ΣK and for a closed subgroup of the center

of K, we get a transformation group (G, K) in a natural way. For 0 < p < ∞,
Lp(K) and ‖f‖p for a function f on K are defined as usual.

By the Radon-Nikodym theorem, we can identify L1(K) with the space of
absolutely continuous measures in M(K) (= the space of measures on K). C(K)
denotes the space of continuous funtions on K. For µ ∈ M(K), let µ = µa + µs

be the Lebesgue decomposition of µ with respect to mK . For τ ∈ ΣK , Tτ (K) is
the linear span of all functions x 7→ 〈U (τ)

x ξ, η〉 for ξ, η ∈ Hτ . Let T(K) be the
space of functions generated by all Tτ (K), whose elements are called trigonometric
polynomials on K. For a subset E of ΣK , letME(K) = {µ ∈ M(K) : spec(µ) ⊂
E}. TE(K) and L1

E(K) are similarly defined. Here, we shall give some definitions.
A subset E of ΣK is a Riesz set if and only if ME(K) ⊂ L1

E(K). Let
0 < p < ∞. A subset E of ΣK is called a Λ(p)-set if for some 0 < q < p, there

exists a constant C > 0 such that ‖f‖p ≤ C‖f‖q for all f ∈ TE(K).
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It is known that any Λ(1)-set in ΣK is a Riesz set.

For the Helson-Lowdenslager theorem (Theorem 1) in the Abelian case, H.

Yamaguchi [18] succeeds to extend it to the non-Abelian case.

Theorem 6. Let K be a compact group (not necessarily Abelian) and let G

be a closed subgroup of Z(K). Suppose Ĝ is ordered and let P be a semigroup of

non-negative elements by the order in Ĝ with P ∪(−P ) = Ĝ and P ∩(−P ) = {0}.
Let µ ∈ M(K), and let E be a Λ(1)-set in ΣK . Suppose, given ε > 0, there exists
a finite set Fε ⊂ ΣK such that whenever p(k) is a trigonometric polynomial in TA

with ‖ p ‖∞≤ 1, where A = (Fε ∪E ∪ γ−1(P ))c, we have |
∫
K p(k−1)dµ(k)| ≤ ε.

Then we have :

( i ) spec(µs) ⊂ γ−1(−P );
(ii) if, in addition, µ ∈ M(K) has the property that λ?µ is absolutely continuous

with repect to the Haar measure mK on K for all λ ∈ L1(G), then µ̂s = 0
on γ−1(0).

In view of the condition (ii) of Theorem 6, we introduce the notation : N(mK) =
{µ ∈ M(G) : λ?µ is absolutely continuous with respect tomK for all λ ∈ L1(G)}.
For any measure ν ∈ M(K), we can similarly define the set of measures N(ν).

Yamaguchi [18] also obtained the following theorem :

Theorem 7. Let E be a Λ(1)-set in ΣK . Let µ be a measure in M(K) such
that spec(µ) ⊂ E ∪ γ−1(−P ). Then the following hold :
( i ) spec(µa) ⊂ E ∪ γ−1(−P ).
( ii ) spec(µs) ⊂ γ−1(−P ).
(iii) If in addition µ ∈ N(mK), then µ̂ = 0 on γ−1(0).

Theorem 7 is considered as a generalization of the theorem given by Pigno [12].

3. KEY LEMMA AND EXMPLES

For the proof of Theorems 5, 6, and 7, it is better to start from Theorem 1 and

Shapiro’s method. Key lemmas of the proof are due to the disintegration method

given by Bourbaki [1]. We shall show Lemma 1 as follows :

Lemma 1. Let µ be a measure on a compact metrizable group K and G be

a closed subgroup of the center of K. Let π be the natural homomorphism from

K onto K/G. Let η = π(µ) (= continuous image under π). Then there exists a
family {λẋ}ẋ∈K/G consisting of measures in M(K) with the following properties :

(1) ẋ → λẋ(f) is a Borel measurable function for each bounded Borel measur-
able function f on K,
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(2) supp(λẋ) ⊂ π−1({ẋ}),
(3) ‖λẋ‖ ≤ 1,
(4) µ(g) =

∫
K/G λẋ(g)dη(ẋ) for each measurable function g on G.

Conversely, let {λ′}Ẋ∈K/G be a family of measures in M(K) which satisfies
(1), (2), and (4). Then we have

(5) λẋ = λ′
ẋ for almost all ẋ(η).

This lemma is due to Bourbaki [1]. The same kind of lemma in the transfor-

mation group case is also obtained [15].

Next, we shall show some examples of Riesz sets in non-Abelian compact

groups.

Example 1. Let U(2) and SU(2) be the unitary group and special unitary
group of dimension 2, repectively. Let ρ be the map of T × SU(2) intoU(2) with
ρ(α, u) = αu.

Then ρ is an onto continuous homomorphism with kernel {(1, E), (−1,−E)},
where E is the unit matrix in SU(2). Evidently, T ∼= {eiθE : 0 ≤ θ <
2π} ⊂ Z(U(2)). Let T(`) be as in [12, (29.13)] (` = 0, 1/2.1, 3/2, ....). Let
U(2)∧ and SU(2)∧ be the dual objects of U(2) and SU(2), respectively. Then
SU(2)∧ = {T(`) : ` = 0, 1/2, 1, 3/2, ...} and U(2)∧ = {τn,` : n = 1, 2, ... and

` = 0, 1/2, 1, 3/2, ..., n + 2` is an even integer } , where τn,`(v) = einθT(`)
u for

v = eiθu ∈ U(2) for u ∈ U(2). (cf. [12, (29.48)]).
Let γ : U(2)∧ → T̂ ∼= Z be the map which appears in (2.1). Then γ(n, `) = n.

Using Theorems 5, 6, and 7, we have the following facts.

( i ) For α > 0, let 4α = {τn,` ∈ U(2)∧ : ` < αn}. Then 4α is a Riesz set in

U(2)∧.
(ii) Let 4 = {τn,` ∈ U(2)∧ : n ≥ 0}. Let µ ∈ M(U(2)), and suppose that

spec(µ) ⊂ 4. Then, spec(µa) and spec(µs) are contained in 4.
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