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WEAK AND STRONG CONVERGENCE IN THE HYPERSPACE CC(X)

Thakyin Hu and Jui-Chi Huang

Abstract. Let CC(X) be the collection of all non-empty compact, convex
subsets of a complex Banach space X endowed with the usual Hausdorff met-
ric h. We shall define a natural weak topology Tw on CC(X) and investigate
properties of Tw-convergent sequences. Our main result is a theorem which
states that if An, A ∈ CC(X) and An is Tw-convergent to A, then there exists
a sequence {Bn} (each Bn is a finite convex combination of Ak’s) such that
Bn converges to A with respact to the Hausdorff metric h.

1. INTRODUCTION

Let X be a Banach space and BCC(X) be the collection of all non-empty
bounded, closed, convex subsets of X endowed with Hausdorff metric h. If
dim(X) < ∞ and An ∈ BCC(X) is a bounded sequence (i.e. there existsM < ∞
such that h(An, {0}) ≤ M < ∞ for all n = 1, 2, . . .), Blaschke [2] proved that
{An} has a subsequence {Ank

} such that {Ank
} converges to some A ∈ BCC(X).

DeBlasi and Myjak [3] introduced the concept of weak convergence of a sequence
in BCC(X) and they proved an infinite dimensional version of Blaschke’s theorem.
SupposeX is regarded as a real Banach space, An and A are assumed to lie in finite
dimensional subspaces of X and An converges weakly to A. DeBlasi and Myjak
[3] also proved that there exists a sequence {Zn}, where each Zn is a finite convex
combination of the An’s such that Zn converges to A strongly (i.e. Zn

h→A). This
result is an extension of the classical Mazur’s theorem. In this paper, we will define
a certain weak topology Tw on the hyperspace CC(X), which is the collection of
all non-empty compact, convex subsets of X . We obtain some basic properties of
the hyperspace (CC(X), Tw); moreover, we prove a Tw-convergence theorem for a
sequence {An} ⊂ CC(X) which is more general than the above-mentioned result
of DeBlasi and Myjak.
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2. NOTATIONS AND PRELIMINARIES

LetX be a Banach space, X∗ its topological dual, and Z the complex plane. The
closed unit balls of X and X ∗ are denoted by B and B∗, respectively; BCC(X)
is the collection of all non-empty bounded, closed convex subsets of X , CC(X)
is the collection of all all non-empty compact convex subsets of X , CC(Z) is the
collection of all non-empty compact convex subsets of the complex plane. For
A, B ∈ BCC(X), define N (A; ε) = {x ∈ X : ‖x − a‖ < ε for some a ∈ A}
and h(A, B) = inf{ε > 0 : A ⊂ N (B; ε) and B ⊂ N (A; ε)}. Equivalently,
h(A, B) = max

{
sup
a∈A

d(a, B), sup
b∈B

d(b, A)
}

. In this paper, we are concerned only

with the hyperspace CC(X).

Lemma 1. Let A, B, C, D ∈ CC(X) and α ∈ Z. We have

(a) h(A, {0}) = sup{‖a‖ : a ∈ A};

(b) h(A, B) ≤ h(A, C) if B ⊂ C;

(c) h(αA, αB) = |α|h(A, B);

(d) h(A + C, B + D) ≤ h(A, B) + h(C, D).

The proofs follow immediately from the definition and shall be omitted. Observe
that for A, B ∈ CC(X) and λ ∈ Z, we have A + B = {a + b : a ∈ A, b ∈ B} and
λA = {λa : a ∈ A} both belong to CC(X) since addition and scalar multiplication
are continuous. Also for x∗ ∈ X∗ and A ∈ CC(X), it follows from the continuity
and linearity of x∗ that x∗(A) is a compact, convex subset of the complex plane Z,
i.e., x∗(A) ∈ CC(Z).

Lemma 2. (cf [4]). Let A, B, A1, A2, . . . , An ∈ CC(X), α1, α2, . . . , αn ∈
[0, 1] with

∑n
i=1 αi = 1, and x∗ ∈ X∗. Then we have

(a)
∑n

i=1 αiAi ∈ CC(X);

(b) A = B if and only if x∗(A) = x∗(B) for each x∗ ∈ X∗;

(c) x∗ : (CC(X), h) → (CC(Z), h) is continuous. In fact, h(x∗(A), x∗(B)) ≤
‖x∗‖h(A, B).

The proof of (b) is a simple application of the Hahn-Banach theorem and the
proof of (c) is a consequence of the fact that |x∗(a) − x∗(b)| = |x∗(a − b)| ≤
‖x∗‖‖a− b‖.

Recall now that the weak topology τw onX is defined to be the weakest topology
on X which makes each x∗ : (X, τw) → (Z, | |) continuous. Now that we have,
by Lemma 2, that each x∗ : (CC(X), h) → (CC(Z), h) is continuous, we may
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define Tw to be the weakest topology on the hyperspace CC(X) such that each
x∗ : (CC(X), Tw) → (CC(Z), h)) is continuous. We shall use the notation W(A;
x∗

1, . . . , x∗
n; ε) = {B ∈ CC(X) : h(x∗

i (B), x∗
i (A)) < ε for i = 1, 2, . . . , n} to

denote a Tw-neighborhood of A in CC(X). The Hausdorff metric topology and
the Tw-topology shall be called as the strong topology and the weak topology on
CC(X), respectively.

Thus we have the following

Definition 1. Let Aα, A ∈ CC(X) and K ⊂ CC(X).
(a) Aα → A strongly if and only if h(Aα, A) → 0;

Aα → A weakly if and only if h(x∗(Aα), x∗(A)) → 0 for each x∗ ∈ X∗.
(b) K is strongly bounded if and only if there exists some M > 0 such that

sup{h(A, {0}) : A ∈ K} ≤ M < ∞;
K is weakly bounded if and only if there exists some Mx∗ > 0 such that
sup{h(x∗(A), {0}) : A ∈ K} ≤ Mx∗ < ∞ for each x∗ ∈ X∗.

Suppose x∗ is a complex-linear functional on X and u its real part, the equation
x∗(x) = u(x)−iu(ix) = u(x)+iu(−ix) tells us that each complex-linear functional
is uniquely determined by its real part. we now define

Definition 2. Let A ∈ CC(X) and x∗ ∈ X∗. Define σA(x∗) = sA(Re x∗) =
max{Re x∗(a) : a ∈ A}, where sA is known as the support function of A.

Let R be the set of all real numbers. Then CC(R) is simply the collection of
all non-empty closed intervals and it is well-known that h([a, b], [c, d]) = max{|c−
a|, |d − b|}. The basic and important relationship between σA(x∗) and x∗(A) is
now given by the next lemma.

Lemma 3. Let A, B ∈ CC(X), x∗ ∈ X∗. Then |σA(x∗) − σB(x∗)| ≤
h(Re x∗(A), Re x∗(B)) ≤ h(x∗(A), x∗(B)) ≤ ‖x∗‖h(A, B). In particular |σA(x∗)|
≤ h(Re x∗(A), {0}) ≤ h(x∗(A), {0}) ≤ ‖x∗‖h(A, {0}), where the same symbol
{0} is used to denote the zero-element of the corresponding spaces, namely R, Z

and X .

Proof. Let Re x∗(A) = [a1, a2], Re x∗(B) = [b1, b2] ∈ CC(R). Then
|σA(x∗) − σB(x∗)| = |sA(Re x∗) − sB(Re x∗)| = |b2 − a2| ≤ max{|b2 − a2|,
|b1 − a1|} = h([a1, a2], [b1, b2]) = h(Re x∗(A), Re x∗(B)) ≤ h(x∗(A), x∗(B)) ≤
‖x∗‖h(A, B) since Re : (CC(Z), h) → (CC(R), h) is a nonexpansive mapping
and the last inequality follows from Lemma 2.

It follows from Lemma 3 and Proposition 2.1 of [3] that we have

Lemma 4. Let A, B ∈ CC(X), α, β ≥ 0. Then
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(a) σαA+βB = ασA + βσB.
(b) h(A, B) = sup{h(x∗(A), x∗(B)) : ‖x∗‖ ≤ 1} = sup{|σA(x∗) − σB(x∗)| :

‖x∗‖ ≤ 1}.

3. MAIN RESULTS

Firstly, we show that Tw-convergence and weak convergence in the sense of
DeBlasi and Myjak [3] are equivalent.

Theorem 1. Let X be a complex Banach space, and A, An ∈ CC(X). Then
x∗(An) → x∗(A) for each x∗ ∈ X∗ if and only if σAn(x∗) → σA(x∗) for each
x∗ ∈ X∗.

Proof. Suppose x∗(An) → x∗(A) for each x∗ ∈ X∗. Then Re x∗(An) →
Re x∗(A) since Re : (CC(Z), h) → (CC(R), h) is nonexpansive. Also max :
(CC(R), h) → R is nonexpansive implies that σAn(x∗)=sAn (Re x∗)=max{Re x∗

(An)}→max{Re x∗(A)}=σA(x∗) for each x∗ ∈ X∗.

On the other hand, assume σAn(x∗) → σA(x∗) for each x∗ ∈ X∗. If there exists
some x∗ such that x∗(An) �→ x∗(A), then there exists ε > 0 and a subsequence
{Ank

} such that h(x∗(Ank
), x∗(A)) ≥ ε for all k = 1, 2, . . ., which in turn implies

that either (a) x∗(Ank
) �⊂ N (x∗(A); ε) or (b) x∗(A) �⊂ N (x∗(Ank

); ε). Assume
(a) is true. Then there exists ank

∈ Ank
such that x∗(ank

) �∈ N (x∗(A); ε), i.e.,
|x∗(ank

) − x∗(a)| ≥ ε for all a ∈ A. Hence |x∗(ank
) − x∗(a)| = |[u(ank

) −
iu(iank

)] − [u(a) − iu(ia)]| ≥ ε, which implies that |u(ank
) − u(a)| ≥ ε√

2
or

|u(iank
) − u(ia)| ≥ ε√

2
for each a ∈ A. If u(ank

) − u(a) ≥ ε√
2
, then u(ank

) ≥
ε√
2
+u(a), and thus σAn(x∗) = sAn(u) ≥ ε√

2
+u(a) for all a ∈ A and consequently

σAn(x∗) ≥ ε√
2

+ σA(x∗), which implies that σAn(x∗) �→ σA(x∗). If u(a) −
u(ank

) ≥ ε√
2
, we let v(x) = −u(x), y∗ = v(x) − iv(ix), to get that v(ank

) ≥
v(a)+ ε√

2
and thus σAn(y∗) = sAn(v) �→ sA(v) = σA(y∗). That is a contradiction.

By similar reasoning, all the remaining cases also yield a contradiction and the
theorem is proved.

The next results are extensions to the hyperspace CC(X) of their corresponding
counterparts in the underlying space X .

Theorem 2. If {An} is a Tw-Cauchy sequence in CC(X), then there exists
M > 0 such that sup

n≥1
{h(An, {0})} ≤ M . Moreover, if An → A weakly, then

h(A, {0}) ≤ lim inf
n→∞

h(An, {0}).

Proof. For each x∗ ∈ X∗, {x∗(An)} is a Cauchy sequence in CC(Z). Thus
there exists Mx∗ > 0 such that h(x∗(An), {0}) ≤ Mx∗ , for all n = 1, 2, . . .. Let
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B = ∪∞
n=1An ⊂ X . Then for each b ∈ B = ∪An, there exists some ak ∈

Ak such that b = ak. Hence |x∗(b)| = h({x∗(b)}, {0}) = h({x∗(ak)}, {0}) ≤
h(x∗(Ak), {0}) ≤ Mx∗ . Thus B ⊂ X is a family of linear functionals on X∗ such
that sup

b∈B
|x∗(b)| ≤ Mx∗ and it follows from the uniform boundedness principle that

sup{‖b‖ : b ∈ B} ≤ M < ∞. Consequently, h(B, {0}) = sup{‖b‖ : b ∈ B} ≤ M

which implies that h(An, {0}) ≤ h(B, {0}) ≤ M . That proves the first part of the
theorem. Suppose now An

Tw−→A, and if lim inf
n→∞

h(An, {0}) < α < h(A, {0}). Then
there exists some subsequence {Ank

} with h(Ank
, {0}) < α. On the other hand,

h(A, {0}) > α implies the existence of some a ∈ A such that ‖a‖ > α. By Hahn-
Banach theorem, there exists some x∗ ∈ X∗ with ‖x∗‖ = 1, and |x∗(a)| = ‖a‖
and thus h((x∗(A), {0}) ≥ ‖a‖ > α. But, by Lemma 3, h(x∗(Ank

), {0}) ≤
‖x∗‖h(Ank

, {0}) ≤ h(Ank
, {0}) < α. It follows that x∗(Ank

) does not converge
to x∗(A). That is a contradiction and the proof is complete.

Corollary 1. Let An → A weakly in CC(X). Then σAn : B∗ → R is a se-
quence of functions such that σAn(x∗) → σA(x∗) and ‖σAn‖ = sup

x∗∈B∗
|σAn(x∗)| ≤

M < ∞ for all n = 1, 2, . . ..

Proof. An → A weakly implies that σAn(x∗) → σA(x∗) for each x∗ ∈
X∗ by Theorem 1. And ‖σAn‖ = sup

x∗∈B∗
|σAn(x∗)| ≤ sup

x∗∈B∗
{h(x∗(An), {0}} ≤

h(An, {0}) ≤ M ∀ n = 1, 2, . . ..

Theorem 3. Let X be a complex Banach space, B∗ the closed unit ball of X ∗

and A ∈ CC(X), fA(x∗) = x∗(A). Then fA : (B∗, τ∗
w) → (CC(Z), h) is con-

tinuous.

Proof. Let x∗ ∈ B∗ and ε > 0 be given. A is compact and A ⊂ sup
a∈A

N (a; ε
3)

implies the existence of a finite number of points a1, a2, . . . , an such that A ⊂
∪n

i=1N (ai; ε
3 ). Let U(x∗; a1, a2, . . . , an; ε

3 ) be a τ∗
w-neighborhood of x∗ and y∗ ∈

U(x∗; a1, . . . , an; ε
3 ). For each a ∈ A, there exists some ak (1 ≤ k ≤ n) such

that ‖a− ak‖ < ε
3 , and |y∗(a)− x∗(a)| ≤ |y∗(a)− y∗(ak)|+ |y∗(ak) − x∗(ak)|+

|x∗(ak) − x∗(a)| ≤ ‖y∗‖‖a − ak‖ + ε
3 + ‖x∗‖‖ak − a‖ < ε

3 + ε
3 + ε

3 = ε since
‖y∗‖, ‖x∗‖≤ 1. Hence y∗(A)⊂N (x∗(A);ε) and x∗(A) ⊂ N (y∗(A);ε) which im-
plies that h(fA(y∗), fA(x∗))=h(y∗(A), x∗(A)) < ε and the proof is complete.

Corollary 2. The mapping σA : (B∗, τ∗
w) → R is continuous.

Proof. Since |σA(y∗)−σA(x∗)| = |max{Re y∗(A)}−max{Re x∗(A)}| ≤
h(Re y∗(A), Re x∗(A)) ≤ h (y∗(A), x∗(A)) = h(fA(y∗), fA(x∗)).
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Finally, we prove the following extension of Mazur’s theorem. Our theorem
extends DeBlasi and Myjak’s result to compact convex sets of a complex Banach
spaces instead of finite dimensional convex sets.

Theorem 4. LetX be a complex Banach space, An, A ∈ CC(X) andAn → A

weakly. Then there exists a sequence {Zn} of finite convex combinations of An’s
such that Zn → A strongly.

Proof. Let An → A weakly and σAn , σA are their corresponding support func-
tionals. It follows from that σAn , σA : (B∗, τ∗

w) → R are continuous and hence
σAn , σA ∈ C((B∗, τ∗

w); R), the Banach space of all real-valued, continuous, func-
tions on (B∗, τ∗

w) with supremum norm. If µ is any complex measure on (B∗, τ∗
w),

Lebesgue’s dominated convergence theorem implies that
∫

σAndµ →
∫

σAdµ.
Since the Riesz representation theorem identifies the dual of C(B∗, τ∗

w) with the
space of all complex regular Borel measures on B∗, we have σn = σAn → σ = σA

weakly (for notational simplicity we set σn = σAn , σ = σA). Thus it follows
from Mazur’s theorem that there exists a sequence of finite convex combinations
of σn’s, say

∑kn
i=1 tn(i)σn(i), where tn(i) ≥ 0 and

∑kn
i=1 tn(i) = 1 such that

‖
∑kn

i=1 tn(i)σn(i) − σ‖ → 0 as n → +∞. Suppose ε > 0 is given, choose n0 such
that n ≥ n0 implies ‖

∑kn
i=1 tn(i)σn(i) −σ‖ < ε. It follows now from Lemma 4 that∑kn

i=1 tn(i)σn(i) =
∑kn

i=1 tn(i)σAn(i)
= σ

(
∑kn

i=1 tn(i)An(i))
. Let Zn =

∑kn
i=1 tn(i)An(i).

Then Zn ∈ Conv{A1, A2, . . .}, and h(Zn, A) = ‖
∑kn

i=1 tn(i)σn(i) − σ‖. Thus for
n ≥ n0 we have h(Zn, A) < ε. That is, Zn → A strongly as n → ∞ and the proof
is complete.

That A and An’s must all be compact in Theroem 4 is essential can be illustrated
by the next example which is due to DeBlasi and Myjak [3].

Example. Let l2 = {x = (xn) | ‖x‖ = (
∑

|xn|2)
1
2 < ∞}, An = {x =

(x1, x2, . . . , xn, 0, . . .) | ‖x‖ ≤ 1}, B1 = {x | ‖x‖ ≤ 1}. Then An is Tw-
convergent to B1, but h(An, B1) = 1 ∀n = 1, 2, . . .. Note that B1 is not compact.

Remarks. The notion of weak convergence of bounded closed convex sets has
been studied by many mathematicans ([1, 3, 7-9]), and this paper is inspired by
their work. However, our approach is different that enables us to define the weak
topology Tw instead of the notion of weak convergence. Consequently, validity of
fixed point theorems for mappings defined on Tw-compact sets K ⊂ CC(X) may
be further investigated ([5, 6]). In fact, it has been shown [4] that the classical
Markov-Kakutani theorem can be extended to the hyperspace (CC(X), Tw). We
are influenced and indebted to DeBlasi and Myjak [3] for the completion of this
paper
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