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CLASSIFICATION OF A FAMILY
OF HAMILTONIAN-STATIONARY LAGRANGIAN
SUBMANIFOLDS IN COMPLEX HYPERBOLIC 3-SPACE

Bang-Yen Chen

Abstract. A Lagrangian submanifold in a Kaehler manifold is said to be
Hamiltonian-stationary (or simply H-stationary) if it is a critical point of the
area functional restricted to (compactly supported) Hamiltonian variations. In
an earlier paper [12], H-stationary Lagrangian submanifolds of constant cur-
vature in the complex projective 3-space C' P with positive relative nullity
are classified. In this paper we completely classify H-stationary Lagrangian
submanifolds of constant curvature in the complex hyperbolic 3-space C'H?
with positive relative nullity. As an immediate by-product, several explicit
new families of H-stationary Lagrangian submanifolds in C' H? are obtained.

1. INTRODUCTION

Let M™(4c) denote a Kihler n-manifold of constant holomorphic sectional cur-
vature 4c. Let J and ( , ) be the complex structure and the Kaehler metric ( , )
on M"(4c). The Kaehler 2-form w is defined by w(-,-) = (J-,-).

An immersion 1) : M — M"(4c) of an n-manifold M into M"(4¢) is called
Lagrangian if 1*w = 0 on M. A vector field X on M "(4c) is called Hamiltonian
if £Lxw = fw for some function f € C°(M™"(4c)), where L is the Lie derivative.
Thus, there exists a smooth real-valued function ¢ on M "(4c) such that X = J @ap,
where V is the gradient in M™(4c). Since the diffeomorphisms of the flux v; of
X satisfy 1w = e*w, they transform Lagrangian submanifolds into Lagrangian
submanifolds.

A normal vector field £ to a Lagrangian immersion ¢ : M™ — M"(4c) is
called Hamiltonian if £ = JV f, where f is a smooth function on M™ and Vf is
the gradient of f with respect to the induced metric.
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The notion of Hamiltonian-stationary (or H -stationary for brevity) Lagrangian
submanifolds was introduced by Oh in 1990 (see [19]) as the critical points of the
volume functional for all Hamiltonian isotropy of the Lagrangian submanifold. The
Euler-Lagrange equation of this variational problem is

(1.1) S = 0,

where H is the mean curvature vector of the submanifold, oy is the Maslov form,
and 0 is the Hodge-dual of the exterior derivative d on M with respect to the induced
metric. Clearly, Lagrangian submanifolds with parallel mean curvature vector are
H-stationary. Among others, H-stationary Lagrangian submanifolds in complex
space forms have been studied in [1-10, 12, 13, 16-19].

In an earlier paper [12], the author and Garay classify H-stationary Lagrangian
submanifolds of constant curvature in CP? with positive relative nullity. In this
paper, we completely classify H-stationary Lagrangian submanifolds of constant
curvature in C H3 with positive relative nullity. As an immediate by-product, several
explicit new families of H -stationary Lagrangian submanifolds in C'H? are obtained.

2. PRELIMINARIES
2.1. Basic notation and formulas

Let f: M — M (4c) be a Lagrangian isometric immersion of a Riemannian
n-manifold M into M™(4c). Denote by V and V the Riemannian connections of
M and M"™(4c), respectively. Let D be the connection on the normal bundle of the
submanifold.

The formulas of Gauss and Weingarten are given respectively by (cf. [6])

2.1 VxY = VxY +h(X,Y),

(2.2) Vxé=—A¢X + Dx¢

for tangent vector fields X, Y and normal vector field £. If we denote the Riemann
curvature tensor of V by R, then the equations of Gauss and Codazzi are given
respectively by

(R(X,Y)Z,W) = (h(X, W), h(Y, Z)) — (h(X, Z), (Y, W))

(2.3)
+C{<X7 W> <Yv Z> - <X7 Z> <Yv W>}7

(2.4) (Vh)(X,Y, Z) = (Vh)(Y, X, Z),
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where (Vh)(X,Y,Z) = Dxh(Y,Z) - h(VxY,Z) — h(Y,VxZ).
For a Lagrangian submanifold M we also have (cf. [14])

(2.5) Dy JY = JVyY,

(2.6) (WMX,Y),JZ) = (WY, 2),JX) = (h(Z,X),]Y).

At a given point p € M, the relative null space N, at p is the subspace of the
tangent space 1, M defined by

N, ={X € T,M : h(X,Y)=0VY € T,M}.

The dimension v, of N, is called the relative nullity at p. The submanifold is said
to have positive relative nullity if v, is positive at each point p € M.

2.2. Lagrangian and Legendrian submanifolds

If M "(4c) is a complete and simply-connected Kahler manifold of constant
holomorphic sectional curvature 4¢ with ¢ < 0, then M"(4c) is holomorphically
isometric to the complex hyperbolic n-space CH" (4c).

Consider the complex number (n + 1)-space C’fJrl equipped with the pseudo-

Euclidean metric:
n+1

go = —dzdz + Y dzdz;.
=2
Put H" 1 (—1) = {z € C7™ : (2,2) = —1} and H{ = {A € C: AA = 1}.

On C’f“ we consider the canonical complex structure J induced by i = /—1.
On H?"1(—1) we consider the canonical contact structure consisting of ¢ given
by the projection of the complex structure J of C’f+1 on the tangent bundle of
H 12”+1(—1) and the structure vector field £ = Jx with x being the position vector.

There exists an H{-action on H2"*'(—1) given by z +— Az. At each point
z € H"Y(—1), iz is tangent to the flow of the action. The orbit lies in the
negative definite plane spanned by z and iz. The quotient space H>""!(—1)/~
is the complex hyperbolic space CH™(—4) with constant holomorphic sectional
curvature —4, whose complex structure is induced from the complex structure on
C" via Hopf’s fibration: 7: HZ"™'(—1) — CH"(—4).

An isometric immersion f : M — H12”+1(—1) is called Legendrian if € is
normal to f.(T'M) and (¢(f«(TM)), f«(TM)) = 0, where ( , ) denotes the inner
product on C?™'. The vectors of H>"™(—1) normal to ¢ at a point z define the
horizontal subspace . of the Hopf fibration 7: H2"*'(—1) — CH"(—4).

Lety: M — CH"™(—4) be a Lagrangian immersion. Then there is an isometric
covering map 7: M — M and a Legendrian immersion f: M — HP (1)
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such that ¢)(7) = m(f). Hence, every Lagrangian immersion can be lifted locally (or
globally if we assume the manifold is simply connected) to a Legendrian immersion
of the same Riemannian manifold (see [20] for details).

Conversely, suppose that f: M — H2"*'(—1) is a Legendrian immersion.
Then ¢ = 7(f): M — CH"™(—4) is again an isometric immersion, which is
Lagrangian. Under this correspondence, the second fundamental forms i/ and h¥
of f and v satisfy m,h/ = h¥. Moreover, hf is horizontal with respect to 7. We
shall denote A/ and h¥ simply by h.

Let L: M — H?""'(—1) c C7™! be an isometric immersion. Denote by V
and V the Levi-Civita connections of C’f+1 and M, respectively. Let h denote the
second fundamental form of M in H?""!(—1). Then we have

2.7) VxY =VxY +h(X,Y) + (X,Y) L

for vector fields X, Y tangent to M.

3. TwisTED ProODUCT DECOMPOSITIONS AND ADAPTED IMMERSIONS

We recall a very effective method introduced by Chen, Dillen, Verstraelen
and Vrancken for constructing Lagrangian submanifolds of constant curvature ¢
in M"(4c) (see [11] for details).

Definition 3.1. Let (M1,91),...,(Mm,gmn) be Riemannian manifolds, f; a
positive function on My X --- x M, and w; : My X ... x M,, — M; the i-th
canonical projection for ¢ = 1, ..., m. Then the twisted product

flMl Xoees Xfm Mm

of (M1,91), ..., (M, gm) is the differentiable manifold M; x ... x M, with the
twisted product metric g defined by

3.1 g(X7 Y) = f12 : gl(ﬂl*Xv 1Y) + -+ f7’2n 'gm(ﬂm*Xv TmsY)

for all vector fields X and Y of M; x --- x M,,.
Let N"~“(c) be an (n — f)-dimensional real space form of constant curvature
c. For 0 < £ < n — 1, consider the twisted product:

(3.2) nd % oxg, I xg N (e)
with twisted product metric given by

(3.3) g = fida? + -+ fda? + go,
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where gg is the canonical metric of N ”_f(c) and Iy, ..., I; are open intervals.
For ¢ = n — 1 (resp., £ = n), consider the following twisted product instead.

(3.4) palix o oxgp Inoq Xy Iy (resp., g1 X - Xy, 1),

If the twisted product given by (3.2) or (3.4) is a real space form M"(c) of
constant curvature ¢, it is called a twisted product decomposition of M ™(c). The
functions f1, ..., fr are called the twistor functions. For simplicity, we denote such
a decomposition of M"(c) by TP .., (c).

The coordinates {1, ..., z,} onT P}, (c) are called adapted coordinates if

(i) 0/0x; is tangent to [; for j =1,...,¢;
(ii) 0/0x, is tangent to N"~*(c) for r = £+ 1,...,n; and
(iii) the metric tensor of 7~ Py fz(c) takes the form (3.3).

(3.5) ®(TP) = frdzy + -+ foday,

which is called the twistor form of T P ’J}l f[(c). The twistor form ®(7 P) is said
to be twisted closed if we have

14

(3.6) > gj; da; A dx; = 0.

ij=1

When ¢ = 1, the twistor form ®(7 P) is automatically twisted closed.
The following useful theorem was proved in [11].

Theorem 3.1. Let TP, . f[(c), 1 < ¢ < n, be a twisted product decomposition
of a simply-connected real space form M™(c). If the twistor form ®(TP) of
T PY ...4,(c) is twisted closed, then up to rigid motions of M"(4c) there is a unique
Lagrangian isometric immersion:

(3.7) Lyy..s, : TP}, 4,(c) = M"(4c),

whose second fundamental form satisfies

o 0 0
A ey S e
h <axj7 axj> Jaxj7 .] Y 7

o 0 .
h <8—xr’ 8—%) = 0, otherwise,

(3.8)

for any adapted coordinate system {JNU 1oy on TP 4 (c).
Conversely, if L : M™(c) — M"™(4c) is a non-totally geodesic Lagrangian
immersion of a real space form M " (c) of constant curvature c into a complex space
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form M™(4c), then M™(c) admits an appropriate twisted product decomposition
with twisted closed twistor form. Moreover, the Lagrangian immersion L is given
by the corresponding adapted Lagrangian immersion of the twisted product.

For an adapted immersion Ly,..;, : TP% ., (c) — M"(4c), Dong and Han
[16] computed the H -stationary condition oy = 0 in terms of the twistor functions
fi,..., fe and obtained the following.

Proposition 3.1. Let Ly ..g, : TP?1~~~fg(C) — M”(4C) be an adapted La-
grangian immersion given in Theorem 3.1. Then Ly, ..y, is H-stationary if and

only if the twistor functions f1, ..., f¢ satisfy
)4
1 9f; 1 9f;
39 S L% s Lok
= om i il Oz;

Corollary 3.1. [16]. Any adapted Lagrangian immersion L s : T P’ ¢(c) —
M"(4c) (with k = 2 and f1 = fo = f) is H-stationary.
From Proposition 3.1 we also have the following.

Corollary 3.2. [f the twistor functions f1,..., fo of TP}, . 4 (c) are indepen-
dent of the adapted coordinates x 1, . . ., xy, then the adapted Lagrangian immersion
Lfy..s, TP}, 4,(c) = M"(4c) is H-stationary.

Corollary 3.3. An adapted Lagrangian immersion Ly, : T P% (c) — M"(4c)
is H-stationary if and only if the twistor function f 1 is independent of the adapted
coordinate x1.

Remark 3.1. Let 7 P%k(—l) be a twisted product decomposition of a simply-
connected surface of constant curvature —1. Then the metric tensor of 7° P%k(—l)
takes the form:

(3.10) 9=y, 2)dy* + k*(y, 2)dz>,

where f(y, z) and k(y, z) are positive functions satisfying

B k
(3.11) (—) +<—y> = fk.
k). f),

From (3.11), we know that f, k cannot be both constant.
The twistor form & of ’TP?k(—l) is given by

® = f2(y, 2)dy + k*(y, 2)dz,
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which is twisted closed if and only if we have
Ff. = kky.
It follows from Proposition 3.1 that the adapted Lagrangian immersion
L:TP}(-1) — CH?*(—4)
is H -stationary if and only if we have
(3.13) K fy + 3k, = f2kf. + fEPk,.

If the twistor functions f and k of 7' P?k(—l) are equal and satisfy (3.12), then
f can be chosen to be one of the following functions (see [11]):
(3.14)
a a V2
=asec| —(x+ ,or f=acsch | —(z+ , or f= ,
F=asec (Zsto ) or f=acs (ol n)) . or = Y2

with @ > 0. Their corresponding adapted Lagrangian surfaces in CH?(—4) were
determined in [11]. It follows from Corollary 3.1 that such Lagrangian surfaces
are H-stationary automatically. We call these H-stationary Lagrangian surfaces
H-stationary Lagrangian surfaces of type 1.

Remark 3.2. If the twistor functions f and k of 7 P?Q 42(—1) are unequal and
if they satisfy (3.11), (3.12) and (3.13), then the corresponding adapted Lagrangian
immersion in CH?(—4) is also H-stationary. Such H-stationary Lagrangian sur-
faces are called H-stationary Lagrangian surfaces of type I1.

Recently, Chen, Garay and Zhou has constructed in [13] five distinct families
of H-stationary Lagrangian surfaces of type Il in CH?(—4).

4. H-STATIONARY LAGRANGIAN SUBMANIFOLDS IN C'H3(—4)

The following result completely classifies H -stationary Lagrangian submanifolds
of constant curvature in C'H?3(—4) with positive relative nullity.

Theorem 4.1. There exist ten families of Hamiltonian-stationary Lagrangian
submanifolds of constant curvature in C'H 3(—4) with positive relative nullity:

(1) A totally geodesic Lagrangian submanifold L : H 3(—1) — CH3(—4);
(2) A Lagrangian submanifold defined by

L(S,y, Z) = m((Q’L—f—s)eés(Qby—f—\/ 1—|—b2(1—|—:l/2_’_2:2))7

se%S(26y+\/1+b2(1+y2—|—22)),4\/1+b2y+26(1+y2+z2),42), beR.
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(3) A Lagrangian submanifold defined by

1 ig 1 2 2 ) h — isinh
L(S,y,Z): <62 (by+a( ty 'tz )){ dcoshds 7 S1n 53}

1—y?—22 5v/4a? — b2
e%s(by—i—a(l—i—yQ—i—zQ))sinh(Ss day — b(1 +y? + 2?) 5 )
) ) z )
0 V4a? — b2

where a, b, § are real numbers satisfying 4a*>—b*> > 1 and 26 = /4a? — b2 — 1.

(4) A Lagrangian submanifold defined by

L(s,y,z)= 1 e%S(by—i—a(l—i—y?+22)){2fycosys—isinfys}
1_3/2—22 y 4a2—b2
e%s(by +a(l+ y2 + 22)) sinys 4ay + b(1+ y2 + 22) , )
9 , z ,
7 Via? — b2
where a, b, are real numbers satisfying 4a> < 1+ b2, 2y = /1 + b? — 4a?
and 4a® # b2

(5) A Lagrangian submanifold defined by

2y — a?(1+is)((1 +y)? + 22 2
Va2 —1(1 —y2 — 22) L=y ==
L+ + 22 +ia?s((14y)? + 22) ae™((1+y)? + 2?) 0 £0,1
2—1(1—y2—22) = 1-y2-z2 ) o

(6) A Lagrangian submanifold defined by

is 3 . 20i—3—is+(20—-2—1is)y 2z
L =|l=+=--
(S,y,Z) <2+2 L+ 1_y2_22 ’1_y2_227
is 1 1+2i—is+(2+2i—is)y e*((1+y)?+22)
—— -1 .
2 2 1—y2—22 Tl —y? 22

(7) A Lagrangian submanifold defined by

h A —
Le,a8) = \;% <\/2—btans -1, V2be/ V2 sec s cos <\/1/2_7t> )

\/Q—beis/\/Q_bsecssin < 1/;_b2bt> , V11— thanhx>, 0<2b< 1.
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(8) A Lagrangian submanifold defined by

h ) 2b —
L(z,s,t) = m<\/2—be’8/\/2_bsecscosh < 20 1t) ,V2btans — 1,

V1—2b V20
\/Q—beis/msecssinh< Qb\/2_21t> ,\/26—1tanhx), 2b > 1.

(9) A Lagrangian submanifold defined by

h A A
L(z,s,t) = ——22 )(z‘+2e2”(s+i+it2),z’+2e2’5(s+it2),

V2(1 + eis
V2(1 + €%#) tanh z, 2\/§e2i8t>.

(10) A4 Lagrangian submanifold defined by
L(z,y,2) = (P(y, z) cosha,sinhz),

where P is a horizontal lift of a type 1l Hamiltonian-stationary Lagrangian
surface L : TP’J}QkQ(—l) — CH?*(—4) via the Hopf fibration 7 : H}(—1) —
CH?(-4).

Conversely, locally every Hamiltonian-stationary Lagrangian submanifold of
constant curvature in CH3(—4) with positive relative nullity is congruent to an
open portion of a Lagrangian submanifold from one of the above tex families.

Proof. By a straight-forward long computation, we can verify that the each map
defined by one of the above tex families gives rise to an H-stationary Lagrangian
submanifold of constant curvature in C H?(—4) with positive relative nullity.

Conversely, let us assume that L : M — CH?3(—4) is an H-stationary La-
grangian isometric immersion with positive relative nullity from a Riemannian 3-
manifold of constant curvature K into CH3(—4).

If the relative nullity is three everywhere, then M is totally geodesic, which
gives case (1) of the theorem.

So, from now on, we assume that M is non-totally geodesic. It follows from

the assumption of positive relative nullity that there exists a local unit vector field
e1 such that

(4.1) h(er,X)=0, VX € TM.

Hence, by applying equation (2.3) of Gauss, we obtain K = —1. Thus, from (2.3)
and (2.6), we find

[Arx,Asy] =0
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for X,Y € TM. By using (2.6), (4.1), and [Ajx, Ajy] = 0, we know that at each
point p € M there exist orthonormal vectors es, e3 perpendicular to e; such that the
second fundamental form takes the following form:

(4 2) h(el, 61) = h(el, 62) = h(el, 63) = h(eg, 63) = 0,
' h(ea, e2) = aJes, h(es, e3) = @Jes

for some functions «, ¢. Since M is assumed to be non-totally geodesic, at least
one of a;, ¢ is nonzero. ‘

Let w!, w?, w3 be the dual 1-forms of €1, €2, €3 and (w?), i, j = 1,2, 3, be the
connection forms. Then, by applying (4.2) and Codazzi’s equation, we have

(4.3) awy(e1) = awj (e3) = w3 (e1) = pws(ez) = wi(er) =0,
(4.4) aws (e3) = puws(e2),
4.5)  e1a=oawy(ez), ez = awi(e2), e1¢ = pwi(es), eap = pw3(es).

It follows from (4.1) that the mean curvature vector satisfies
3H = aJey + pJes.

So, the Maslov form, i.e., dual 1-form oy of JH, is given by

1
(4.6) ag = —g(an + @w?).

After applying § to (4.6) and using (4.3) and the structure equations, we see that
the H-stationary condition (1.1) is equivalent to

4.7) 2 + e3¢ = awj(es) + pwi (e2).

Case (a). « = 0. Because M is non-totally geodesic, we have ¢ # 0. It
follows from (4.2)-(4.5) and (4.7) that

(48) h(€17 ej) = h(627 62) = h(627 63) = 07 h(e37 63) = @J@g; .] = 17 27 37

(4.9) wi(e1) = ws(e2) = wi(er) = wi(e2) =0,

(4.10) e1p = pwi(es), eap = pwi(es), ezp = 0.

Consider the distributions D and D+ spanned by {e1, e2} and {e3}, respectively.
Clearly, D+ is integrable, since it is of rank one. Also, it follows from (4.9) that
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the distribution D is integrable with totally geodesic leaves. Moreover, (4.8) implies
that the leaves of D are totally geodesic in CH?(—4) as well.

Because D and D' are both integrable, there exist local coordinates {s,y, 2}
such that 9/ds spans D+ and {0/0y,d/0z} spans D according to Frobenius’
theorem. Since d(pw?) = 0, we may choose s in such way that 9/9s = ¢~ les.

From esp = 0, we have ¢ = ¢(y, z). With respect to {s, y, z}, (4.8) becomes

9 9 ) 9 9 9 9
4.11 29V =gL n( L, 2= 0. k=
(4.11) h(as’as> Toe h(as’axj> h(axj’axk> 0, j, k=23,

with o = y, x3 = 2.

Let N be an integral submanifold of D. Then N is a totally geodesic and totally
real surface in CH3(—4). Thus, N is an open portion of a unit hyperbolic 2-plane
H?(—1). Hence, M is isometric to an open portion of the warped product manifold
I x H?(—1) equipped with the warped product metric (see, for instance, [15]):

1
oy, 2)’

where I is an open interval and g; can be chosen to be an isothermal metric on the
hyperbolic plane H?(—1); namely,

(4.12) g=¢%ds* + g1, ¢=

_ A(dy? 4 d2?)
N

From (4.12) we know that the Levi-Civita connection of M satisfies

(4.13)

D0 o 60

20y ¢ 0s 90z ¢ Os’

(4.14) v, 2 <y§_ ﬁ)
woy 1—y2—22\"0y 0z )’

0 2 0 0
Vig: T1op== (Za—y“/&)’

v 0 2 0 n 0
—=—-y=—+z=).
%02 1—y2— 22 y@y 0z
Since M is of constant curvature —1, by computing the curvature tensor R of
M, we find

(1- y2 - 22){(1 - y2 - 22)¢yy — 2ydy + 22¢Z} = 49,
(4.15) (1—y* = 2){(1 —y? — 2%) .. +2y0y — 22¢.} = 49,
(1—y* = 2%)by. = 2y, + 226,
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After solving this PDE system (4.15), we obtain

a(l+y?+22) + by +cz
- 1— g2 — 22

¢

-z

for some a, b, c € R. Therefore, by applying a suitable rotation on the yz-plane,
we may put

4.16 =
(4.16) 6=t
It follows (2.7), (4.11)-(4.14), and (4.16) that
Los =iy = S(1 =2 = 26,1y + 6.L.) + 6L,
Lsy = @L& Lsz = %La
¢ ¢
2yL, —2zL 4L
Ly, = Y =
(4.17) vy 1—y2— 22 (1—y2—22)2
2z2Ly + 2yL,
—2yLy +2zL, 4L
L,.=

1—y2— 22 (1—y2—22)2
Case (a.i). 4a”® # b%. In this case, after solving system (4.17), we obtain

c1y +coz+e3(1+ 92+ 22)  4dacs — bey
1—9y2—22 4a2 — b2

(4.18)  L(s,y,z) = ¢H(s)
for some vectors ¢, ¢, c3 € C}, where H(s) is a C}-valued function satisfying
(4.19) 4H"(s) — 4iH'(s) — (4a®> — b*)H(s) = 0.

Case (a.i.1). 4a®? — b? = 1. In this case, (4.16) reduces to

C2by+ V14 02(1 + %+ 2?)
; 2(1—y? — 2% '

(4.20) 10)
By solving (4.19) and by applying (4.18) we find

i + Sty (1492422
L(s,y, 2) = ¢pe2® (ca + c58) + 2~ ch—gjg(_;ﬂy =

(4.21)
+(2\/ 1+ b263 - bCl)¢
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for some vectors ci, . .., c; € C}. Hence, after choosing suitable initial conditions,
we obtain case (2) of the theorem.

Case (a.i.2). 4a® —b% > 1. After solving (4.19) we obtain from (4.18) that

i 4 —b
L(s,y,z) = ¢e2® (cgcoshds + c5sinhds) — chibglqﬁ
a J—

(4.22)

c1y + coz + e3(1 4+ 92 + 22)
+ 2 _ .2
1—y=—2

for some vectors ¢y, cs € C1, where ¢ is given by (4.16) and 0 is given by
20 = \V4a? — b2 — 1.
Hence, after choosing suitable initial conditions, we obtain case (3) of the theorem.

Case (a.i.3). 4a® — b? < 1. After solving (4.19) we obtain from (4.18) that

L(s,y,2z) = qﬁe%m (cqcosys + cssinys) + 4353:231 10)

4.23
( ) _Cly+622+63(1+y2+22)

1— y2 _ 22
for some vectors ¢y, c5 € C‘ll, where v = %\/ 1+ b2 — 4a2. Hence, after choosing
suitable initial conditions, we obtain case (4).

Case (a.ii.) 4a? = b%. In this case, without loss of generality, we may put

2ay + a(1+ y* + 2?)
1— 2 22 .

(4.24) ¢ =

Hence, (4.17) reduces to
a®((1+y)* +2%)
2(1—y? —22)
{1 +y)? =2 Ly +2(1 + y)zL:} + 7L,

2((1+y)* - 2%

Lss =iLg —

B U R (R R
41+ y)=z
(4.25) L. = TSI T e 22)Ls,
I 2yL, —2zL, 4L
vy 1—y2— 22 (1 —y2 — 22)2’
L. — 2zLy +2yL,
1—y2—22"
L. — —2yLy + 2zL, 4L

1—y2— 22 +(1—y2—z2)2'
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Solving this system yields
(ia?c1s — coe® + c3)((1+ y)% + 22)

L =
($7y7z) 1_y2_22
(4.26) .
a(l4+y*+2%) — ez
1—y2—22

4
for some vectors ¢, c2, c3, cq4 € C7.

Case (a.ii.1). a? # 1. After choosing suitable initial conditions we obtain case
(5) of the theorem.

Case (a.ii.2). a? = 1. In this case, we obtain case (6) of the theorem.

Notice that (4.13) and Corollary 3.3 imply that every Lagrangian submanifold
obtained from cases (2)-(6) of the theorem is H -stationary.

Case (b). ¢ = a # 0. In this case, (4.2)-(4.5) and (4.7) imply that
427 h(e1,e1) = h(e1, e2) = h(e1,e3) = h(ez,e3) =0,
h(ea, e2) = aJey, h(es,e3) = ades
and
(428)  wy(e1) = wy(er) = wy(ea) = wy(es) = wiler) = 0, wiles) = wy(ea),
(4.29) e1a = aws(eg) = awl(e3), esa = eza = aw3(e3).
From (4.28) and (4.29) we get
le1, 0 tes] = [e1, 0 tes] = [atey, o tes] = 0.

Thus, there exists a coordinate system {z, y, z} such that e; = 9/0z, ea = ad/dy
and e3 = «d/0z. So, the metric tensor is given by

dy? + dz?
(4.30) g=do?+ L TE
«
Thus, the Levi-Civita connection satisfies
0 0 oy O 0 oy 0
- =0 ~ __zx Y ~ __Tz Y
v%@x ’ v%@y oy P50z a 0z’
0 oy O ay 0 o, 0
Voo =2l Sty 0o
wdy a3dr «ady «dz
4.31)
v,2_ %9 %0
%0z  a oy « 0z’
0 oy O ay 0 o, 0
Vo r—=—7F+—75F——=
220z a30r ady a0z
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From (2.7), (4.27), (4.30) and (4.31), we obtain
Lew =L,
Lyy = —(Ina),Ly,
Ly = —(na),L.,

4.32 Q . o L
(4.32) Ly = "5 Lo + (i = (na),) Ly + L. + =,
L, = —(In a)zLy — (lna)yLz,

o o ) L
L, = a—ng + EyLy + (i— (Ina),)L, + ol

The compatibility condition of this system is given by

(4.33) Ay — 204920 +a? = 0, ay =0z, azy= 0z,
(4.34) 2a3ayy +a? = ai + 2042%3.

Solving the first two equations in (4.33) gives

(4.35) o= S (Jf(z)u(w)), w=y+z

for some functions f(w),u(w). Substituting (4.35) into (4.34) gives

2f " — 2f% — f* + (tanh(z + w)u” + sech?(x + u)u'?)f2 =0,
which implies that v’ = 0 and 2f f” — 224 f4 = 0. Thus, u is a constant. Hence,

by applying a suitable translation in x, we obtain

(4.36) a:%, 2 f —2f — i = 0.

After solving the second order differential equation in (4.36) and applying a suitable
translation in y, z, we have

f = Vbsec <\/§(y —|—z)>, a= %seehxces (\/g(y—i— z))

for some positive number b. Thus, if we put zo = /b/2y and xz3 = \/b/2z, then
we obtain

1
(4.37) f = V2sec(zo + x3), o= —=sechz cos(zg + x3).

V2
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Substituting this into (4.32) we obtain
Lyy =L, Ly, =tanhaxlL,,, Ly, =tanhxL,,,
iV 2
Ly, = —sinh 2z sec2(x2 + x3)L, + <% + tan(zg + x3)> L,,

—tan(xg + x3) Ly, — 2 cosh? z sec2(x2 + z3)L,

4.38
( ) Lyyy = tan(zg + 23)(Ly + L),

Ly, = —sinh 2z sec?(zg + 23) L, — tan(zg + 3) Ly,

i 2
+ <% + tan(zy + x3)> Ly, +2 cosh? zsec?(z9 + x3)L.

To solving this system we make the following change of variables:
s=xo+ T3, t =T9 — 3.
Then we get from (4.38) that
Loy = L,
L,s =tanhxLg,
L.+ = tanh x L,

7

1
439 L., = ——sinh?2 2sL
(4.39) ss 5 sinh 2z sec” 5L, + <\/2_b

Ly = <ﬁ —|—tans) Ly,

1
Ly = —3 sinh 2z sec? sL, + <

+ tan s) Ly + cosh? z sec? sL,

i
V2b

Case (b.i). 2b < 1. After solving system (4.39) we find

— tan s) L + cosh? zsec? sL.

L(x,s,t) = ¢;sinhz + co(v/2btan s — i) cosh

v1—2b . v1—2b is/\v/2b
4+ c3cos | ——=——t ] + ¢4 sin t e¥/V2 gac s cosh .
{ K ( V2 * V2

Hence, by choosing suitable initial conditions, we obtain case (7) of the theorem.

Case (b.ii). 2b > 1. In this case, the solution of system (4.39) is given by
L(z,s,t) = ¢rsinhz + co(V2btans — i) cosh

V2b—1 V2b—1 ;
—1—{63 cosh( b t) —|—C4sinh< b t)}e’s/\/Q_bsec scosh x.

V2b V2b
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Hence, after choosing suitable initial conditions, we obtain case (8) of the theorem.
Case (b.iii). 2b = 1. Solving system (4.39) yields
co(i + 2€2% (s + it?)) + €2 (cat + 2c4)
1+ e?is
Hence, after choosing suitable initial conditions, we may obtain case (9) of the
theorem.

Notice that the Lagrangian submanifolds given in cases (7), (8) and (9) of the
theorem are H -stationary according to (4.30) and Corollary 3.1.

L(z,s,t) = c;sinhz + cosh z.

Case (¢). ¢ #* aand a # 0. If ¢ = 0, this reduces to Case (a) after
interchanging eo and e3. Thus, without loss of generality, we may assume that
© # 0. Hence, (4.2)-(4.5) and (4.7) reduce to

h(e1,e1) = h(e1, e2) = h(e, e3) = h(ez, e3) =0,

(4.40)
h(ea, e2) = aJes, h(es,e3) = pJes
(4.41) wy(e1) = wi(e1) = w(e) = wy(es) = wi(er) =0,
(4.42) aw3(e3) = pwi(ea),
(4.43)  eja = aws(es), esa = —aws(ey), e1p = pwi(es), eap = w3 (es),
(4.44) ot + e300 = 203 (e3).

From (4.41) and (4.43) we get

[e1, 0 ea] = [e1, ¢ Tes] = [a ea, ¢ Tes] = 0.

Thus, there exists a coordinate system {z, y, z} such that e; = 9/0x, ea = ad/dy
and es = ¢0/0z. So, the metric tensor is given by

dy?  dz?
2
(4.45) g=dx +¥+?.
The Levi-Civita connection of (4.45) satisfies
vi_zov vi_:_a__v i_:_w__v
oz Ox oz Oy a 0y v: 0z p 0z
0 oy O ay O a,p? 0
Voo =22 02 =,
wdy a3dr a Oy a® 0z
(4.46)
v, o =0 »d
%0z  a oy ¢ 0z’
0 Yp O a2<py 0 ¢, 0
Vo—=""F+ — =
2: 0z 3 Ox e Oy @ Oz
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From (2.7), (4.40), (4.45) and (4.46) we obtain

Ly =L, Lmy = _(hl a)l‘Ly’ Lz = _(hl (‘O)QCLZ’

L

2
o . QP
Ly, = a—g’Lm + (i — (Ina)y) Ly + %Lz + o3

(4.47)
L,.=—(Ina),L, — (Iny),L.,

2
o . L
L..— %Lm n (pfy Ly + (i = (ng):) L + .

The compatibility condition of this system is given by

(4.48) Ay — 204920 +0? =0, ppgp— 2%20 + 2 =0,
(4.49) (2050, — ay:) = a0 Py,

(4.50) a(20a0y — PPay) = PPyQa,

(4.51) agapy = p3a,

452) ap(P3as, + adpy, + Payp, + ro.a.) + a?p?
' = QPP + 24,04042 + 20444,02.

Solving (4.48) gives

_ sech (z +u(y, 2)) _ sech (z+v(y,2))
#3 T w7 k(y, 2)

for some functions f, k, u, v with f, k0. Substituting(4.53) into(4.49)-(4.51) gives

(4.54) sinh(u —v) f, = — fu, cosh(u — v),
(4.55) sinh(u — v)k, = kv, cosh(u — v),
(4.56) kky = ff..

Case (c.i). wu,v, f, k are constants. By applying a suitable translation in x, we
may assume that
sech x sech (z + ¢)

(4.57) o= y Y=
a b

, a,b=#£0.
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Substituting (4.57) into (4.52) gives cosh ¢ = 0, which is impossible.

Case (c.ii). At least one of u,v, f, k is non-constant.
We divide this into three cases.

Case (c.ii.1). u = v. In this case, (4.54) and (4.55) imply u. = v, = 0. Thus,
u = v is constant. Hence, at least one of f, k is non-constant. Therefore, after
applying a suitable translation in x, we may put

g = da? + cosh? a{ f2(y, 2)dy? + K (y, =)=},
(4.58) sech x sech x

P .
fy, =) k(y, z)
Clearly, it follows from the assumption « # ¢ that f # k.
From (4.47) and (4.58) we obtain

La:a: = L,
L., = tanhxL,,

L,,=tanhzL,,

(4.59) [t

k2

Ly, = —f*sinha coshaL, + (i + (In f),) L, L.+ f?cosh®zL,
Ly, = (Inf):Ly + (Ink), L,
L., = —k%*sinhz coshxL, — kfi;’Ly + (i + (Ink).)L, + k2 cosh® z.L.
The compatibility condition of system (4.59) is given by
(4.60) kky = ff-,
(4.61) FAkfoe = fokz) + K2 (Fhyy — fyky) — FPR° = 0.

Moreover, since the Lagrangian submanifold is H -stationary, it follows from (4.58)
and Proposition 3.1 that

(4.62) K fy + 3k, = f2kf. + fEPk,.

After solving the first three equations in (4.59) we have

(4.63) L(z,y,z) = ci1sinhz + P(y, z) coshz
for some vector ¢; € C and Cj-valued function P(y, z). Since (L, L) = —1, we
get

<Cl,61> = — <P, P> = 1, <61,P> = 0.
Thus, P(y, z) lies in the unit anti-de Sitter space H{(—1) C C{ and c; is a unit
space-like vector satisfying (c;, P) = 0.
Moreover, it follows from (4.58), (4.63) and the Lagrangian condition that
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(a) the induced metric of the surface P(y, z) is given by
g1 = 2y, 2)%dy” + K (y, 2)d=*;

(b) c1 is perpendicular to Py, P.,iP,,iP,; and
(c) (Py,iP;) =0.
Condition (b) implies that (P, icq) is constant, say b. Therefore, by choosing a

suitable coordinate system on C} with ¢; = (0,0,0,1) and P = (P, Py, P3,ib),
we have

(4.64) L(z,y,2) = (Zs(y, z) coshz, sinh z + ib cosh z)

with p(yv Z) = (Pl(y7 Z), PQ(yv Z), P3(y7 Z))
Now, by substituting (4.64) into the fourth equation in (4.59) we find b = 0.
Hence, (4.64) reduces to

(4.65) L(z,y,z) = (Zs(y, z) coshz, sinh ).

It then follows from (4.58), (4.59) and (4.65) that P(y, z) is a Legendrian surface
in H}(—1) C C3$ whose metric tensor is also given by ¢;. This Legendrian surface
gives rise to a Lagrangian surface M in CH?(—4).

It follows from (4.58) and (4.65) that the second fundamental form h of this
Lagrangian surface M in CH2(—4) satisfies

(0 0 9 (0 0 (0 0 d
—— | =J= —,— =0, h{=—,=— ) =J—.
h(@y’@y) Jay’ h(@y’@z) ’ (82’82) 0z
Therefore, ]5(y7 z) gives rise to an H-stationary Lagrangian surface of type II in
CH?(—4). Consequently, we obtain case (10) of the theorem.

Case (c.ii.2). u — v = c is a nonzero constant. We have u, = vy, u, = v,
from v — v = ¢. So, it follows from (4.54) and (4.55) that

(4.66) (Inf), = —u, cothe, (Ink), = u, cothe, f.ku, + kyfu, = 0.

Solving the first equation equations in (4.66) yields

e—bu ebu

. = k= b = coth
(4.67) f Pt ) cothc

for some positive function ¢(y) and n(z). Hence, the metric tensor in (4.53) becomes

g = da® + cosh®(x + u)e®®¢? (y)dy* + cosh?(z + u — c)e 2"n?(2)d=2.
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It is straight-forward to verify that the sectional curvature of the plane section
spanned by 9/0y and 9/0z is not equal to —1, which is a contradiction. Hence,
this case is impossible.

Case (c.ii.3). u — v is non-constant. From (4.45), (4.47) and (4.53) we obtain

(4.68) g = da? + f2(y, z) cosh?(x + u)dy® + k*(y, 2) cosh?(z + v)dz?

and
L,y = L, Ly, =tanh(z +u)L,, L,,=tanh(z+v)L,,
f? i
Ly, = Y sinh(2x + 2u)L, + (z + Ty + uy tanh(z + u)>Ly
f cosh(z + u) 9 9
————F———{fcosh(z+u)},L, + f"cosh”(x +u)L,
k2 cosh2(x+v){f ( oLzt ] ( )
(4.69) ; )
L. = <TZ + u, tanh(z + u)) L,+ <Zy + vy tanh(z + v)) L.,
k? sinh(2z + 2v) k
L,,=— 5 L, + (z + f + v, tanh(z +’U)>Lz
k cosh(z + v)

{kcosh(z +v)},L, + k* cosh?(x + v) L.

Nz cosh?(x + u)

From the compatibility condition of this system we have

(4.70) f» = —fu coth(u — v),
(4.71) ky = kv, coth(u — v),
(4.72) fPu, + kv, = 0.

It follows from (4.70)-(4.72) that

(4.73) Ff. = kk,.

Since the Lagrangian submanifold is H -stationary, Proposition 3.1 and (4.68)
imply that

f3k. cosh®(zx + u) cosh(z + v)
+f3k cosh®(x 4 u) (u., cosh(z 4 v) coth(u — v) + v, sinh(z 4 v))
(4.74) — f3ku, sinh(z + u) cosh?(z + u) cosh(z + v)
— fk3v, cosh?(x 4 u) cosh? (z + v) csch (u — v)

+k3 cosh® (z + v){ f, cosh(x 4 u) + fu, sinh(z +u)} = 0.
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After replacing cosh(x + u), sinh(z + u), cosh(z + v), sinh(z + v) in (4.74)
using

cosh(x + 7) = coshx coshy — sinh x sinh ,

sinh(x + «) = sinh x cosh~y + cosh z sinh~,
and applying (4.70)-(4.72) and the following identities:

.4 3 cosh2z  cosh4zx
sinh*z = - — + ,
8 2 8
cosh 1z — 3 cosh2zx n cosh 4z
-8 2 g8
inh 2 inh 4
sinh® z coshz = ey + i x,
4 8
inh 2 inh 4
sinh z cosh3 2 = 227 + i x,
4 8
hdr — 1
sinh? z cosh? z = %,

we obtain from the coefficients of cosh 4x in (4.74) that
f3{(sinh 4u — sinh(2u + 2v))k.

(4.75) +k[4u cosh(2(u + v)) 4 v.(cosh 4u — cosh(2u + 21))]}
. +k3 f, (sinh(2u + 2v) — sinh 4v) — fk3u, (cosh4v
— cosh(2u + 2v)) = 0.

Similarly, from the coefficients of sinh 4z we get

fg{(cosh 4u — cosh(2u + 2v))k,
4.76) +4ku, sinh(2u 4 2v) + kv, (sinh 4u — sinh(2u + 2v)) }
+k3 f,(cosh(2u + 2v) — cosh 4v) — fk3u,(sinh 4v
—sinh(2u + 2v)) = 0.

From the coefficients of cosh 2x we get

f3{(2sinh2u + sinh(4u — 2v) — 3sinh 2v)k,
+8ku. (cosh 2u + cosh 2v) — kv, (cosh(4u — 2v)
4.77) —4 cosh 2u + 3 sinh 21}) }

+k3 f, (3 sinh 2u + sinh(2u — 2v) — 2 sinh 2v)
+ fk3u, (3 cosh 2u + cosh(2u — 2v) — 4 cosh 2v) = 0.
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From the coefficients of sinh 2x we get

F3{(2 cosh 2u + cosh(4u — 2v) — 3 cosh 2v)k,
+8ku.(sinh 2u + sinh 2v) — kv, (sinh(4u — 20)
4.78) —4 sinh 2u 4 3 cosh 2v)) }
+k3 f,(3 cosh 2u — cosh(2u — 2v) — 2 cosh 2v)
+ fk3uy (3 sinh 2u — sinh(2u — 2v) — 4 sinh 2v) = 0.

Also, from the coefficients which do not involve cosh 4z, sinh 4x, cosh 2z or sinh 2,
we find

f3{3 sinh(2u—2v)k.+4ku. (24 cosh(2u—2v)) —6kv, sinh? (u—v) }

4.79)
—|—3k3fy sinh(2u — 2v) — 2 cosh 2v) + 6fk3uy sinh(u —v) = 0.

Solving system (4.75)-(4.79) for f,, uy, k., u., v, gives fy =uy =k, =u, = v, =
0. Combining these with conditions (4.70)-(4.73) shows that f, k, u, v are constant.
This is a contradiction. Consequently, this case is impossible. ]
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