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SIMILARITY PROBLEMS AND LENGTH

Gilles Pisier

Abstract. This is a survey of the author’s recent results on the Kadison and

Halmos similarity problems and the closely connected notion of “length” of

an operator algebra.

1. INTRODUCTION

We start by recalling a well-known conjecture formulated by Kadison [19] in

1955.

Kadison’s similarity problem. Let A be a unital C∗-algebra and let u :
A → B(H) (H Hilbert) be a unital homomorphism (i.e., we have u(1) = 1
and u(ab) = u(a)u(b)∀a, b ∈ A). Show that if u is bounded, then u is similar to
a ∗-homomorphism, i.e., ∃ ξ : H → H invertible such that uξ : a 7→ ξ−1u(a)ξ is
a ∗-homomorphism (= C∗-representation).

Explicitly, the conclusion means that

ξ−1u(a∗)ξ = (ξ−1u(a)ξ)∗;(∀ a ∈ A)

when this holds, Kadison calls u “orthogonalizable”. Many partial results are

known, mainly due to Erik Christensen ([4-7]) and Uffe Haagerup ([15]). In partic-

ular, they established (see [6] and [15]) this conjecture for cyclic homomorphisms,

i.e., when u admits a cyclic vector h in H (= a vector h such that u(A)h = H)

or, more generally, when u admits a finite cyclic set h1, . . . , hn (so that we have

u(A)h1 + · · ·+ u(A)hn = H).

In addition, the Kadison conjecture is known in the following cases:
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(i) A is commutative.

(ii) A is the unitization, denoted by K̃, of the C∗-algebra, denoted by K, of all
compact operators on `2, or more generally when A is nuclear (see [5]).

(iii) A = B(H) or, more generally, when A has no tracial states (see [15]).

(iv) A = K̃ ⊗ B with B an arbitrary unital C∗-algebra.

(v) A is a II1-factor with Murray and von Neumann’s property Γ (see [7]); for
instance, when A is the so-called hyperfinite II1-factor (= infinite tensor

product of 2 × 2 matrices with normalized trace).

In sharp contrast, the conjecture is still open when A is the reduced C∗-algebra of
the free group with at least 2 generators, or even when

A =


⊕

∑

n≥1

Mn




∞

= {x = (xn) | xn ∈ Mn, sup ‖xn‖ < ∞}.

Kadison formulated his conjecture as the C∗-algebraic version of a well-known
problem (at the time of his writing): Are all uniformly bounded group representations

similar to unitary representations (= unitarizable)? While a counterexample to that

question was soon found ([14]; see also [37] for more recent results on this theme),

Kadison’s conjecture remained open. Recently, it became entirely clear that his

conjecture is equivalent to another important open question, the derivation problem,

itself a crucial problem in the cohomology theory of operator algebras (cf. [39]).

Derivation problem. Let π : A → B(H) be a ∗-homomorphism ( =
representation) on a C∗-algebra A. Let δ : A → B(H) be a π-derivation (i.e.,
δ(ab) = π(a)δ(b) + δ(a)π(b)). Show that the boundedness of δ (which is actu-
ally automatic here) implies that δ is inner, which means: ∃ T ∈ B(H) such that
δ(a) = π(a)T − Tπ(a)∀ a ∈ A. We set

δT (a) = π(a)T − Tπ(a).

The connection between the two problems is simple. Intuitively derivations

appear as “infinitesimal generators” for homomorphisms. More elementarily, if δ is
as above then

u(a) =
(

π(a) δ(a)
0 π(a)

)

is a homomorphism into B(H ⊕H) = M2(B(H)). Kirchberg [21] recently proved
that the C∗-algebras which satisfy the derivation problem are exactly the same as
those which satisfy Kadison’s conjecture, but it is still open whether this class is

that of all C∗-algebras!
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We now turn to a key notion to study these problems: “complete boundedness”

(see [26]).

Definition. Let E ⊂ B(H) and F ⊂ B(K) be operator spaces, and consider a
map

B(H) B(K)
∪ ∪
E

u−→ F

For any n ≥ 1, let Mn(E) = {(xij)i,j≤n | xij ∈ E} be the space of n × n ma-
trices with entries in E. In particular, we have a natural identificationMn(B(H)) '
B(`n

2 (H)),where `n
2 (H)meansH ⊕ H ⊕ · · · ⊕ H︸ ︷︷ ︸

n times

. Thus, we may equipMn(B(H))

and a fortiori its subspaceMn(E) ⊂ Mn(B(H))with the norm induced byB(`n
2 (H)).

Then, for any n ≥ 1, the linear map u : E → F allows to define a linear map

un : Mn(E) −→ Mn(F ) by setting

un




...

. . . xij · · ·
...


 =




...

. . . u(xij) . . .
...


 .

A map u : E → F is called completely bounded (in short c.b.) if

sup
n≥1

‖un‖Mn(E)→Mn(F ) < ∞.

We define

‖u‖cb = sup
n≥1

‖un‖Mn(E)→Mn(F )

and we denote by cb(E, F ) the Banach space of all c.b. maps from E into F
equipped with the c.b. norm.

This concept is fundamental in the currently very actively developed theory of

operator spaces; see [38].

Theorem 1 (Haagerup 1983, [15]). In the situation of Kadison’s similarity

problem, u is similar to a ∗-homomorphism if and only if u is c.b. Moreover, we
have

‖u‖cb = inf{‖ξ−1‖ ‖ξ‖ | uξ ∗ −homomorphism}.

For derivations, the analogous result is the following.
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Theorem 2 (Christensen 1977, [8]). In the derivation problem, δ is inner if

and only if δ is c.b. Moreover, we have

‖δ‖cb = inf{2‖T‖ | δ = δT }.

Vern Paulsen generalized Haagerup’s result to the non-self-adjoint case:

Theorem 3 (Paulsen 1984, [27]). Let A be a unital operator algebra (i.e., we
assume only that A is a closed subalgebra of B(H) with I ∈ A). Consider again
a homomorphism u : A → B(H). Then ‖u‖cb < ∞ if and only if u is similar to

a completely contractive homomorphism, i.e., ∃ ξ : H → H invertible such that

uξ : a 7→ ξ−1u(a)ξ satisfies ‖uξ‖cb = 1. Moreover, we have

‖u‖cb = inf{‖ξ‖ ‖ξ−1‖ | ‖uξ‖cb = 1},

and this infimum is attained.

It is easy to see that if A is a C∗-algebra, then

‖u‖cb = 1 ⇔ ‖u‖ = 1 ⇔ u is a ∗-homomorphism.

This explains why Theorem 3 contains Theorem 1 as a special case. The preceding

result leads us naturally to enlarge our investigation to the non-self-adjoint case as

follows.

Generalized Similarity Problem. Which unital operator algebras A have the

following property denoted by (SP) ?

(SP) Any bounded homomorphism u : A → B(H) (H an arbitrary Hilbert space)

is c.b.

Loosely speaking, this property (SP) could be described as “automatic complete

boundedness” in analogy with the field of automatic continuity for homomorphisms

between Banach algebras (see [13]).

Example. The most natural example of a non-self-adjoint algebra is the disc

algebra A = A(D) which can be described as the completion of the set of all
polynomials P for the norm

‖P‖∞ = sup{|P (z)| | z ∈ ∂D}.

We considerA(D) as an operator subalgebra of the commutativeC∗-algebra C(∂D).
Consider a fixed operator x ∈ B(H). Let

ux : P 7→ P (x) ∈ B(H)
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be the homomorphism of evaluation at this fixed x. Then ux is bounded if and only

if x is polynomially bounded, i.e., ∃C such that

∀P ‖P (x)‖ ≤ C‖P‖∞.(1)

On the other hand, it follows from Paulsen’s similarity criterion (Theorem 3 above)

that ux is c.b. if and only if x is similar to a contraction (which means ∃ξ : H → H
invertible such that ‖ξ−1xξ‖ ≤ 1). Indeed, when ‖x‖ ≤ 1, von Neumann’s classical
inequality shows that (1) holds with C = 1 and actually also (Sz.-Nagy’s dilation)
that ‖ux‖cb = 1. Thus it is the same to ask whether A(D) satisfies (SP) or to ask
whether any polynomially bounded operator x is similar to a contraction. This was

a well-known problem originally formulated by Halmos in a landmark 1970 paper

[18]. We have recently given a counterexample as follows.

Theorem 4 (1997, [31]). For any c > 1, there is a unital homomorphism
u : A(D) → B(`2) (necessarily of the form P 7→ P (x) for some x in B(`2)) such
that ‖u‖ ≤ c but ‖u‖cb = ∞.

The proof of the polynomial boundedness was simplified in [22] and [11].

Although this solves the somewhat prototypical case of A(D), it leaves open the
following question: Is it true that any uniform algebra (i.e., a unital subalgebra of

C(K) for some compact set K) which is proper (i.e., A separates the points of K
and A 6= C(K)) fails (SP)?

See [23] for a partial result on this. Actually, when K is a domain in C with at
least 2 holes, it is already unknown in general whether ‖u‖ = 1 implies ‖u‖cb = 1!
The case of a single hole is covered by [1]. See also [12] and [29] for more on this

theme.

Remarks.

(i) See [24, 25] for some recent progress on conditions for an operator to be

similar to a normal operator.

(ii) The recent paper [KLM] contains the following striking example: For any

c > 1 there is a power bounded operator on `2 which is not similar to

any operator with powers bounded by c. The corresponding statement for
polynomial boundedness seems open: Given c > 1, is there a polynomially
bounded operator which is not similar to any operator polynomially bounded

by c ?

We now turn to the notion of length which seems closely connected to the

generalized similarity problem. The “length” that we have in mind is analogous to

the following situation: Consider a unital semigroup S and a unital generating subset



6 Gilles Pisier

B ⊂ S. It is natural to say that B generates S with length ≤ d if any x in S can

be written as a product x = b1b2 . . . bd with each bi in B. We will use a somewhat
“dual” viewpoint on the “length” based on homomorphisms. Our main idea can be

illustrated in a rather transparent way on the above simple model of semigroups as

follows. Assume that B generates S with length ≤ d. Then any homomorphism

π : S → B(H) (i.e., π(st) = π(s)π(t) and π(1) = 1) which is bounded on B with

sup
b∈B

‖π(b)‖ ≤ c must be bounded on the whole of S with sup
s∈S

‖π(s)‖ ≤ cd.

Conversely, assume that we know that for some α ≥ 0 and κ ≥ 0, all homo-
morphisms π : S → B(H) satisfy, for some c > 1, the following implication:

sup
b∈B

‖π(b)‖ ≤ c ⇒ sup
s∈S

‖π(s)‖ ≤ κcα.

Then it is rather easy to see that B necessarily generates S with length ≤ [α]
(integral part of α), so that we can replace α by [α] and κ by 1.

We call this a “dual” viewpoint because it is reminiscent of the fact that the

closed convex hull C of a subset B ⊂ E of a Banach space is characterized by the

implication

sup
b∈B

f(b) ≤ 1 ⇒ sup
s∈C

f(s) ≤ 1

for all continuous real linear forms f .

Although this is a wild analogy, we feel that our results on the length are a kind

of “nonlinear” analog of this very classical duality principle for convex hulls.

In [32], we study various analogs of this concept of length for operator algebras

or even for general Banach algebras. Surprisingly little seems to have been known

up to now. We will now review the main results of our papers.

Definition. An operator algebra A ⊂ B(H) is said to be of length ≤ d if there

is a constant K such that, for any n and any x in Mn(A), there is an integer N =
N(n, x) and scalar matrices α0 ∈ Mn,N (C), α1 ∈ MN (C), . . . , αd−1 ∈ MN (C),
αd ∈ MN,n(C) together with diagonal matrices D1, . . . , Dd in MN(A) satisfying





x = α0D1α1D2 . . .Ddαd,

d∏

0

‖αi‖
d∏

1

‖Di‖ ≤ K‖x‖.

We denote by `(A) the smallest d for which this holds and we call it the “length”
of A (so that A has length ≤ d is indeed the same as `(A) ≤ d).

Equivalently, we may reformulate this using infinite matrices: If we view as

usual Mn(A) ⊂ Mn+1(A) via the mapping x 7→
(

x 0
0 0

)
, and if we let K(A) =
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∪Mn(A) be the completion of the union with the natural extension of the norm,
then it is easy to check that `(A) ≤ d if and only if any x in K(A) can be written
as

x = α0D1α1 . . .Ddαd

with αi in K(C) and Di diagonal in K(A). (The constant K automatically exists

by the open mapping theorem.)

Our central result is as follows.

Theorem 5 (1999, [32]). A unital operator algebra A satisfies (SP) if and only

if `(A) < ∞. Moreover, if

d(A) = inf{α ≥ 0 | ∃ K ∀ u ‖u‖cb ≤ K‖u‖α}

(here, of course, u denotes an arbitrary unital homomorphism from A to B(H)),
then

d(A) = `(A)

and the infimum defining d(A) is attained.

Proof of d(A) ≤ `(A). This is the easy direction. The converse is much
more involved. Assume `(A) ≤ d. Consider x in Mn(A). Recall that ‖u‖cb =
sup{‖un(x)‖Mn(B(H)) | n ≥ 1, ‖x‖Mn(A) ≤ 1}. Consider a factorization of the
above form:

x = α0D1 . . .Ddαd

with αi “scalar” and Di “diagonal”. We have then

un(x) = α0uN (D1)α1 . . .uN (Dd)αd,

and hence

‖un(x)‖ ≤
∏

‖αi‖
∏

‖uN(Di)‖.

But clearly since the Di’s are diagonal, ‖uN(Di)‖ ≤ ‖u‖ ‖Di‖. Hence

‖un(x)‖ ≤ ‖u‖d
∏

‖αi‖
∏

‖Di‖,

which yields (recalling the meaning of `(A) ≤ d)

‖u‖cb ≤ K‖u‖d.

Remark 6. Let us briefly return to the derivation problem. If A is a C∗-algebra,
Kirchberg’s argument in [21], as slightly improved in [32], shows that if we have

‖δ‖cb ≤ α‖δ‖(2)
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for all π and all π-derivations δ : A → B(H) then we have ‖u‖cb ≤ ‖u‖α for all

u as in Theorem 5. Therefore `(A) is less or equal to the integral part of α. This
leads us to conjecture that, in the C∗-case, the best possible α in (2) is always an

integer. Also when A is an infinite-dimensional C∗-algebra, we have no example
of A for which the best K such that: ∀u ‖u‖cb ≤ K‖u‖d(A) is > 1, but we believe

such examples exist (we suspect A = B(H) ⊕ `∞ might be such an example).

It is easy to see that if I ⊂ A is a closed two-sided ideal then `(A/I) ≤ `(A)
and also that `(A) ≤ max{`(I), `(A/I)}. If A is a C∗-algebra, we have

`(A) = max{`(I), `(A/I)}.

To show `(I) ≤ `(A) we merely use the fact (due to Arveson; see, e.g., [40])
that there is a “quasi-central approximate unit” in I , i.e., a net (ai) in the unit
ball of I such that for any x in I we have xai → x and aix → x and moreover
(quasi-centrality) aia − aai → 0 for any a in A.

In particular, for all finite sets A1, . . . , An of operator algebras we have

`(A1 ⊕ ...⊕ An) = max{`(Ai) | 1 ≤ i ≤ n}.

The case of infinite direct sums is discussed in [36].

Remark 7. Let H = `2. One useful way to apply Theorem 5 is as follows:

Given a d-linear map w : Ad → B(H), we may consider all the possible ways to
“factorize” w so that there exist linear bounded maps vi : A → B(H) such that

w(a1, a2, . . . , ad) = v1(a1)v2(a2) . . .vd(ad).(∀(a1, . . . , ad) ∈ Ad)

Then we set

‖|w|||d = inf

{
d∏

i=1

‖vi‖

}
,

where the product runs over all possible ways to “factorize” w as above. Then let

v : A → B(H) be a linear map. Assume that we have a finite set of d-linear maps

wp as before such that

v(a1a2 . . .ad) =
∑

p

wp(a1, . . . , ad).(∀ ai ∈ A (1 ≤ i ≤ d))

Then we set

‖v‖[d] = inf

{∑

p

|||wp|||d

}
,



Similarity Problems and Length 9

where the infimum runs over all possible ways to write as v =
∑
p

wp. Then if

`(A) ≤ d, it is a simple exercise to show that for any linear v : A → B(H) we
have

‖v‖cb ≤ K‖v‖[d].

Thus Theorem 5 allows to strengthen the property (SP): Not only homomorphisms

are c.b. but also all linear maps v for which we have ‖v‖[d] < ∞. Actually, it is
possible to show that w 7→ |||w|||d is subadditive but we will not really need this.
This norm ‖ ‖[d] is closely connected with the notion of “multilinear c.b. map”

introduced by E. Christensen and A. Sinclair (see [9, 10]).

Examples. If 1 < dim A < ∞, then d(A) = 1, so from now on we assume

dim A = ∞. We can now review the examples of C∗-algebras listed previously:

(i) If A is commutative, then d(A) = 2.

(ii) If A = K̃ or if A is nuclear, then also d(A) = 2.

(iii) If A = B(H), then d(A) = 3.

(iv) If A = K̃ ⊗ B with B an arbitrary unital C∗-algebra, then 2 ≤ d(A) ≤ 3.

(v) If A is a II1-factor with property Γ, then 3 ≤ d(A) ≤ 5.

Notes: (i) and (ii) are due to J. Bunce and E. Christensen (see [5]). In (iii),

≤ 3 is proved in [15] while ≥ 3 is proved in [32] (see below). (iv) is essentially
in [15]. Finally, concerning (v), Christensen proved in [7] that d(A) ≤ 44, but the
estimate was reduced in [36]. It was also observed in [36] that (as pointed out by

N. Ozawa) Anderson’s construction in [2] remains valid on any II1 factor, thus

yielding d(A) ≥ 3 for any II1 factor A by the same argument as in [32].

The class of algebras with d(A)(= `(A)) equal to 2 is closely related to that of
“amenable Banach algebras” (see, e.g., [30]). A von Neumann algebra M ⊂ B(H)
is called amenable (= injective) if there is a projection P : B(H) → M with

‖P‖ = 1. It is known that a C∗-algebra A is nuclear (⇔ amenable by [16]) if

and only if for every representation (= ∗-homomorphism) π : A → B(H), the
von Neumann algebra Mπ = π(A)′′ generated by π is amenable (= injective). This

motivates the following

Definition. A C∗-algebra is called seminuclear if for any representation π :
A → B(H) generating a semifinite von Neumann algebra π(A)′′, the generated
algebra π(A)′′ is injective.

Theorem 8 [32]. For a C∗-algebra A, d(A) ≤ 2 implies that A is seminuclear.
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It is an open problem whether in general seminuclear implies nuclear. However,

if A is either the reduced or the full C∗-algebra of a discrete group G, then

A nuclear ⇔ A semi-nuclear ⇔ G amenable.

The preceding result shows that d(B(H)) > 2, since otherwise B(H) would be
semi-nuclear, which contradicts [2]. Hence, we have d(B(H)) ≥ 3. Actually, using
the length `(B(H)) instead, we can obtain a very simple proof that d(B(H)) = 3,
as follows.

Proof of `(B(H)) ≤ 3. This very direct proof comes from [36]. Fix n ≥ 1. Let
W1 and W2 be any two n × n unitary matrices such that

∀ i, j |W1(i, j)| = |W2(i, j)| = n−1/2.

Then, for any x in the unit ball ofMn(B(H)) (with dimH = ∞) there are diagonal
matrices D1, D2, D3 also in the unit ball of Mn(B(H)) such that

x = D1W1D2W2D3.

The proof of this is very simple. Let Si, i = 1, . . . , n, be isometries on H with

orthogonal ranges so that

∀ i, j S∗
i Sj = δijI.

Then let

D1(i, i) = S∗
i and D3(j, j) = Sj

and moreover

D2(k, k) = n
∑

i,j

W1(i, k)SixijS
∗
j W2(k, j).

It is an easy exercise (left to the reader) to check the announced properties.

By Theorems 1 and 5, we have:

Proposition 9. The Kadison similarity problem has a positive answer for all

unital C∗-algebras A if and only if there is an integer d0 such that `(A) ≤ d0 for

any C∗-algebra A.

Unfortunately, up to now, the highest known value of `(A) for a C∗-algebra is

3, but we conjecture that there are examples of arbitrarily large length. However,

in the non-self-adjoint case, we have recently been able to prove the following.

Theorem 10 ([34]). For any integer d ≥ 1, there is a (non-self-adjoint)operator
algebra Ad such that `(Ad) = d.
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Problem. Are there uniform algebras with arbitrarily large finite length?

For uniform algebras, no example with 2 < `(A) < ∞ is known. However,

it is proved in [32] that any proper uniform algebra A must satisfy `(A) > 2. It
is also unknown whether there are Q-algebras (= quotients of uniform algebras) A

with 2 < `(A) < ∞.

Sketch of proof of Theorem 10. The algebrasAd are not at all “pathological”;
they are the “obvious” ones: the maximal operator algebras generated by a se-
quence of contractions (xn) to which we impose the relations

xn1xn2 . . .xnd+1
= 0(Rd)

for any (d + 1)-tuple of integers (n1, . . . , nd+1). However, while the proof that
d(Ad) ≤ d is then quite easy, the fact that `(Ad) > d − 1 has turned out to
be much harder to prove. The proof given in [34] uses crucially Gaussian ran-

dom matrices and specifically a recent difficult estimate due to Haagerup and

Thorbjørnsen [17]. We will only give a brief description of the argument from

[34]. Let P = P (X1, X2, . . .) be a polynomial of degree ≤ d in noncommuting
(formal) variables X1, X2, . . . . We introduce the norm

‖P‖Ad
= sup{‖P (x1, x2, . . .)‖},(3)

where the supremum runs over all sequences of contractions in B(`2) satisfying
(Rd). It is easy to check that this is a norm of the set of polynomials P with degree

≤ d. We denote by Ad the completion of the set of P ’s equipped with this norm.

Clearly, this defines an operator algebra naturally embedded into
⊕
x

B(Hx), where

Hx = `2 and where x = (xn)n≥1 runs over the set of all possible sequences of

contractions satisfying (Rd). In order to show that `(Ad) > d− 1, the next lemma
is crucial. To state it we first need a specific notation.

Notation. Let H = `2. Let m ≥ 1 and d ≥ 1 be fixed integers. We will denote
by C(m, d) the smallest constant C for which the following holds: If {xi | i ∈ [m]d}
in B(H) satisfies

∀λi ∈ C
∥∥∥
∑

λixi

∥∥∥ ≤ sup
Xi∈B(H)

‖Xi‖ ≤ 1

{∥∥∥
∑

λiXi1Xi2 . . .Xid

∥∥∥
}

,(4)

then ∃ x̂k ∈ B(H) (1 ≤ k ≤ m) with ‖x̂k‖ ≤ 1 such that

(4)′ ∀ i ∈ [m]d xi = Cx̂i1 x̂i2 . . . x̂id .
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Lemma 11. For any m ≥ 1 and d ≥ 1, we have

δdm
d−1
2 ≤ C(m, d) ≤ m

d−1
2 ,

where δd > 0 is a constant independent of m.

Example. In the case d = 2, this means the following: If xij ∈ B(H) (i, j =
1, ..., m) satisfy

∥∥∥∥∥∥
∑

ij≤m

λijxij

∥∥∥∥∥∥
≤ sup

‖Xi‖≤1

∥∥∥
∑

λijXiXj

∥∥∥ ,(∀ λij ∈ C)

then xij can be factorized as

xij = Cx̂ix̂j with ‖x̂i‖ ≤ 1,(5)

but in general the best possible C will be '
√

m. This case is rather easy to prove
given the state of the art. However, already the case d = 3 is more delicate, and, as
we already mentioned, the case of an arbitrary d requires the upper estimates given
in [17] which are highly nontrivial. An easier proof of the lower bound (which is

the difficult part) in Lemma 11 would be most welcome.

Remark 12. Given {xi | i ∈ [m]d} in B(H) satisfying (4), we can define a
linear map

v : Ad → B(H)

by setting v(Xi1Xi2 . . .Xid) = xi1i2 ...id with 1 ≤ i1, i2, . . . , id ≤ m and v(Xi1Xi2

. . .Xik) = 0 in all other cases. Then it can be shown, using the factorization of
multilinear cb maps of Christensen-Sinclair and Paulsen-Smith (see [34]) that ‖v‖cb

is equal to the smallest constant C such that (4)′ holds.

We now wish to sketch how Lemma 11 is used to prove that `(Ad) > d − 1.
To lighten the exposition, we will restrict to the simplest case: d = 3. So we will
show that Lemma 11 implies `(A3) > 2. We will show that if `(A3) ≤ 2 then
C(m, d) ≤ K

√
m for some K, but this will contradict Lemma 11 for d = 3 since

(d − 1)/2 = 1 > 1/2, whence the conclusion that `(A3) > 2.
Now assume `(A3) ≤ 2. Let {xi1i2i3 | i ∈ [m]3} be as in the definition of

C(m, d) for d = 3. For convenience, we extend the function (i1, i2, i3) 7→ xi1i2i3

to the whole of N3 by setting it equal to zero outside [1, . . . , m]3.
We will use Remark 7.

Let v : A3 → B(H) be the linear map defined by v(1) = 0, v(Xi) = 0,
v(Xi1Xi2) = 0 and finally:

v(Xi1Xi2Xi3) = xi1i2i3 .



Similarity Problems and Length 13

It is easy to see using (3) and (4) that ‖v‖ ≤ 1.

We claim that (4) implies (with the notation of Remark 7) ‖v‖[2] ≤ 2 + 2
√

m.
We will use the following notation: We consider the disjoint union

Ω = φ ∪ N ∪ N2 ∪ N3,

and we set
Xφ = 1,
X i = Xi if i ∈ N

X ij = XiXj if (i, j) ∈ N2

X ijk = XiXjXk if (i, j, k) ∈ N3.

For i ∈ Ω we set |i| = 0 if i = φ, and |i| = k if i ∈ Nk.

With this notation, any polynomial P in A3 can be written as a finite sum

P =
∑

i∈Ω

λi(P )X i

with λi(P ) ∈ C. We have then v(X i) = xi for all i in Ω, and hence ∀ P1, P2 ∈ A3,

v(P1P2) =
∑

i,j∈Ω

λi(P1)λj(P2)xij ,

where ij denotes now the multi-index of length ≤ 6 obtained by putting j after i.
We set |ij| = |i|+|j|. But since xij = 0 unless |i|+|j| = 3 we find a decomposition
of v as follows:

v(P1P2) =
∑

(αβ)∈J

wαβ(P1, P2),(6)

where the sum runs over the set J of all pairs (α, β) in [0, 1, 2, 3] such that
α + β = 3, and where wαβ are bilinear forms on A3 × A3 defined by setting

wαβ(P1, P2) =
∑

|i|=α

|j|=β

λi(P1)λj(P2)xij .

Using (4), it is easy to see that if (α, β) is either (3, 0) or (0, 3), then, with the
notation of Remark 7, |||wαβ|||2 ≤ 1.

The remaining possibilities in J are only (2, 1) and (1, 2). But if (α, β) = (1, 2)
for instance, we can write

wαβ(P1, P2) =


∑

|i|=1

λi(P1)e1i ⊗ I







m∑

k=1

ek1 ⊗
∑

|j|=2

λj(P2)xkj
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(here we identifyB(H) with B(H)⊗B(H) and denote by (eki) the standard matrix
units in B(H)). Using this, one can check rather easily that if (α, β) = (2, 1) or
(1, 2) then |||wαβ|||2 ≤

√
m.

Thus using (6) we obtain our claim that ‖v‖[2] ≤ 2 + 2
√

m.
Then if we assume `(A3) ≤ 2, Remark 7 ensures that ‖v‖cb ≤ K(2 + 2

√
m).

Now by Remark 12 this implies that {xi | i ∈ [m]3} satisfies (4)′ with C ≤
K(2 +

√
m). Thus we conclude that C(m, 3) ≤ K(2 +

√
m) but this obviously

contradicts Lemma 11 with d = 3. Thus we have shown, by this contradiction, that
`(A3) > 2.

The notion of length is quite natural in the more general context of a Banach

algebra B generated by a family of subalgebras Bi ⊂ B (i ∈ I). For simplicity, we
will restrict ourselves to the case of a pair of subalgebras B1 ⊂ B, B2 ⊂ B. In this
case, we say that B1, B2 generate B with length ≤ d if there is a bounded subset
of the union C ⊂ B1 ∪ B2 such that every x in the unit ball of B belongs to the

closed convex hull of the union ∪d
j=1C

j , where

Cj = {x1x2 . . . xj | xk ∈ C ∀k = 1, ..., j}.

Assuming that this holds, let u : B 7→ β be a continuous homomorphism into

another Banach algebra β. It is then easy to check that

‖u‖ ≤ K

d∑

j=1

max{‖u|B1
‖, ‖u|B2

‖}j,

where K is a constant (depending only on d and the size of the subset C).
Thus if B, β and u are all unital, we obtain (since all the norms are now ≥ 1)

‖u‖ ≤ dK max{‖u|B1
‖, ‖u|B2

‖}d.

In the converse direction, assuming againB1, B2 andB all unital, let alg(B1, B2)
denote the algebra generated by B1 and B2, which we assume is dense in B. As-
sume that every unital homomorphism u : alg(B1, B2) → β into an arbitrary unital

Banach algebra β such that ‖u|B1
‖ < ∞ and ‖u|B2

‖ < ∞ is actually bounded and

satisfies

‖u‖ ≤ K(max{‖u|B1
‖, ‖u|B2

‖})α,

where K and α ≥ 0 are independent of u and β.
Then it follows (see [32, §8]) that B1, B2 generate B with length at most equal

to the integral part of α. For example, let A be a unital operator algebra, and let

B = K(A). We may consider the subalgebra B1 ⊂ B formed of all the diagonal

matrices (viewing the elements of K(A) as bi-infinite matrices with coefficients in
A) and we let B2 = K(C).
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It is then easy to check that `(A) ≤ d implies thatB1, B2 generateB with length

≤ 2d+ 1. Conversely, if B1, B2 generate B with length ≤ m, then `(A) ≤
[

m+1
2

]
.

Remark. The slight discrepancy appearing here comes from the fact that in the

products appearing in the subset Cd we do not specify that the first term of the

product must lie in B2 or B1 while in the corresponding definition of `(A) the
analogous term must be in B2. This difficulty can be circumvented: One should

then consider homomorphisms u : alg(B1, B2) → β such that ‖u|B2
‖ = 1 and study

the inequality ‖u‖ ≤ K‖u|B1
‖α. See [33] for more variations on this theme.

The case study of `(A) suggests to examine many other examples of the same
kind, for instance, the pair B1 = K(A1), B2 = K(A2), where A1 ⊂ A, A2 ⊂ A

are two closed subalgebras. In particular, we may consider the case where A is

the maximal tensor product of two unital C∗-algebras C1, C2, namely, we take

A = C1 ⊗max C2 with A1 = C1 ⊗ 1 and A2 = 1⊗ C2. All these cases are studied

in [33], to which we refer the reader for several illustrating examples and more

information.
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