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VERTICAL TANGENT VECTORS TO THE GRAPH
OF A MULTIFUNCTION

N. D. Yen and Jen-Chih Yao*

Abstract. The sets of vertical vectors in the contingent cone, the intermediate
tangent cone and the Clarke tangent cone to the graph of a multifunction
between normed spaces at a given point are estimated or computed by exact
formulae under some suitable assumptions. The obtained results sharpen and
complement the results of Dien and Yen [Acta Math., Vietnam. Vol. 10(1)
(1985), 144-147] where the set of vertical vectors in the Clarke tangent cone
was considered.

1. INTRODUCTION

Consider a multifunction F : X ⇒ Y between normed spaces with the graph
gphF := {(x, y) ∈ X × Y : y ∈ F (x)}. Given a point z0 = (x0, y0) ∈ gphX we
denote the Clarke tangent cone, the intermediate tangent cone, and the contingent
cone to gphF respectively by CgphF (z0), T b

gphF
(z0), and TgphF (z0). Following

the primal-space approach to differentiation in [1], one uses each of the tangent cones
to define a graphical derivative of multifunctions. In fact, the differential theory
of set-valued analysis in [3] is built upon these graphical derivatives. Although the
dual-space approach to generalized differentiation has had a very successful devel-
opment (see [4, 9, 11]), Aubin’s method of defining derivatives of a multifunction
via tangent cones to its graph at a given point continues to play an important role
and to attract an immense attention (see for instance [6-8, 11]).
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By definition [3], a vector w = (u, v) ∈ Z := X × Y belongs to TgphF (z0) if
and only if

lim inf
t→0+

dist(z0 + tw, gphF )
t

= 0,(1.1)

where dist(z, Ω) = inf{‖z − z′‖ : z′ ∈ Ω} denotes the distance from z ∈ Z to
a subset Ω ⊂ Z and ‖z‖ := ‖x‖ + ‖y‖ for any z = (x, y) ∈ Z. The inclusions
w ∈ T b

gphF
(z0) and w ∈ CgphF (z0), respectively, mean

lim
t→0+

dist(z0 + tw, gphF )
t

= 0(1.2)

and

lim
t→0+, z

gph F−→ z0

dist(z + tw, gphF )
t

= 0,(1.3)

where z
gphF−→ z0 denotes the limit in gphF ∪ {z0}. The conditions (1.1), (1.2) and

(1.3) can be rewritten, respectively, as the following

∀ε > 0, ∀δ > 0, ∃t ∈ (0, δ) such that
[
z0 + t

(
w + BZ(0, ε)

)] ∩ gphF 	= ∅,
∀ε > 0, ∃δ > 0 such that

[
z0 + t

(
w + BZ(0, ε)

)] ∩ gphF 	= ∅ ∀t ∈ (0, δ),

and

∀ε > 0, ∃δ > 0 such that
[
z + t

(
w + BZ(0, ε)

)] ∩ gphF 	= ∅ ∀t ∈ (0, δ), ∀z ∈ BZ(z0, δ) ∩ gphF.

Here BZ(z0, δ) denotes the closed ball centered at z0 with radius δ > 0. The closed
unit ball in Z will be denoted by BZ .

It is well-known [3] that T b
gphF

(z0) and TgphF (z0) are closed cones (may be
nonconvex), CgphF (z0) is a closed convex cone, and

CgphF (z0) ⊂ T b
gphF

(z0) ⊂ TgphF (z0) ⊂ cone
(
gphF − z0

)
,(1.4)

where cone Ω denotes the closure of the cone generated by a subset Ω ⊂ Z. The
inclusions become equalities when gphF is a convex set.

By abuse of terminology, we say that an element w = (u, v) ∈ X ×Y of a cone
K ⊂ Z = X × Y a vertical vector if u = 0. The set of vertical vectors of K is
abbreviated to Vert(K), that is

Vert(K) = K ∩ ({0} × Y
)

= {w = (u, v) ∈ K : u = 0}.
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Our aim in this paper is to find some upper estimates for the sets of vertical
vectors in the contingent cone, the intermediate tangent cone and the Clarke tangent
cone to the graph of a multifunction between normed spaces at a given point.
Besides, it will shown that, under some suitable assumptions, the sets of vertical
vectors can be computed by exact formulae. Our results sharpen and complement
the results of Dien and Yen [5] where the set of vertical vectors in the Clarke tangent
cone was investigated. As shown by Sach and Craven [12], the results of [5] can
be used for studying invexity of multifunctions and for obtaining duality theorems
for mathematical programming problems under inclusion constraints. We observe
also that, due to the importance of the graphical derivatives of multifunctions, exact
information about the “vertical part” of the tangent cones CgphF (z0), T b

gphF
(z0)

and TgphF (z0) might be useful in other aspects of set-valued analysis and its appli-
cations.

The rest of this paper has two sections. Sect. 2 establishes upper estimates for
the above-mentioned sets of vertical vectors. Sect. 3 derives some exact formulae for
computing the sets. During the course, we will consider some interesting examples.

2. UPPER ESTIMATION FOR THE SET OF VERTICAL VECTORS

Definition 2.1.

(1) F is locally Lipschitz at x0 if there exist a constant � > 0 and a neighborhood
U of x0 such that

F (x) ⊂ F (u) + �‖x − u‖BY ∀x, u ∈ U.

(2) (See [10]) F is upper Lipschitz at x0 if there exist a constant � > 0 and a
neighborhood U of x0 such that

F (x) ⊂ F (x0) + �‖x − x0‖BY ∀x ∈ U.

(3) (See [2, 9]) F is Lipschitz-like at (x0, y0) ∈ gphF if there exist a constant
� > 0, a neighborhood U of x0 and a neighborhood V of y0 such that

F (x) ∩ V ⊂ F (u) + �‖x− u‖BY ∀x, u ∈ U.

(4) F is upper Lipschitz-like at (x0, y0) ∈ gphF if there exist a constant � > 0,
a neighborhood U of x0 and a neighborhood V of y0 such that

F (x) ∩ V ⊂ F (x0) + �‖x − x0‖BY ∀x ∈ U.(2.1)
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(5) F is upper Hölder-like of an order α > 0 at (x0, y0) ∈ gphF if there exist
a constant � > 0, a neighborhood U of x0 and a neighborhood V of y0 such
that

F (x) ∩ V ⊂ F (x0) + �‖x − x0‖αBY ∀x ∈ U.(2.2)

Clearly, if F is locally Lipschitz at x0 then it is upper Lipschitz at x0, and
the latter implies that F is upper Lipschitz-like at any (x 0, y0) with y0 ∈ F (x0).
The reverse implications are not true in general. Note also that the Lipschitz-like
property implies the upper Lipschitz-like property, but the reverse implication does
not hold.

Example 2.2. The multifunction F : IR ⇒ IR given by F (x) = {1} for x > 0,
F (x) = {0} for x < 0, and F (0) = {1

2 , 1}, is upper Lipschitz-like at the points
(x0, y0) := (0, 1) and (x0, y0) := (0, 1

2 ), but not upper Lipschitz at x0 = 0. The
multifunction G : IR ⇒ IR defined by G(x) = {1} for x > 0, G(x) = {−1} for
x < 0, and G(0) = [−1, 1], is upper Lipschitz but not locally Lipschitz around
x0 = 0. It is easy to see that G is not Lipschitz-like at the points (x0, y0) := (0, 1)
and (x0, y0) := (0, 1

2 ).

We now obtain a sharp upper estimate for the set of vertical vectors in the
contingent cone TgphF (x0, y0).

Proposition 2.3. If F is upper Lipschitz-like at (x0, y0) ∈ gphF , then
{

(0, v) : v ∈ Y, (0, v) ∈ TgphF (x0, y0)
}
⊂ {0} × cone

(
F (x0) − y0

)
.(2.3)

Proof. Let v ∈ Y . To obtain (2.3), we will show that if v /∈ cone
(
F (x0)−y0

)
then (0, v) /∈ TgphF (x0, y0). Suppose that v /∈ cone

(
F (x0) − y0

)
. Choose η > 0

such that [v + BY (0, η)]∩ [cone(F (x0) − y0)] = ∅. Then, for any t > 0, it holds
(
t[v + BY (0, η)]

)∩ [F (x0) − y0] = ∅.

Hence
[
tv +

t

2
BY (0, η)

]∩ [
F (x0) − y0 +

t

2
BY (0, η)

]
= ∅ ∀t > 0.(2.4)

By our assumption, there exist � > 0, ρ > 0, and a neighborhood V of y0 satisfying
(2.1) with U := BX(x0, ρ). Put W1 = U1 × V1 where

U1 = BX (0, ρ)∩ BX

(
0,

η

2�

)
, V1 = BY

(
0,

η

2

)
.
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To show that (0, v) /∈ TgphF (x0, y0), it suffices to verify that for any λ > 0 there
exists t ∈ (0, λ) such that

[
(x0, y0) + t((0, v) + W1)] ∩ gphF = ∅.(2.5)

Let λ > 0 be given arbitrarily. We choose t ∈ (0, λ) as small as y0 + t
(
v +

BY (0, η
2 )

)
⊂ V . From (2.4) it follows that

t(v + y) /∈ F (x0) − y0 +
t

2
BY (0, η)

for any y ∈ V1. Therefore

y0 + t(v + y) /∈ F (x0) +
t

2
BY (0, η) ∀y ∈ V1.(2.6)

By (2.1), for any x ∈ U1,

F (x0 + tx) ∩ V ⊂ F (x0) + ‖tx‖BY (0, �)

⊂ F (x0) + t
η

2�
BY (0, �)

⊂ F (x0) +
t

2
BY (0, η).

(2.7)

Combining (2.6) with (2.7) and remembering that y0 + t
(
v + BY (0, η

2 )
)
⊂ V , we

have

y0 + t(v + y) /∈ F (x0 + tx) ∀x ∈ U1, ∀y ∈ V1.

Hence

(x0, y0) + t((0, v) + (x, y)) /∈ gphF ∀(x, y) ∈ W1;

thus (2.5) is satisfied.

The notation Vert
(
TgphF (x0, y0)

)
will be used for denoting the set on the left-

hand side of (2.3). Similarly, the sets of vertical tangent vectors in T b
gphF

(x0, y0)

and CgphF (x0, y0) will be abbreviated, respectively, to Vert
(
T b
gphF

(x0, y0)
)
and

Vert
(
CgphF (x0, y0)

)
. The inclusions in (1.4) imply

Vert
(
CgphF (x0, y0)

)
⊂ Vert

(
T b
gphF

(x0, y0)
)
⊂ Vert

(
TgphF (x0, y0)

)
.
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Hence, the next statement is immediate from Proposition 2.3.

Corollary 2.4. If F is upper Lipschitz-like at (x 0, y0) ∈ gphF , then

Vert
(
T b
gphF

(x0, y0)
)
⊂ {0} × cone

(
F (x0) − y0

)
(2.8)

and

Vert
(
CgphF (x0, y0)

)
⊂ {0} × cone

(
F (x0)− y0

)
.(2.9)

Remark 2.5. The upper estimate (2.9) sharpens a result of Dien and Yen [5,
Proposition 2] where it was assumed that F is locally Lipschitz at x0 and F (x) is
convex for all x from a neighborhood of x0.

The assumption that F is upper Lipschitz-like at (x 0, y0) ∈ gphF seems to be
weakest possible for the validity of the above proposition and corollary. One cannot
replace it by the requirement that F is upper Hölder-like of an order α ∈ (0, 1) at
(x0, y0) ∈ gphF .

Example 2.6. Consider a (single-valued, continuous) map F : IR ⇒ IR with
F (x) = {√|x|} for all x ∈ IR. It is clear that F is upper Hölder-like of the order
α = 1

2 at (x0, y0) := (0, 0) ∈ gphF . Since

CgphF (x0, y0) = T b
gphF

(x0, y0) = TgphF (x0, y0) = {0} × [0, +∞)

and cone
(
F (x0) − y0

)
= {0}, none of the estimates (2.3), (2.8), (2.9) holds true.

3. EXACT FORMULAE

The following statement describes some sufficient conditions for having exact
formulae for computing the sets of vertical vectors in the intermediate tangent cone
T b
gphF

(x0, y0) and the contingent cone TgphF (x0, y0).

Theorem 3.1. If F is upper Lipschitz-like at (x0, y0) ∈ gphF and the set
F (x0) is convex, then

(3.1) Vert
(
T b
gphF

(x0, y0)
)

= Vert
(
TgphF (x0, y0)

)
= {0}×cone

(
F (x0)−y0

)
.

Proof. By the definition of the intermediate tangent cone, for any v ∈ Tb
F (x0)

(y0)

we have lim
t→0+

dist
(
y0 + tv, F (x0)

)
t

= 0. The last property yields the equality

lim
t→0+

dist
(
(x0, y0 + tv), gphF

)
t

= 0
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which shows that (0, v) ∈ T b
gphF

(x0, y0). Thus

{0} × T b
F (x0)

(y0) ⊂ Vert
(
T b
gphF

(x0, y0)
)
.(3.2)

The convexity of F (x0) implies that T b
F (x0)

(y0) = cone
(
F (x0) − y0

)
. Hence, by

(2.3),

(3.3) Vert
(
T b
gphF

(x0, y0)
)
⊂ Vert

(
TgphF (x0, y0)

)
⊂ {0} × T b

F (x0)
(y0).

It is clear that the desired expression (3.1) follows from (3.3) and (3.2).

We say that the restriction of F on domF := {x ∈ X : F (x) 	= ∅} is lower
semicontinuous at x0 if for any y ∈ F (x0) and any ε > 0 there exists δ > 0 such
that

(y + BY (0, ε)) ∩ F (x) 	= ∅ ∀x ∈ BX(x0, δ) ∩ domF.

If x0 belongs to the interior of domF and the restriction of F on domF is lower
semicontinuous at the point, then we simply say that F is lower semicontinuous at
x0.

Sufficient conditions for having an exact formula for computing the set of vertical
vectors in the Clarke tangent cone CgphF (x0, y0) are given in the next statement.
Although the first assertion is a known result [5, Proposition 1], a proof is provided
to make the presentation self-contained.

Theorem 3.2. Let z0 = (x0, y0) ∈ gphF and F (x) be convex for all x from
a neighborhood of x0. The following properties hold:

(i) (see [5]) If the restriction of F on domF is lower semicontinuous at x 0, then

{0} × cone
(
F (x0) − y0

) ⊂ Vert
(
CgphF (x0, y0)

)
.(3.4)

(ii) If the restriction of F on domF is lower semicontinuous at x 0 and F is
upper Lipschitz-like at (x0, y0), then

Vert
(
CgphF (x0, y0)

)
= {0} × cone

(
F (x0) − y0

)
.(3.5)

(iii) If F is Lipschitz-like at any point (x 0, y) ∈ gphF , where y ∈ F (x0), then
the equality (3.5) is valid.
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Proof. (i) We will follow the proof scheme of [5]. Since

Vert
(
CgphF (x0, y0)

)

is a closed convex cone, the inclusion (3.4) will be established if we can show that

(0, v) ∈ CgphF (x0, y0) ∀v ∈ (
F (x0) − y0

) \ {0}.(3.6)

Take any v ∈ (
F (x0)− y0

) \ {0}. Let v = y1 − y0 for some y1 ∈ F (x0), y1 	= y0.
Fix an ε > 0. Since the restriction of F on domF is lower semicontinuous at x0,
there exists δ ∈ (

0, ε
3

)
such that

(
y1 + BY

(
0,

ε

3

))
∩ F (x′) 	= ∅ ∀x′ ∈ BX(x0, δ) ∩ domF.(3.7)

Since F (x) is convex for all x from a neighborhood of x0, there is no loss of
generality in assuming that F (x′) is convex for every x′ ∈ BX(x0, δ). We set

λ =
ε

3‖v‖(3.8)

and let (z′, t) be a pair satisfying the conditions

z′ = (x′, y′) ∈ BZ(z0, δ) ∩ gphF, t ∈ (0, λ).(3.9)

According to (3.7), there exists y′′ ∈ F (x′) such that

‖y1 − y′′‖ ≤ ε

3
.(3.10)

Setting

x̄ = x′, ȳ =
1

1 + t
y′ +

t

1 + t
y′′,

we have (x̄, ȳ) ∈ gphF by the convexity of F (x′). Using (3.7)-(3.10) we have

‖(x′, y′) + t(0, v)− (x̄, ȳ)‖
= (1 + t)−1‖(1 + t)y′ + (1 + t)tv − (1 + t)ȳ‖
= (1 + t)−1‖(1 + t)y′ + tv + t2v − y′ − ty′′‖
= (1 + t)−1‖t(y′ − y0) + t2v + t

(
(v + y0) − y′′

)‖
≤ t

(
‖y′ − y0‖ + t‖v‖ + ‖y1 − y′′‖

)

≤ t
(
δ + t‖v‖ +

ε

3

)

< tε.
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Thus

(x′, y′) + t(0, v) ∈ gphF + tBZ (0, ε)

or, equivalently,
[
(x′, y′) + t

(
(0, v) + BZ(0, ε)

)] ∩ gphF 	= ∅.(3.11)

We have proved that for every ε > 0 there exist λ > 0 and δ > 0 such that (3.11)
holds for any pair (z′, t) satisfying (3.9). This establishes (3.6).

(ii) It suffices to combine (i) with Corollary 2.4.
(iii) If F is Lipschitz-like at any point (x0, y) ∈ gphF , where y ∈ F (x0), then

F is lower semicontinuous at x0. Moreover, F is upper Lipschitz-like at (x0, y0).
Hence, the claim follows from (ii).

The assumption saying that the restriction of F on domF is lower semicontin-
uous at x0 is crucial for the validity of (3.4) and (3.5).

Example 3.3. Consider the multifunction F : IR ⇒ IR defined by setting
F (x) = {1} for all x 	= 0 and F (0) = (−∞, 1]. Let (x0, y0) = (0, 1). Since
CgphF (x0, y0) = {(0, 0)}, the formulae (3.4) and (3.5) fail to hold. The unique
damage to the assumptions of the first two assertions in Theorem 3.2 is that F is
not lower semicontinuous at x0. A similar effect is achieved with the multifunction
G in Example 2.2 and the points (x0, y0) = (0, 1) and (x0, y0) = (0,−1).
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