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MARKOV PROCESSES AND DIFFUSION EQUATIONS

ON UNBOUNDED INTERVALS

Francesco Altomare and Ingrid Carbone

Abstract. This paper deals with some Feller semigroups acting on a particular

weighted function space on [0, +∞[ whose generators are degenerate elliptic
second order differential operators. We show that these semigroups are the

transition semigroups associated with suitable Markov processes on [0, +∞].
Furthermore, by means of a sequence of discrete-type positive operators we

introduced in a previous paper, we evaluate the expected value and the variance

of the random variables describing the position of the processes and we give

an approximation formula (in the weak topology) of the distribution of the

position of the processes at every time, provided the distribution of the initial

position is given and possesses finite moment of order two.

0. INTRODUCTION

In a previous paper [3], we studied the differential operator A : D(A) → W 0
2

defined by

Au(x) :=

{
α(x) u

′′
(x) if x > 0,

0 if x = 0,

where α is a continuous function on [0, +∞[, differentiable at 0 and such that
0 < α0 ≤ α(x)/x ≤ α1 (x ≥ 0) for some α0, α1 ∈ R, D(A) denotes the subspace
of all functions u ∈ W 0

2 ∩ C2(]0, +∞[) such that

lim
x→0+

α(x) u
′′
(x) = lim

x→+∞

α(x) u
′′
(x)

1 + x2
= 0,
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and W 0
2 is the Banach space of all continuous functions f on [0, +∞[ such that

lim
x→+∞

f(x)/(1 + x2) = 0, endowed with the norm

‖f‖ = sup
x≥0

|f(x)|
1 + x2

(f ∈ W 0
2 ).

Among other things, we showed that (A, D(A)) generates a positive C0-semigroup

on W 0
2 .

In this paper, we show that this semigroup is, indeed, the transition semigroup

associated with a suitable right-continuous normal Markov process with state space

[0, +∞] whose paths have left-hand limit a.s.
In fact, this result is a consequence of a general study we carry out in a

preliminary section where we investigate the interplay between Feller semigroups

on weighted function spaces on locally compact spaces having a countable base,

Markov transition functions and Markov processes.

The particular form of the differential operator A, the boundary conditions in-

cluded in its domainD(A) and the spaceW 0
2 imply, respectively, that the probability

that the process reaches 0 after a finite laps of time is strictly positive, the process,
when reaches 0 for the first time, sticks there forever and, finally, the random
variables describing the position of the process at every time have finite variance.

In the final part of the paper, by using a particular sequence of discrete-type

positive operators we introduced and studied in a previous paper [2], we evaluate the

expected value and the variance of the random variables associated with the process

and we give an approximation formula (in the weak topology) of the distributions

of the position of the process at every time provided the distribution of the initial

position is given and possesses finite moment of order two.

1. NOTATION AND PRELIMINARIES

In this section, we shall introduce the function spaces we shall deal with and

we shall recall some definitions and properties concerning Markov processes and

transition functions.

- Weighted function spaces

Throughout the paper we shall denote by X a locally compact Hausdorff space

which has a countable base. These hypotheses guarantee in particular that X is

metrizable and countable at infinity, and that its one-point-compactificationX∞ :=
X ∪ {∞}, where ∞ denotes the point at infinity of X , is metrizable too.

We shall denote by B(X) the σ-algebra of all Borel sets of X and by M+(X)
(resp.,M+

b (X)) the cone of all positive (resp., positive and bounded) Borel measures
on X.
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We shall also denote by C(X) the vector space of all real-valued continuous
functions on X , and by K(X) the subspace of C(X) of all functions whose support
is compact.

Moreover, we shall consider the following vector subspaces of C(X): the space
Cb(X) of all real-valued bounded continuous functions on X , the space C∗(X) of
all functions f ∈ C(X) such that lim

x→∞
f(x) exists in R, and the space C0(X) of

all functions f ∈ C(X) such that lim
x→∞

f(x) = 0. The spaces Cb(X), C∗(X) and

C0(X), endowed with the natural order and the norm ‖ · ‖∞ defined, on each of

them, by

‖f‖∞ := sup
x∈X

|f(x)|,(1.1)

become Banach lattices.

Throughout the paper we shall fix a function w such that

w ∈ C0(X) and w(x) > 0 for every x ∈ X,(1.2)

and we shall consider the space Cw
b (X) of all functions f ∈ C(X) such that

wf ∈ Cb(X). This space becomes a Banach lattice if endowed with the natural
order and the norm ‖ · ‖w defined by

‖f‖w := ‖wf‖∞ (f ∈ Cw
b (X)).(1.3)

Our interest will be mainly devoted to the space Cw
0 (X), which is the Banach

sublattice of Cw
b (X) of all functions f ∈ C(X) such that wf ∈ C0(X).

We note that, by virtue of hypothesis (1.2), one has

‖f‖w ≤ ‖w‖∞‖f‖∞ for every f ∈ Cb(X),(1.4)

and the following inclusions hold true:

K(X) ⊂ C0(X) ⊂ C∗(X) ⊂ Cb(X) ⊂ Cw
0 (X) ⊂ Cw

b (X) ⊂ C(X).(1.5)

We also recall that for every positive linear form T : Cw
0 (X) → R, there exists

a unique regular Borel measure µ ∈ M+
b (X) such that wf ∈ L1(X,B(X), µ) and

T (f) =
∫

X

fwdµ for every f ∈ Cw
0 (X)(1.6)

(see [11, Theorem 5.42]).

Furthermore, the spaces C∗(X) and C(X∞) can be naturally identified. More
precisely, if for every f ∈ C∗(X) we denote by f̃ its continuous extension on X∞
defined by

f̃ (x) :=

{
f(x) if x ∈ X,

lim
x→∞

f(x) if x = ∞,(1.7)
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then the application from C∗(X) into C(X∞) which maps f into its extension f̃ is

an isometric isomorphism of Banach lattices.

More generally, every function f : X → R can be extended on X∞ by setting

f∗(x) :=
{

f(x) if x ∈ X,

0 if x = ∞.
(1.8)

Obviously, f̃ = f∗ for every f ∈ C0(X) and, moreover, f∗ is B(X∞)-
measurable if f is B(X)-measurable.

If µ denotes a Borel measure on B(X∞) such that µ({∞}) = 0, we shall say
that a B(X)-measurable function f : X → R is µ-integrable if f∗ is µ-integrable.
In this case, we shall set

∫

X
fdµ :=

∫

X∞

f∗dµ.(1.9)

In this case, if we denote by restB(X) µ the restriction of µ on B(X), we also
have that f is restB(X) µ- integrable and

∫

X

fd
(
restB(X)µ

)
=

∫

X

fdµ.(1.10)

Now we present a result concerning the convergence of integrals with respect

to finite Borel measures, which will be useful in Section 3.

We shall denote by 1 the constant function of value 1.

Proposition 1.1. Let w be a function satisfying hypothesis (1.2) such that
w(x) ≤ 1 for every x ∈ X, and let (µn)n≥1 and µ be in M+

b (X). Let us suppose
that

( i ) lim
n→∞

∫

X
1dµn =

∫

X
w dµ

and

( ii ) lim
n→∞

∫

X

g dµn =
∫

X

gw dµ for every g ∈ K(X).

If f ∈ Cw
b (X) and if

(iii) K := supn≥1

∫

X

|f |pdµn < +∞ for some p ∈ R, p > 1,

then

lim
n→∞

∫

X
f dµn =

∫

X
fw dµ.

Proof. We preliminarily note that each f ∈ Cw
b (X) satisfying (iii) belongs to

L1(X,B(X), µn) for every n ≥ 1 since µn is finite.
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Moreover, we note that, since
∫

X
1dµ = µ(X) = sup

g∈K(X),0≤g≤1

∫

X
g dµ,

for every fixed ε > 0 there exists g ∈ K(X), 0 ≤ g ≤ 1, such that
∫

X
(1− g)dµ ≤ min

{
ε

3(‖f‖w + 1)
,

(
ε

3K
1
p

)q}
,(1)

where q denotes the conjugate exponent of p, i.e., q = p/(p − 1).
Furthermore, for every n ≥ 1, from (iii) we obtain that |f |p ∈ L1(X,B(X), µn)

and, since 0 ≤ (1 − g)q ≤ 1 − g ∈ L1(X,B(X), µn), we have that (1 − g)q ∈
L1(X,B(X), µn). Taking the above remarks into account, from (iii) and Hölder’s
inequality we get

(2)

∣∣∣∣
∫

X
f dµn −

∫

X
fw dµ

∣∣∣∣ ≤
∣∣∣∣
∫

X
fdµn −

∫

X
fgdµn

∣∣∣∣

+
∣∣∣∣
∫

X
fg dµn −

∫

X
fgw dµ

∣∣∣∣ +
∣∣∣∣
∫

X
fgw dµn −

∫

X
fw dµ

∣∣∣∣

≤
∫

X
|f |(1− g)dµn +

∣∣∣∣
∫

X
fg dµn −

∫

X
fgw dµ

∣∣∣∣

+
∫

X

|fw|(1− g)dµ ≤
(∫

X

|f |pdµn

) 1
p

(∫

X

(1− g)qdµn

) 1
q

+
∣∣∣∣
∫

X
fg dµn −

∫

X
fgw dµ

∣∣∣∣ + ‖f‖w

∫

X
(1− g)dµ

≤ K
1
p

(∫

X
(1− g)dµn

) 1
q

+
∣∣∣∣
∫

X
fg dµn −

∫

X
fgw dµ

∣∣∣∣ + ‖f‖w

∫

X
(1− g)dµ.

On the other hand, from (i), (ii), (1) and the hypothesis on w we infer that

On the other hand, from (i), (ii), (1) and the hypothesis on w we infer that

lim
n→∞

∫

X
(1− g)dµn =

∫

X
(1− g)wdµ ≤

∫

X
(1− g)dµ ≤

(
ε

3K
1
p

)q

(3)

and

lim
n→∞

∫

X
fgdµn =

∫

X
fgwdµ.

Hence, there exists ν ∈ N such that, for every n ≥ ν, we have
∫

X
(1− g)dµn ≤

(
ε

3K
1
p

)q

(4)
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and
∣∣∣∣
∫

X
fg dµn −

∫

X
fgw dµ

∣∣∣∣ ≤
ε

3
.(5)

Consequently, by inserting (3), (4) and (5) in (2), we obtain

∣∣∣∣
∫

X
f dµn −

∫

X
fw dµ

∣∣∣∣ ≤ ε for every n ≥ ν,

and hence the result follows.

Remark 1.2. Note that, as the above proof shows, Proposition 1.1 holds true

simply by assuming that w ∈ Cb(X) and 0 ≤ w ≤ 1.

- Transition functions and Markov processes

Now we recall some definitions concerning Markov processes.

A family of functions Pt : X×B(X) → R (t ≥ 0) is called a Markov transition
function on X , and we shall briefly denote it by (Pt)t≥0, if it satisfies the following

conditions:

1) Pt(x, ·) is a positive Borel measure on B(X) and Pt(x, X) ≤ 1 for every
t ≥ 0 and x ∈ X ;

2) Pt(·, B) is a Borel measurable function for every t ≥ 0 and B ∈ B(X);

3) P0(x, {x}) = 1 for every x ∈ X ;

4) Ps+t(x, B) =
∫

X
Ps(·, B) dPt(x, ·) for every s, t ≥ 0, x ∈ X andB ∈ B(X)

(the Chapman- Kolmogorov equation).

Moreover, (Pt)t≥0 is called normal if

lim
t→0+

Pt(x, X) = 1 for every x ∈ X ;(1.11)

the family is also said to be uniformly stochastically continuous on X if for every

ε > 0 and for every compact K ⊂ X we have

lim
t→0+

sup
x∈K

[1− Pt(x, Uε(x))] = 0,(1.12)

where Uε(x) := {y ∈ X |d(x, y) < ε} (here d denotes the distance on X).

We also recall that a Markov process with state space X is a quadruple (Ω, U ,
(P x)x∈X , (Zt)t≥0), where (Ω, U) denotes a measurable space, (P x)x∈X a family

of probability measures on U , and (Zt)t≥0 a family of (U,B(X))- random variables
from Ω into X such that the function x 7−→ P x(A) is Borel measurable for every
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A ∈ U and P x{Zs+t ∈ B|Us} = PZs{Zt ∈ B} P x- a.s. for every s, t ≥ 0, x ∈ X

and B ∈ B(X).
Here Us denotes the σ-algebra generated by (Zu)0≤u≤s, PZs{Zt ∈ B} the

random variable ω 7−→ PZs(ω){Zt ∈ B} and P x{Zs+t ∈ B|Us} is the conditional
probability of {Zs+t ∈ B} given Us.

The Markov process (Ω, U, (P x)x∈X , (Zt)t≥0) is called normal if

P x{Z0 = x} = 1 for every x ∈ X.(1.13)

Intuitively, we may think of a particle which moves in X randomly after an

experiment ω ∈ Ω. Then Zt(ω) represents the position of the particle at time t ≥ 0.
If B is a Borel subset of X , P x{Zt ∈ B} is the probability that the particle starting
at position x will be found in the set B at time t.

Moreover, for every ω ∈ Ω the mapping t 7−→ Zt(ω) is called a path of the
process and the Markov process (Ω, U, (P x)x∈X , (Zt)t≥0) is called right-continuous
if, for every x ∈ X , one has

P x{ω ∈ Ω|t 7−→ Zt(ω) is right-continuous on [0, +∞[} = 1.(1.14)

We shall also need to consider the random variable ζ : Ω → R̃ defined by

ζ(ω) := inf{t ∈ [0, +∞[|Zt(ω) = ∞} (ω ∈ Ω)(1.15)

(with the convention inf ∅ = +∞), called the life-time of the process.
At this point we recall how it is possible to associate to each Markov process a

Markov transition function, and to the last one a semigroup of operators satisfying

suitable properties (for more details, see [1] and [13]).

If (Ω, U, (P x)x∈X , (Zt)t≥0) is a Markov process with state space X , by putting

Pt(x, B) :=P x(Zt ∈ B) = P x
Zt

(B) for every t ≥ 0, x ∈ X

and B ∈ B(X),
(1.16)

where P x
Zt
denotes the distribution of the random variable Zt, we obtain a Markov

transition function (Pt)t≥0 on X (and, conversely, each normal Markov transition

function onX corresponds to someMarkov process with state spaceX [13, Theorem

9.1.6]).

Furthermore, if (Pt)t≥0 is a Markov transition function on X , by putting, for
every t ≥ 0,

T (t)f(x) :=
∫

X

fdPt(x, ·)(1.17)

for every x ∈ X and for every Borel measurable and bounded function f : X → R,
we obtain a positive semigroup (T (t))t≥0 of contractions (with respect to the sup-

norm) on the space of real-valued Borel measurable and bounded functions on
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X . The semigroup (T (t))t≥0 is called the transition semigroup associated with

the Markov transition function (Pt)t≥0 or, equivalently, with the Markov process

(Ω, U, (P x)x∈X , (Zt)t≥0), if (Pt)t≥0 is given by (1.16). In the last case, we can

also write

T (t)f(x) =
∫

X
f dP x

Zt
=

∫

Ω
f ◦ Zt dP x = Ex(f(Zt)),(1.18)

where Ex(f(Zt)) denotes the expected value (with respect to P x) of the random

variable f(Zt).
Finally, we recall that a semigroup (T (t))t≥0 on Cb(X) is called a Feller semi-

group if it is strongly continuous on Cb(X), T (t) is positive and ‖T (t)‖ ≤ 1 for
every t ≥ 0, while a Markov transition function (Pt)t≥0 on X is called a Feller

function (resp., a C0-function) if the semigroup (T (t))t≥0 given by (1.17) leaves

invariant the space Cb(X) (resp., the space C0(X)).
For more details on the deep relations between Markov processes, Markov tran-

sition functions and Feller semigroups, see, e.g., [1, 7, 13].

2. POSITIVE SEMIGROUPS ON WEIGHTED FUNCTION SPACES, FELLER FUNCTIONS

AND MARKOV PROCESSES

In this section, we shall study the relationship between semigroups on the space

Cw
0 (X) and Markov processes with state space X∞.

Let (T (t))t≥0 be a positive semigroup on Cw
0 (X) and, for every t ≥ 0 and

x ∈ X , let us consider the positive linear form Tx,t on Cw
0 (X) defined by

Tx,t(f) := T (t)f(x) (f ∈ Cw
0 (X)).(2.1)

By virtue of (1.6), there exists a unique regular Borel measure µx,t ∈ M+
b (X)

such that wf ∈ L1(X,B(X), µx,t) and

T (t)f(x) = Tx,t(f) =
∫

X
fwdµx,t for every f ∈ Cw

0 (X).(2.2)

As regards the measure wµx,t, we note that it is also finite, since 1 ∈ Cw
0 (X)

and, from (2.2), it follows that

(wµx,t)(X) =
∫

X
wdµx,t = T (t)1(x) ∈ R.(2.3)

At this point we prove the following result.

Theorem 2.1. Let (T (t))t≥0 be a positive semigroup on Cw
0 (X). Then the

following statements are equivalent :
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a) (i) T (t)(C∗(X)) ⊂ C∗(X) and T (t)1=1 for every t ≥ 0;
(ii) lim

t→0+
‖T (t)f − f‖∞ = 0 for every f ∈ C∗(X).

b) There exists a uniformly stochastically continuous normal Feller function (Pt)t≥0

on X∞ such that

(i) Pt(x, {∞}) = 0 for every t ≥ 0 and x ∈ X ;
(ii) if t ≥ 0 and x ∈ X, then each f ∈ C∗(X) is Pt(x, ·) - integrable and

T (t)f(x) =
∫

X
fdPt(x, ·) =

∫

X∞

f̃ dPt(x, ·).(2.4)

Furthermore, if a) or b) holds, then

1) for every t ≥ 0 and x ∈ X, one has that restB(X)Pt(x, ·) = wµx,t, where µx,t

is the finite regular Borel measure associated with (T (t))t≥0 by (2.2); in particular,
1/w is Pt(x, ·) - integrable;

2) if t ≥ 0 and x ∈ X, then each f ∈ Cw
0 (X) is Pt(x, ·) - integrable and

T (t)f(x) =
∫

X
fwdµx,t =

∫

X
fdPt(x, ·) =

∫

X∞

f∗dPt(x, ·);(2.5)

3) there exists a right-continuous normal Markov process (Ω, U, (P x)x∈X∞,

(Zt)t≥0) with state space X∞, whose paths have left-hand limits on [0, ζ[ a.s., such
that

P x
Zt

(B) = Pt(x, B) for every t ≥ 0, x ∈ X and B ∈ B(X∞),(2.6)

i.e., P x
Zt

= Pt(x, ·). Thus P x{Zt = ∞} = 0 and 1/w as well as all f ∈ Cw
0 (X)

are P x
Zt
- integrable and

T (t)f(x) =
∫

X
fdP x

Zt
= Ex(f∗(Zt)).(2.7)

Proof. a)=⇒b): By virtue of the identification between C∗(X) and C(X∞)
shown in the previous section and the hypotheses (i) and (ii), (T (t))t≥0 can be

regarded as a Feller semigroup on C(X∞). Consequently (see, e.g., [1, Theorem
1.6.14]), (T (t))t≥0 becomes the transition semigroup of a uniformly stochastically

continuous normal Feller function (Pt)t≥0 on X∞ (see (1.11) and (1.12)) such that

T (̃t)f(x) =
∫

X∞

f̃dPt(x, ·) for every t ≥ 0, x ∈ X∞ and f ∈ C∗(X).

Here f̃ and T (̃t)f denote, respectively, the continuous extension on X∞ of f and
T (t)f defined by (1.7). In particular, if x ∈ X one gets

T (t)f(x) =
∫

X∞

f̃ dPt(x, ·).(1)
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In order to prove (i), it will be sufficient to show that Pt(x, X) = 1 for every
t ≥ 0 and x ∈ X .

We preliminarily note that, since X is also countable at infinity, there ex-

ists an increasing sequence (un)n≥1 in K(X) such that each un is positive and

supn≥1 un = 1. Moreover, denoting by 1X the characteristic function of X in X∞,

one also has that supn≥1 ũn = 1X . For given t ≥ 0 and x ∈ X , taking (1) and
formula (2.2) into account, from the Beppo Levi Theorem it follows that

Pt(x, X)=
∫

X∞

1XdPt(x, ·) = sup
n≥1

∫

X∞

ũndPt(x, ·)

= sup
n≥1

T (t)un(x) = sup
n≥1

∫

X
unwdµx,t

=
∫

X

(
sup
n≥1

un

)
wdµx,t =

∫

X
w dµx,t = T (t)1(x) = 1.

Hence (i) is proved.

In order to show (ii), we observe that if f ∈ C∗(X), then f̃ = f∗ = f on X,
i.e., Pt(x, ·) - a.e. and, consequently, f∗ is Pt(x, ·) - integrable and, for every t ≥ 0
and x ∈ X ,

∫

X∞

f∗dPt(x, ·) =
∫

X∞

f̃dPt(x, ·).(2)

Hence f is Pt(x, ·) - integrable and, by virtue of (1) and (2), for every t ≥ 0
and x ∈ X we have

T (t)f(x) =
∫

X∞

f̃dPt(x, ·) =
∫

X∞

f∗dPt(x, ·) =
∫

X
fdPt(x, ·).

And this completes the proof of part b).

b)=⇒a): From the hypothesis b) it follows that, if we consider for every t ≥ 0
the operator S(t) : C(X∞) → C(X∞) defined by

S(t)f(x) :=
∫

X∞

fdPt(x, ·) (f ∈ C(X∞), x ∈ X∞),(3)

then (S(t))t≥0 is a Feller semigroup on C(X∞) (see, e.g., [1, Theorem 1.6.14] and
[13, Remark 9.1.10 and Theorem 9.2.6]).

If f ∈ C∗(X), for every t ≥ 0 and x ∈ X , by virtue of the hypotheses and (3)
we can write

T (t)f(x) =
∫

X∞

f̃dPt(x, ·) = S(t)f̃(x),(4)
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and, hence, T (t)f = S(t)f̃|X and, consequently, T (t)f ∈ C∗(X) and T (̃t)f =
S(t)f̃ .

Moreover, from (4) it follows that

T (t)1(x) = S(t)1̃(x) =
∫

X∞

1̃dPt(x, ·) = Pt(x, X∞) = 1,

which proves (i).

As regards (ii), for every f ∈ C∗(X) and t ≥ 0, denoting by ‖ · ‖ the sup-norm
on C(X∞), one has

‖T (t)f − f‖∞ = ‖T (̃t)f − f̃‖ = ‖S(t)f̃ − f̃‖ → 0 (t → 0+).

And hence part a) is completely proved.

Let us suppose, now, that one, and hence both properties a) or b) are satisfied.

We remark that, for every fixed t ≥ 0 and x ∈ X , wµx,t and restB(X)Pt(x, ·) are
both regular Borel measures in M+

b (X), and that, by virtue of the representation
formula (2.2), hypothesis b)(ii) and identity (2), one has

∫

X

fwdµx,t = T (t)f(x) =
∫

X∞

f̃dPt(x, ·) =
∫

X

fd
(
restB(X)Pt(x, ·)

)

for every f ∈ K(X).
By the uniqueness in the Riesz representation theorem (see, e.g., [1, Theorem

1.2.4]), the above two measures coincide, and then 1) is proved.

As regards 2), we note that every function f ∈ Cw
0 (X) is Borel-measurable and,

from (2.2) and part 1) just proved, it follows that

∫

X∞

|f∗|dPt(x, ·)=
∫

X
|f∗|dPt(x, ·)

=
∫

X

|f |d
(
restB(X)Pt(x, ·)

)

=
∫

X
|f |wdµx,t < +∞,

i.e., f∗ is Pt(x, ·) - integrable. Hence, f is Pt(x, ·)- integrable and, from (2.2) and
1) one has

∫

X
fdPt(x, ·)=

∫

X∞

f∗dPt(x, ·) =
∫

X
f∗dPt(x, ·)

=
∫

X
fd

(
restB(X)Pt(x, ·)

)
=

∫

X
fwdµx,t = T (t)f(x),

which proves 2).
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Finally, part 3) is a direct consequence of a result of [7] (see, also, [1, Theorem

1.6.14]).

Remark 2.2. As the final part of the proof shows, the Markov process described

in part 3) of the above theorem depends on the restriction of the semigroup (T (t))t≥0

on C∗(X) only.
Therefore, if ρ ∈ C0(X) is another weight satisfying (1.2) and if (S(t))t≥0 is

another positive semigroup on Cρ
0 (X) satisfying part a) of Theorem 2.1 and such

that

S(t) = T (t) on C∗(X) for every t ≥ 0,

then their corresponding Markov processes are the same.

If in part a) of the above theorem one replaces C∗(X) with C0(X), then one
gets a Feller C0- function on X .

Theorem 2.3. Let (T (t))t≥0 be a positive semigroup on Cw
o (X). Then the

following statements are equivalent :

a) (i) T (t)(C0(X)) ⊂ C0(X) and T (t)1=1 for every t ≥ 0;
(ii) lim

t→0+
‖T (t)f − f‖∞ = 0 for every f ∈ C0(X).

b) There exists a uniformly stochastically continuous normal Feller C0-function

(Pt)t≥0 on X such that

(i) for every s > 0 and for every compact K ⊂ X one has

lim
x→∞

sup
0≤t≤s

Pt(x, K) = 0;

(ii) for every t ≥ 0, x ∈ X and f ∈ C0(X) one has

T (t)f(x) =
∫

X
fdPt(x, ·).

Moreover, if a) or b) holds, then

1) for every t ≥ 0 and x ∈ X one has that Pt(x, ·) = wµx,t, where µx,t is the

finite regular Borel measure associated with (T (t))t≥0 by (2.2); in particular, 1/w

is Pt(x, ·) - integrable;
2) if t ≥ 0 and x ∈ X, then each f ∈ Cw

0 (X) is Pt(x, ·) - integrable and

T (t)f(x) =
∫

X

fdPt(x, ·) =
∫

X

fwdµx,t;

3) there exists a right-continuous normal Markov process (Ω, U, (P x)x∈X ,
(Zt)t≥0) with state space X, whose paths have left-hand limits on [0, ζ[ a.s., such
that

P x
Zt

(B) = Pt(x, B) for every t ≥ 0, x ∈ X and B ∈ B(X).
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Therefore, 1/w and each f ∈ Cw
0 (X) are P x

Zt
- integrable and

T (t)f(x) =
∫

X
fdP x

Zt
= Ex(f(Zt)).

Proof. As regards the equivalence between a) and b), apply Theorem 9.2.6 of

[13]. As regards the remaining statements, take Theorem 9.1.9 of [13] into account,

and adapt the proof of the corresponding part of Theorem 2.1.

We conclude this section by presenting a simple characterization of properties (i)

and (ii) of part a) of Theorems 2.1 and 2.3, respectively, in terms of the infinitesimal

generator of the semigroup.

Proposition 2.4. Let (T (t))t≥0 be a positive semigroup on Cw
0 (X) with infin-

itesimal generator (A, D(A)). Then properties (i) and (ii) of part a) of Theorem
2.1 (Theorem 2.3, respectively) are satisfied if and only if the following conditions
hold true:

1) 1 ∈ D(A) and A(1) = 0;
2) There exists a subspace D0 of D(A)∩C∗(X) (of D(A)∩C0(X), resp.) which
is dense in C∗(X) (in C0(X), resp.) for the uniform norm such that

I) A(D0) ⊂ C∗(X) (A(D0) ⊂ C0(X), resp.);
II) A|D0

is closable in C∗(X) (in C0(X), resp.) and its closure is the infinites-
imal generator of a Feller semigroup on C∗(X) (on C0(X), resp.).

Proof. If T (t)1=1 for every t ≥ 0, then lim
t→0+

(T (t)1-1)/t = 0 and hence 1 ∈
D(A) and A(1) = 0. Conversely, if 1 ∈ D(A) and A(1) = 0, then the two
functions u(t) := 1 and T (t)1(t ≥ 0) are both solutions of the Cauchy problem
u̇(t) = Au(t)(t ≥ 0), u(0) = 1. Therefore T (t)1 = u(t) = 1 for each t ≥ 0.

Assume now that properties (i) and (ii) of part a) of Theorem 2.1 are satisfied

and set T̃ (t) := T (t)|C∗(X)(t ≥ 0). Then (T̃(t))t≥0 is a Feller semigroup on C∗(X)
and let (Ã, D(Ã)) be its infinitesimal generator.

If u ∈ D(Ã), then lim
t→0+

(T̃(t)u − u)/t exists with respect to ‖.‖∞ and hence

with respect to ‖.‖w. So, u ∈ D(A) and Au = Ãu.

Thus conditions I) and II) follow by setting D0 := D(Ã).

Conversely, assume that conditions 1) and 2) hold true. Set A∗ := A|D0
: D0 →

C∗(X) and denote by (Ã, D(Ã)) its closure in C∗(X). Finally, denote by (T̃(t))t≥0

the Feller semigroup on C∗(X) generated by Ã.
Note that D(Ã) ⊂ D(A) and A|D(Ã) = Ã, because A|D(A)∩C∗(X) is closed

with respect to the uniform norm as well.
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Fix now u0 ∈ D(Ã) and consider the following Cauchy problems:

u̇(t) = Ãu(t) = A u(t) in C∗(X), t ≥ 0, u(0) = u0,(1)

v̇(t) = A v(t) in Cw
0 (X), t ≥ 0, v(0) = u0.(2)

The function u(t) := T̃ (t)u0(t ≥ 0) is a solution of (1) and hence of (2) and
so T̃ (t)u0 = T (t)u0 for every t ≥ 0.

Since D(Ã) is dense in C∗(X) and the operators T̃ (t) and T (t) are continuous
from (C∗(X), ‖.‖∞) into (C∗(X), ‖.‖w), we infer that T̃ (t) = T (t) on C∗(X)
for each t ≥ 0 and so part a) of Theorem 2.1 follows.

The respective part of the statement follows by replacing C∗(X) with C0(X)
in the above proof.

3. MARKOV PROCESSES ASSOCIATED WITH DIFFUSION EQUATIONS ON [0, +∞[

This is the main section of the paper. We shall construct a Markov process

associated with a class of degenerate diffusion equations on [0, +∞[ and we shall
study some properties of it.

Consider the locally compact space X = [0, +∞[ and the weight w2 defined

by

w2(x) :=
1

1 + x2
(x ≥ 0).(3.1)

The corresponding space Cw
0 (X) will be denoted by W 0

2 , and we shall consider

it endowed with the norm ‖ · ‖2 defined by

‖f‖2 := sup
x≥0

|f(x)|
1 + x2

(f ∈ W 0
2 )(3.2)

(see (1.2) and (1.3)).

For a given function α ∈ C([0, +∞[), let us consider the differential operator
A : D(A) → W 0

2 defined by

Af(x) :=

{
α(x)f

′′
(x) if x > 0,

0 if x = 0,
(3.3)

for every f ∈ D(A), where the domain D(A) of A is the subspace of all functions

f ∈ W 0
2 ∩ C2(]0, +∞[) satisfying the conditions

lim
x→0+

α(x)f
′′
(x) = 0 and lim

x→+∞

α(x)
1 + x2

f
′′
(x) = 0.(3.4)



Markov Processes and Diffusion Equations 155

In [3, Corollary 4.4] we proved that, under the following additional assump-

tions:

α is differentiable at 0,(3.5)

there exist α0, α1 ∈ R such that 0 < α0 ≤ α(x)
x

≤ α1 for every x ≥ 0,(3.6)

the differential operator (A, D(A)) generates a positive C0-semigroup (T (t))t≥0 on

W 0
2 such that T (t)1=1 for every t ≥ 0.
Moreover,

T (t)(C∗([0, +∞[)) ⊂ C∗([0, +∞[) for every t ≥ 0(3.7)

and

(T (t))t≥0 is strongly continuous on C∗([0, +∞[)(3.8)

(see [3, Remark 4.5]).

Hence, from Theorem 2.1 we immediately obtain the following result.

Theorem 3.1. Let (T (t))t≥0 be the semigroup generated on the space W 0
2 by

the differential operator (A, D(A)) defined by (3.3) and (3.4) under the conditions
(3.5) and (3.6).

Then there exists a right-continuous normalMarkov process (Ω, U, (P x)0≤x≤+∞,

(Zt)t≥0) with state space [0, +∞], whose paths have left-hand limits on [0, ζ[ a.s.,
such that

1) P x{Zt = +∞} = 0 for every t ≥ 0 and x ≥ 0;
2) for every t ≥ 0 and x ≥ 0, there exists a unique regular Borel measure

µx,t ∈ M+
b ([0, +∞[) such that

restB([0,+∞[) P x
Zt

= w2µx,t.

Thus, 1/w2 is P x
Zt
- integrable, i.e.,

∫ +∞

0
u2dP x

Zt
(u) < +∞. Moreover, each

f ∈ W 0
2 is P x

Zt
- integrable and

T (t)f(x) =
∫ +∞

0
fw2 dµx,t =

∫ +∞

0
f dP x

Zt
= Ex(f∗(Zt))(3.9)

for every t ≥ 0 and x ≥ 0.

The parabolic equation associated with the differential operator (3.3), i.e., the

differential equation

∂u

∂t
(x, t) = α(x)

∂2u

∂t2
(x, t) (x ≥ 0, t ≥ 0),(3.10)
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is a degenerate diffusion equation and represents the Kolmogorov’s backward equa-

tion of the normal Markov process described in the above theorem; the variance

instantaneous velocity and the mean instantaneous velocity of the process at a posi-

tion x ∈ [0, +∞] are α(x) and zero, respectively.
According to the terminology introduced by [8], 0 is an exit boundary point for

the process. From a probabilistic point of view, this means that the probability that

a particle (the process) located in ]0, +∞[ will reach 0 after a finite lap of time is
strictly positive.

The first of the two conditions of (3.4) implies that when the particle reachs 0

for the first time, it sticks there forever [13, §§ 1.7, 1.8].
The second condition implies that Zt is P x- square integrable, i.e., its variance

is finite.

Our next aim is to determine the expected value Ex(Zt) and the variance
Varx(Zt) of the random variables Zt with respect to P x, and to give an approxima-

tion formula of the distribution of the position at every time. In particular, we shall

prove the following results.

Theorem 3.2. Under the same hypotheses of Theorem 3.1, for every t ≥ 0 and
x ≥ 0 one gets

( i ) Ex(Zt) = x;
( ii ) Varx(Zt) = α0tx if there exists α0 ∈ R such that α(x) = (α0/2)x (x ≥ 0);
(iii) cλ0tx ≤ Varx(Zt) ≤ ctx, where λ0 := infx>0(2/c)(α(x)/x) and c :=

sup
x>0

2(α(x)/x).

As regards the approximation of the distribution of the position we shall show

that the Markov process considered in this section can be interpreted as a limit of

random walks, provided α(x) = (α0/2)x (x ≥ 0).
For every n ≥ 1, set

∆n :=
{

h

n
| h ∈ N

}
(3.11)

and for every x ∈ ∆n, consider the Borel measure ρn,x on ∆n defined by

ρn,x :=
∞∑

h=0

e−nx (nx)h

h!
ε h

n
,(3.12)

where εh/n denotes the unit mass at h/n.

Consider the random walk
(

∆n,
1
n

, (ρn,x)x∈∆n

)
(3.13)
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having ∆n as support, 1/n as basic time-interval and (ρn,x)x∈∆n as one-step transi-

tion probability distributions. This means that, if a particle is at a position x ∈ ∆n

at time h/n(h ∈ N), then it remains at x during the interval [h/n, (h + 1)/n[, and
at the time (h+1)/n it jumps so that the probability that it goes to any Borel subset
B of ∆n is ρn,x(B).

The family (ρn,x)x∈∆n determines a linear operator Tn from the space B∗
2(∆n)

of all real-valued Borel measurable functions f on ∆n such that sup
h≥0

(w2f)(h/n) <

+∞ into itself, which is defined as

Tn(f)(x) :=
∫

∆n

f dρn,x (f ∈ B∗
2(∆n), x ∈ ∆n).(3.14)

The operator Tn is called the one-step transition operator of the random walk.

If a Borel probability measure µ on ∆n gives the distribution of the initial

position of the particle, then the Borel probability measure Tn(µ) on ∆n defined

by

Tn(µ)(B) :=
∫

∆n

ρn,x(B) dµ(x) =
∫

∆n

Tn(1B) dµ (B ∈ B(∆n))(3.15)

(here 1B denotes the characteristic function of B), gives the distribution for its
position after the first jump and, for p ≥ 2, T p

n(µ) is the distribution for its position
after the pth jump, where

T p
n(µ) := Tn

(
T p−1

n (µ)
)
.(3.16)

(For more details on random walks, see, e.g., [6, pp. 190-191] and [14, Sect. 6].)

Finally, if ν ∈ M+
b ([0, +∞[), for every t ≥ 0 we shall denote by T (t)(ν) the

Borel measure on [0, +∞[ such that
∫ +∞

0

fd(T (t)(ν)) =
∫ +∞

0

T (t)(f)dν(3.17)

for every f ∈ Cb([0, +∞[).
If ν is a probability measure which gives the distribution of the initial position of

the particle whose motion is described by the Markov process described in Theorem

3.1, then T (t)(ν) gives the distribution of the position at time t.

Theorem 3.3. Assume that α(x) = (α0/2)x (x ≥ 0). Then the sequence of
random walks (3.13) W 0

2 -converges to the Markov process described in Theorem

3.1 in the following sense:

(i) For every Borel probability measure µ ∈ M+([0, +∞[) such that 1/w2 is µ-

integrable (i.e., the second moment of µ is finite), there exists a sequence (µn)n≥1
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of Borel probability measures in M+([0, +∞[) such that 1/w2 is µn- integrable

and Supp µn ⊂ ∆n for each n ≥ 1, and

µ = lim
n→∞

µn weakly.(3.18)

(ii) For every µ ∈ M+
b ([0, +∞[) and for every sequence (µn)n≥1 inM+

b ([0, +∞[)
as above, for every t ≥ 0 and for every sequence (k(n))n≥1 of positive integers

such that lim
n→∞

k/(n)/n = ct (for instance, k(n) = [cnt], n ≥ 1, where [·] denotes
the integer part), we have

T (t)(µ) = lim
n→∞

T k(n)
n (µn) weakly.(3.19)

In order to present the proofs of Theorems 3.2 and 3.3, it is necessary to recall

some results concerning a sequence of positive linear operators of discrete type

introduced and studied in [2, 3, 5], to which we refer for further details.

In [3] we give, in particular, a representation of the semigroup (T (t))t≥0 in

terms of the iterates of the operators mentioned above, and such a representation

will be essential in order to obtain the results contained in Theorem 3.2.

- The positive approximation process

We first point out that, if the function α satisfies the assumptions (3.5) and

(3.6), then we can write

α(x) = c
xλ(x)

2
(x ≥ 0),(3.20)

where

c := sup
x>0

2
α(x)

x
(3.21)

and

λ(x) :=

{
2
c

α(x)
x if x > 0,

2
c α

′
(0 if x = 0.

(3.22)

Hence λ ∈ C([0, +∞[) and 0 < (2/c)α0 ≤ λ(x) ≤ 1 for every x ≥ 0.
For every β > 0, we denote by Eβ the subspace of C([0, +∞[) of all functions

f ∈ C([0, +∞[) such that supx≥0 e−βx|f(x)| < +∞. The space Eβ, endowed
with the natural order and the norm ‖ · ‖β defined by

‖f‖β := sup
x≥0

e−βx|f(x)| (f ∈ Eβ),(3.23)
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is a Banach lattice.

We also set E∞ := ∪β>0Eβ.

Given a function λ ∈ Cb([0, +∞[) such that 0 ≤ λ(x) ≤ 1(x ≥ 0), we set

Mn,λ(f)(x) :=
n∑

p=0

(
n

p

)
λ(x)p(1− λ(x))n−pe−px

∞∑

h=0

(px)h

h!
f

(
h

n
+

(
1 − p

n

)
x

)(3.24)

for every f ∈ E∞, x ≥ 0 and n ≥ 1.
The operators Mn,λ are positive, linear and continuous on several subspaces of

E∞. In particular, they mapW 0
2 into itself, are continuous, and, for every f ∈ W 0

2 ,

lim
n→∞

Mn,λ(f) = f in W 0
2(3.25)

(see [3, Corollary 2.5]).

In [3, Corollary 4.4]), we also showed that, if α ∈ C([0, +∞[) satisfies condi-
tions (3.5) and (3.6), and if (T (t))t≥0 is the semigroup generated on the space W 0

2

by the differential operator (A, D(A)) defined by (3.3) and (3.4), then for every
sequence (k(n))n≥1 of positive integers such that limn→∞ k(n)/n = ct, one has

T (t)f = lim
n→∞

M
k(n)
n,λ f in W 0

2 ,(3.26)

and hence uniformly on compact subsets of [0, +∞[, where M
k(n)
n,λ denotes the

iterate of order k(n) of the operator Mn,λ.

We remark that, when λ = 1, the operators Mn,λ become the Favard- Szász-

Mirakjan operators Mn defined by

Mn(f)(x) :=
∞∑

h=0

e−nx (nx)h

h!
f

(
h

n

)
(f ∈ E∞, x ≥ 0, n ≥ 1).(3.27)

On the other hand, the operatorsMn,λ can be expressed in terms of the operators

Mn via the formula

Mn,λ(f)(x) =
n∑

p=0

(
n

p

)
λ(x)p(1− λ(x))n−pMp(fn,p,x)(x)(3.28)

for every f ∈ E∞, x ≥ 0 and n ≥ 1. Here M0 denotes the identity operator and

fn,p,x is the function defined by

fn,p,x(t) := f
( p

n
t +

(
1 − p

n

)
x
)

(t ≥ 0).(3.29)
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For each p ∈ N, p ≥ 1, we set ep(x) := xp (x ≥ 0). One can prove (see [4,
Lemma 3] and [3, p. 324]) that, for every n ≥ 1,

Mn(e1) = e1, Mn,λ(e1) = e1,(3.30)

Mn(e2) = e2 +
e1

n
, Mn,λ(e2) = e2 +

λ

n
e1,(3.31)

Mn(e3) = e3 +
3
n

e2 +
e1

n2
,(3.32)

Mn(e4) = e4 +
6
n

e3 +
a

n2
e2 +

e1

n3
(with a > 0).(3.33)

First of all, we estimate, from above and from below, the iterates of order p of

the operators Mn evaluated on the functions e2, e3 and e4.

Lemma 3.4. For every n, p ≥ 1 one gets

( i ) Mp
n(e2) = e2 + p

n e1;

( ii ) 0 ≤ Mp
n(e3) ≤ e3 + 3 p

n e2 + 3
2

p2

n2 e1;

(iii) 0 ≤ Mp
n(e4) ≤ e4 + 6 p

n e3 + b p(p+1)
n2 e2 + b p(p+1)(2p+1)

3n3 e1,

where b is a constant independent of n and p.

Proof. Assertion (i) follows from formulas (3.30) and (3.31) and from the lin-

earity of each Mn.

As regards (ii), we first note that, from (i) and formula (3.32) it follows that

Mp+1
n (e3) = Mp

n(Mn(e3)) = Mp
n(e3) +

3
n

(
e2 +

p

n
e1

)
+

e1

n2
.(1)

Now we prove (ii) by induction on p.

If p = 1, (ii) follows directly from (3.32). If we suppose that (ii) is true for p,
then, taking (1) into account, we get

M
p+1
n (e3)≤ e3 + 3

p

n
e2 +

3
2

p2

n2
e1 +

3
n

(
e2 +

p

n
e1

)
+

e1

n2

= e3 + 3
p + 1

n
e2 +

1
n2

(
3
2
p2 + 3p + 1

)
e1

≤ e3 + 3
p + 1

n
e2 +

3
2

(p + 1)2

n2
e1.
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As regards (iii), from (ii) and formulas (3.31) and (3.33) it follows that

Mp+1
n (e4) =Mp

n(Mn(e4)) = Mp
n(e4) +

6
n

Mp
n(e3) +

a

n2

(
e2 +

p

n
e1

)

+
e1

n3
≤ Mp

n(e4) +
6
n

(
e3 + 3

p

n
e2 +

3
2

p2

n2
e1

)

+
a

n2

(
e2 +

p

n
e1

)
+

e1

n3
.

(2)

We set b := max{a, 18} and we prove (iii) by induction on p.

If p = 1, (iii) follows from (3.32). If we suppose that (iii) is true for some p,
then, taking (2) into account, we have

Mp+1
n (e4)≤ e4 + 6

p

n
e3 + b

p(p + 1)
n2

e2 + b
p(p + 1)(2p + 1)

3n3
e1

+
6
n

(
e3 + 3

p

n
e2 +

3
2

p2

n2
e1

)
+

a

n2

(
e2 +

p

n
e1

)
+

e1

n3
≤ e4

+6
p + 1

n
e3 +

b

n2
(p(p + 1) + p + 1)e2

+
b

3n3

(
p(p + 1)(2p + 1) + 3p2 + 3p + 3

)
e1 = e4 + 6

p + 1
n

e3

+
b

n2
(p + 1)2e2 +

b

3n3

(
p(p + 1)(2p + 1) + 3p2 + 3p + 3

)
e1

≤ e4 + 6
p + 1

n
e3 + b

(p + 1)(p + 2)
n2

e2

+b
(p + 1)(p + 2)(2(p + 1) + 1)

3n3
e1,

since p(p + 1)(2p + 1) + 3p2 + 3p + 3 ≤ (p + 1)(p + 2)(2(p + 1) + 1) for every
p ≥ 1.

In order to quickly prove the main result of this section, we need to estimate

the iterates of the operators Mn,λ evaluated on the functions e2 and e4. To do it,

we shall need the following result, which is of independent interest.

In the sequel, λ will denote a fixed continuous function on [0, +∞[ such that
0 ≤ λ(x) ≤ 1 for every x ≥ 0.

Proposition 3.5. Let f ∈ E∞ be a convex function. Then, for every n ≥ 1,

(i) f ≤ Mn+1,λ(f) ≤ Mn,λ(f);
(ii) if α ∈ Cb([0, +∞[), 0 ≤ α ≤ λ, one gets Mn,α(f) ≤ Mn,λ(f).
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Proof. (i) By virtue of formulas (1.18) and (1.19) of [2] and of Theorem 2 of

[12], it is easy to show that Mn+1,λ(f) ≤ Mn,λ(f) for every n ≥ 1 (see, also, [9,
Theorem 3]). As regards the first inequality, it follows from the second one and

from part 1) of Theorem 2.3 of [2].

(ii) In [2, formula (1.8)], we give the following representation of the operators

Mn,λ:

Mn,λ(f)(x) =
∫ +∞

0
· · ·

∫ +∞

0
f

(
x1 + · · ·+ xn

n

)
dρx,λ(x1) · · ·dρx,λ(xn),(1)

which holds true for every f ∈ E∞, x ≥ 0 and n ≥ 1. Here ρx,λ denotes the

distribution on R defined by ρx,λ := λ(x)πx + (1− λ(x))εx, where πx denotes the

Poisson distribution on R with parameter x (with the convention π0 = ε0).

If we take n = 1 and λ = 1, then by using (i) and (1), for every x ≥ 0 and for
every convex function f ∈ E∞, we obtain

f(x) ≤ M1,1(f)(x) = M1(f)(x) =
∫ +∞

0
fdπx.(2)

Moreover, the function fz,a : R → R defined, for every fixed z ≥ 0 and
a ∈ [0, 1] by fz,a(t) := f(at + (1− a)z) (t ≥ 0), is convex too. Hence, again, for
every x ≥ 0 we obtain

fz,a(x) ≤ M1(fz,a)(x) =
∫ +∞

0
fz,adπx.(3)

At this point it is sufficient to use (3) and to follow the proof of Theorem 6.1.13

of [1], replacing µT
x with πx and νT

x,α with ρx,α.

Taking the above proposition into account, we are able to prove the next result,

whose corollary will be essential in the proof of Theorem 3.2.

Proposition 3.6. Let f ∈ E∞ be a convex function. Then, for every α, β ∈ R
such that 0 < α ≤ λ(x) ≤ β ≤ 1 (x ≥ 0), one has

Mp
n,α(f) ≤ Mp

n,λ(f) ≤ Mp
n,β(f)

for every n, p ≥ 1.

Proof. We fix a convex function f ∈ E∞ and we preliminarily note thatMn,λ(f)
is a convex function for every n ≥ 1 if and only if λ is constant (see [5, Theorem

2.3]). We prove the result by induction on p. If p = 1, the assertion is part (ii) of
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Proposition 3.5. If the assertion is true for some p, taking part (ii) of Proposition

3.5 into account, we obtain, for every n ≥ 1,

Mp+1
n,α (f)= Mn,α (Mp

n,α(f)) ≤ Mn,λ (Mp
n,α(f)) ≤ Mn,λ

(
Mp

n,λ(f)
)

= Mp+1
n,λ (f)

and

Mp+1
n,λ (f)= Mn,λ

(
Mp

n,λ(f)
)
≤ Mn,λ

(
Mp

n,β(f)
)
≤ Mn,β

(
Mp

n,β(f)
)

= Mp+1
n,β (f).

Corollary 3.7. If λ0 := infx≥0 λ(x) > 0, then for every n, p ≥ 1 we have
(i) Mp

n,λ(e4) ≤ Mp
n(e4);

(ii) Mp
n,λ0

(e2) ≤ Mp
n,λ(e2) ≤ Mp

n(e2), i.e.,

e2 +
p

n
λ0e1 ≤ Mp

n,λ(e2) ≤ e2 +
p

n
e1.

Proof. (i) The result follows directly from Proposition 3.6, the convexity of e4

and the equality Mn,1 = Mn (n ≥ 1).
(ii) The first part again follows from Proposition 3.6, the convexity of e2 and

the inequalities 0 < λ0 ≤ λ(x) ≤ 1 (x ≥ 0).
As regards the second part, it is a consequence of the first one and of the fact

that Mp
n,α(e2) = e2 + pα

ne1 for every n, p ≥ 1 and α ∈]0, 1] because of (3.31).

- Proofs of the main results

We are now ready to present the proof of Theorems 3.2 and 3.3.

Proof of Theorem 3.2. Let us fix t ≥ 0, x ≥ 0 and a sequence (k(n))n≥1 of

positive integers such that lim
n→∞

k(n)/n = ct, where c is the constant defined by

(3.21).

Since e1 ∈ W 0
2 and Mn,λ(e1) = e1 for every n ≥ 1, by virtue of (3.9) and

formula (3.26) applied to the function e1, one gets

Ex(Zt) =
∫ +∞

0
e1dP x

Zt
= T (t)e1(x) = lim

n→∞
M

k(n)
n,λ (e1)(x) = e1(x) = x,

which proves (i).

As regards the determination of Varx(Zt), we first remark that

Varx(Zt) =
∫ +∞

0
e2 dP x

Zt
− (Ex(Zt))2 < +∞
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since

∫ +∞

0
e2 dP x

Zt
< +∞.

We begin to prove that

∫ +∞

0
e2w2 dµx,t = limn→∞ M

k(n)
n,λ (e2)(x).

For every n ≥ 1, let us consider the discrete Borel measure µn,x ∈ M+
b ([0, +∞[)

such that ∫ +∞

0

g dµn,x = M
k(n)
n,λ (g)(x) for every g ∈ E∞,

and let us note that, by virtue of the representation formula (3.26) and of Theorem

3.1 we have that
∫ +∞

0
1 dµn,x = 1 = T (t)1(x) =

∫ +∞

0
w2 dµx,t(1)

since Mn,λ(1) = 1, and

lim
n→∞

∫ +∞

0
g dµn,x = lim

n→∞
M

k(n)
n,λ (g)(x) = T (t)g(x) =

∫ +∞

0
gw2 dµx,t(2)

for every g ∈ K([0, +∞[), since K([0, +∞[) ⊂ W 0
2 .

On the other hand, from part (iii) of Lemma 3.4 and part (i) of Corollary 3.7, it

follows that
∫ +∞

0
e2
2 dµn,x =

∫ +∞

0
e4 dµn,x = M

k(n)
n,λ (e4)(x) ≤ Mk(n)

n (e4)(x) ≤ e4(x)

+6
k(n)
n

e3(x) + b
k(n)(k(n) + 1)

n2
e2(x)

+b
k(n)(k(n) + 1)(2k(n) + 1)

3n3
e1(x)

≤ e4(x) + αe3(x) + βe2(x) + γe1(x),

(3)

where α, β and γ are positive constants independent of n, whose existence is
guaranteed by the fact that supn≥1 k(n)/n < +∞.

Hence, by virtue of (1), (2) and (3), we can apply Proposition 1.1 to the case

w = w2, f = e2, µ = µx,t, µn = µn,x and p = 2, and we obtain
∫ +∞

0

e2w2 dµx,t = lim
n→∞

∫ +∞

0

e2 dµn,x = lim
n→∞

M
k(n)
n,λ (e2)(x).(4)

Now we proceed to prove statements (ii) and (iii).

(ii) From the hypothesis on the function α, i.e., λ = 1 and c = α0 (cf. (3.20),

(3.21) and (3.22)) and from part (i) of Lemma 3.4, it follows that

M
k(n)
n,λ (e2) = Mk(n)

n (e2) = e2 +
k(n)
n

e1,
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and hence, by formula (4),

∫ +∞

0
e2w2 dµx,t = lim

n→∞

(
e2(x) +

k(n)
n

e1(x)
)

= e2(x) + α0te1(x).(5)

Consequently, taking (i) and (5) into account, we get

Varx(Zt) =
∫ +∞

0

e2w2 dµx,t − e2(x) = α0te1(x) = α0tx.

(iii) We note that λ0 = infx≥0 λ(x) > 0 because of (3.22); furthermore, by
virtue of part (ii) of Corollary 3.7, we can write

e2 +
k(n)

n
λ0e1 ≤ M

k(n)
n,λ (e2) ≤ e2 +

k(n)
n

e1 for every n ≥ 1,

from which, taking (4) into account, we get

cλ0tx ≤
∫ +∞

0
e2w2 dµx,t − x2 ≤ ctx,(6)

and so the result follows.

Proof of Theorem 3.3. For every n ≥ 1, let Xn be the Banach space of all

real-valued continuous functions f : ∆n → R such that limh→∞(w2f)(h/n) = 0,
endowed with the norm

ϕn(f) := sup
x∈∆n

w2(x)|f(x)| (f ∈ Xn).

Moreover, consider the linear operator Pn : W 0
2 → Xn defined as

Pn(f) := f|∆n

(
f ∈ W 0

2

)
.

Since every open subset of [0, +∞[ intersects ∆n for sufficiently large n,
(Xn)n≥1 forms a sequence of Banach spaces approximating W 0

2 (see [14, Sect.

2] and, also, [10, Sect. 3.6]).

So part (i) follows from [14, Lemma 3.1 and p. 895] because, by virtue of

Theorem 5.42 of [11], every Borel measure µ ∈ M+
b ([0, +∞[) (having support

contained in some ∆n, resp.) corresponds to a positive linear functional on W 0
2 (on

Xn, resp.) if and only if 1/w2 is µ- integrable.

Note that Tn(Xn) ⊂ Xn. Moreover, if f ∈ W 0
2 , then for every n ≥ 1,

Tn

(
f|∆n

)
= Mn(f)|∆n
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(see (3.27)), and so we have

sup
x∈∆n

w2(x)|T (t)f(x)− T
k(n)
n (f)(x)|

= sup
x∈∆n

w2(x)|T (t)f(x)− M
k(n)
n (f)(x)| ≤ ‖T (t)f − M

k(n)
n (f)‖2.

We end the paper with the following result.We always refer to the semigroup

and the Markov process described in Theorem 3.1.

Proposition 3.8. The following statements hold true:

(i) a given function f ∈ W 0
2 is convex if and only if

f(x) ≤ Ex(f∗(Zt)) for every t ≥ 0 and x ≥ 0,

i.e., the P x-expected value of f on the (random) position of the particle at every
time t, provided it starts at position x, is greater that f(x);

(ii) for every f ∈ W 0
2 , we have

lim
t→+∞

|T (t)f(x)|
t

≤ cx‖f‖2 (x ≥ 0),(3.34)

where c is defined by (3.21). In particular,

‖T (t)‖ ≤ 1 +
c

2
t.(3.35)

Proof. Part (i) is a direct consequence of (3.9) and Theorem 2.1 of [5].

As regards part (ii), since |f | ≤ ‖f‖2(1 + e2), from formula (6) of the proof of
Theorem 3.2, for every t ≥ 0 and x ≥ 0, it follows that

|T (t)f(x)|≤
∫ +∞

0
|f |w2dµx,t ≤ ‖f‖2

∫ +∞

0
(1 + e2)w2dµx,t

≤
(
1 + x2 + ctx

)
‖f‖2

and (3.34) follows.

Finally, (3.35) follows from the above inequality because

|T (t)f(x)|
1 + x2

≤
(

1 + ct
x

1 + x2

)
‖f‖2 ≤

(
1 +

c

2
t
)
‖f‖2.
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Università di Bari, Via Edoardo Orabona 4, 70125 Bari, Italy

E-mail: altomare@pascal.dm.uniba.it


