CLASSIFICATION OF A FAMILY
 OF HAMILTONIAN-STATIONARY LAGRANGIAN SUBMANIFOLDS IN COMPLEX HYPERBOLIC 3-SPACE

Bang-Yen Chen

Abstract

A Lagrangian submanifold in a Kaehler manifold is said to be Hamiltonian-stationary (or simply H-stationary) if it is a critical point of the area functional restricted to (compactly supported) Hamiltonian variations. In an earlier paper [12], H-stationary Lagrangian submanifolds of constant curvature in the complex projective 3 -space $C P^{3}$ with positive relative nullity are classified. In this paper we completely classify H-stationary Lagrangian submanifolds of constant curvature in the complex hyperbolic 3-space CH^{3} with positive relative nullity. As an immediate by-product, several explicit new families of H-stationary Lagrangian submanifolds in $C H^{3}$ are obtained.

1. Introduction

Let $\tilde{M}^{n}(4 c)$ denote a Kähler n-manifold of constant holomorphic sectional curvature $4 c$. Let J and \langle,$\rangle be the complex structure and the Kaehler metric \langle$, on $\tilde{M}^{n}(4 c)$. The Kaehler 2-form ω is defined by $\omega(\cdot, \cdot)=\langle J \cdot, \cdot\rangle$.

An immersion $\psi: M \rightarrow \tilde{M}^{n}(4 c)$ of an n-manifold M into $\tilde{M}^{n}(4 \tilde{c})$ is called Lagrangian if $\psi^{*} \omega=0$ on M. A vector field X on $\tilde{M}^{n}(4 c)$ is called Hamiltonian if $\mathcal{L}_{X} \omega=f \omega$ for some function $f \in C^{\infty}\left(\tilde{M}^{n}(4 c)\right)$, where \mathcal{L} is the Lie derivative. Thus, there exists a smooth real-valued function φ on $\tilde{M}^{n}(4 c)$ such that $X=J \tilde{\nabla} \varphi$, where $\tilde{\nabla}$ is the gradient in $\tilde{M}^{n}(4 c)$. Since the diffeomorphisms of the flux ψ_{t} of X satisfy $\psi_{t} \omega=e^{h_{t}} \omega$, they transform Lagrangian submanifolds into Lagrangian submanifolds.

A normal vector field ξ to a Lagrangian immersion $\psi: M^{n} \rightarrow \tilde{M}^{n}(4 c)$ is called Hamiltonian if $\xi=J \nabla f$, where f is a smooth function on M^{n} and ∇f is the gradient of f with respect to the induced metric.

[^0]The notion of Hamiltonian-stationary (or H-stationary for brevity) Lagrangian submanifolds was introduced by Oh in 1990 (see [19]) as the critical points of the volume functional for all Hamiltonian isotropy of the Lagrangian submanifold. The Euler-Lagrange equation of this variational problem is

$$
\begin{equation*}
\delta \alpha_{H}=0 \tag{1.1}
\end{equation*}
$$

where H is the mean curvature vector of the submanifold, α_{H} is the Maslov form, and δ is the Hodge-dual of the exterior derivative d on M with respect to the induced metric. Clearly, Lagrangian submanifolds with parallel mean curvature vector are H-stationary. Among others, H-stationary Lagrangian submanifolds in complex space forms have been studied in [1-10, 12, 13, 16-19].

In an earlier paper [12], the author and Garay classify H-stationary Lagrangian submanifolds of constant curvature in $C P^{3}$ with positive relative nullity. In this paper, we completely classify H-stationary Lagrangian submanifolds of constant curvature in CH^{3} with positive relative nullity. As an immediate by-product, several explicit new families of H-stationary Lagrangian submanifolds in $C H^{3}$ are obtained.

2. Preliminaries

2.1. Basic notation and formulas

Let $f: M \rightarrow \tilde{M}^{n}(4 c)$ be a Lagrangian isometric immersion of a Riemannian n-manifold M into $\tilde{M}^{n}(4 c)$. Denote by ∇ and $\tilde{\nabla}$ the Riemannian connections of M and $M^{n}(4 c)$, respectively. Let D be the connection on the normal bundle of the submanifold.

The formulas of Gauss and Weingarten are given respectively by (cf. [6])

$$
\begin{gather*}
\tilde{\nabla}_{X} Y=\nabla_{X} Y+h(X, Y), \tag{2.1}\\
\tilde{\nabla}_{X} \xi=-A_{\xi} X+D_{X} \xi \tag{2.2}
\end{gather*}
$$

for tangent vector fields X, Y and normal vector field ξ. If we denote the Riemann curvature tensor of ∇ by R, then the equations of Gauss and Codazzi are given respectively by

$$
\begin{align*}
\langle R(X, Y) Z, W\rangle= & \langle h(X, W), h(Y, Z)\rangle-\langle h(X, Z), h(Y, W)\rangle \tag{2.3}\\
& +c\{\langle X, W\rangle\langle Y, Z\rangle-\langle X, Z\rangle\langle Y, W\rangle\}
\end{align*}
$$

$$
\begin{equation*}
(\nabla h)(X, Y, Z)=(\nabla h)(Y, X, Z) \tag{2.4}
\end{equation*}
$$

where $(\nabla h)(X, Y, Z)=D_{X} h(Y, Z)-h\left(\nabla_{X} Y, Z\right)-h\left(Y, \nabla_{X} Z\right)$.
For a Lagrangian submanifold M we also have (cf. [14])

$$
\begin{gather*}
D_{X} J Y=J \nabla_{X} Y \tag{2.5}\\
\langle h(X, Y), J Z\rangle=\langle h(Y, Z), J X\rangle=\langle h(Z, X), J Y\rangle .
\end{gather*}
$$

At a given point $p \in M$, the relative null space \mathcal{N}_{p} at p is the subspace of the tangent space $T_{p} M$ defined by

$$
\mathcal{N}_{p}=\left\{X \in T_{p} M: h(X, Y)=0 \forall Y \in T_{p} M\right\} .
$$

The dimension ν_{p} of \mathcal{N}_{p} is called the relative nullity at p. The submanifold is said to have positive relative nullity if ν_{p} is positive at each point $p \in M$.

2.2. Lagrangian and Legendrian submanifolds

If $\tilde{M}^{n}(4 c)$ is a complete and simply-connected Kähler manifold of constant holomorphic sectional curvature $4 c$ with $c<0$, then $\tilde{M}^{n}(4 c)$ is holomorphically isometric to the complex hyperbolic n-space $C H^{n}(4 c)$.

Consider the complex number $(n+1)$-space \mathbf{C}_{1}^{n+1} equipped with the pseudoEuclidean metric:

$$
g_{0}=-d z_{1} d \bar{z}_{1}+\sum_{j=2}^{n+1} d z_{j} d \bar{z}_{j} .
$$

Put $H_{1}^{2 n+1}(-1)=\left\{z \in \mathbf{C}_{1}^{n+1}:\langle z, z\rangle=-1\right\}$ and $H_{1}^{1}=\{\lambda \in \mathbf{C}: \lambda \bar{\lambda}=1\}$.
On \mathbf{C}_{1}^{n+1} we consider the canonical complex structure J induced by $i=\sqrt{-1}$. On $H^{2 n+1}(-1)$ we consider the canonical contact structure consisting of ϕ given by the projection of the complex structure J of \mathbf{C}_{1}^{n+1} on the tangent bundle of $H_{1}^{2 n+1}(-1)$ and the structure vector field $\xi=J x$ with x being the position vector.

There exists an H_{1}^{1}-action on $H_{1}^{2 n+1}(-1)$ given by $z \mapsto \lambda z$. At each point $z \in H_{1}^{2 n+1}(-1), i z$ is tangent to the flow of the action. The orbit lies in the negative definite plane spanned by z and $i z$. The quotient space $H_{1}^{2 n+1}(-1) / \sim$ is the complex hyperbolic space $C H^{n}(-4)$ with constant holomorphic sectional curvature -4 , whose complex structure is induced from the complex structure on \mathbf{C}_{1}^{n+1} via Hopf's fibration: $\pi: H_{1}^{2 n+1}(-1) \rightarrow C H^{n}(-4)$.

An isometric immersion $f: M \rightarrow H_{1}^{2 n+1}(-1)$ is called Legendrian if ξ is normal to $f_{*}(T M)$ and $\left\langle\phi\left(f_{*}(T M)\right), f_{*}(T M)\right\rangle=0$, where \langle,$\rangle denotes the inner$ product on \mathbf{C}_{1}^{n+1}. The vectors of $H_{1}^{2 n+1}(-1)$ normal to ξ at a point z define the horizontal subspace \mathcal{H}_{z} of the Hopf fibration $\pi: H_{1}^{2 n+1}(-1) \rightarrow C H^{n}(-4)$.

Let $\psi: M \rightarrow C H^{n}(-4)$ be a Lagrangian immersion. Then there is an isometric covering map $\tau: \hat{M} \rightarrow M$ and a Legendrian immersion $f: \hat{M} \rightarrow H_{1}^{2 n+1}(-1)$
such that $\psi(\tau)=\pi(f)$. Hence, every Lagrangian immersion can be lifted locally (or globally if we assume the manifold is simply connected) to a Legendrian immersion of the same Riemannian manifold (see [20] for details).

Conversely, suppose that $f: \hat{M} \rightarrow H_{1}^{2 n+1}(-1)$ is a Legendrian immersion. Then $\psi=\pi(f): \quad M \rightarrow C H^{n}(-4)$ is again an isometric immersion, which is Lagrangian. Under this correspondence, the second fundamental forms h^{f} and h^{ψ} of f and ψ satisfy $\pi_{*} h^{f}=h^{\psi}$. Moreover, h^{f} is horizontal with respect to π. We shall denote h^{f} and h^{ψ} simply by h.

Let $L: M \rightarrow H_{1}^{2 n+1}(-1) \subset \mathbf{C}_{1}^{n+1}$ be an isometric immersion. Denote by $\hat{\nabla}$ and ∇ the Levi-Civita connections of \mathbf{C}_{1}^{n+1} and M, respectively. Let h denote the second fundamental form of M in $H_{1}^{2 n+1}(-1)$. Then we have

$$
\begin{equation*}
\hat{\nabla}_{X} Y=\nabla_{X} Y+h(X, Y)+\langle X, Y\rangle L \tag{2.7}
\end{equation*}
$$

for vector fields X, Y tangent to M.

3. Twisted Product Decompositions and Adapted Immersions

We recall a very effective method introduced by Chen, Dillen, Verstraelen and Vrancken for constructing Lagrangian submanifolds of constant curvature c in $\tilde{M}^{n}(4 c)$ (see [11] for details).

Definition 3.1. Let $\left(M_{1}, g_{1}\right), \ldots,\left(M_{m}, g_{m}\right)$ be Riemannian manifolds, f_{i} a positive function on $M_{1} \times \cdots \times M_{m}$ and $\pi_{i}: M_{1} \times \ldots \times M_{m} \rightarrow M_{i}$ the i-th canonical projection for $i=1, \ldots, m$. Then the twisted product

$$
f_{1} M_{1} \times \cdots \times_{f_{m}} M_{m}
$$

of $\left(M_{1}, g_{1}\right), \ldots,\left(M_{m}, g_{m}\right)$ is the differentiable manifold $M_{1} \times \ldots \times M_{m}$ with the twisted product metric g defined by

$$
\begin{equation*}
g(X, Y)=f_{1}^{2} \cdot g_{1}\left(\pi_{1 *} X, \pi_{1 *} Y\right)+\cdots+f_{m}^{2} \cdot g_{m}\left(\pi_{m *} X, \pi_{m *} Y\right) \tag{3.1}
\end{equation*}
$$

for all vector fields X and Y of $M_{1} \times \cdots \times M_{m}$.
Let $N^{n-\ell}(c)$ be an $(n-\ell)$-dimensional real space form of constant curvature c. For $0<\ell<n-1$, consider the twisted product:

$$
\begin{equation*}
f_{1} I_{1} \times \cdots \times_{f_{\ell}} I_{\ell} \times_{1} N^{n-\ell}(c) \tag{3.2}
\end{equation*}
$$

with twisted product metric given by

$$
\begin{equation*}
g=f_{1}^{2} d x_{1}^{2}+\cdots+f_{\ell}^{2} d x_{\ell}^{2}+g_{0} \tag{3.3}
\end{equation*}
$$

where g_{0} is the canonical metric of $N^{n-\ell}(c)$ and I_{1}, \ldots, I_{ℓ} are open intervals. For $\ell=n-1$ (resp., $\ell=n$), consider the following twisted product instead.

$$
\begin{equation*}
f_{1} I_{1} \times \cdots \times_{f_{n-1}} I_{n-1} \times_{1} I_{n} \quad\left(\text { resp., } f_{1} I_{1} \times \cdots \times_{f_{n}} I_{n}\right) . \tag{3.4}
\end{equation*}
$$

If the twisted product given by (3.2) or (3.4) is a real space form $M^{n}(c)$ of constant curvature c, it is called a twisted product decomposition of $M^{n}(c)$. The functions f_{1}, \ldots, f_{ℓ} are called the twistor functions. For simplicity, we denote such a decomposition of $M^{n}(c)$ by $\mathcal{T} P_{f_{1} \cdots f_{\ell}}^{n}(c)$.

The coordinates $\left\{x_{1}, \ldots, x_{n}\right\}$ on $\mathcal{T} P_{f_{1} \cdot \cdots f_{\ell}}^{n}(c)$ are called adapted coordinates if
(i) $\partial / \partial x_{j}$ is tangent to I_{j} for $j=1, \ldots, \ell$;
(ii) $\partial / \partial x_{r}$ is tangent to $N^{n-\ell}(c)$ for $r=\ell+1, \ldots, n$; and
(iii) the metric tensor of $\mathcal{T} P_{f_{1} \cdots f_{\ell}}^{n}(c)$ takes the form (3.3).

$$
\begin{equation*}
\Phi(\mathcal{T} P)=f_{1} d x_{1}+\cdots+f_{\ell} d x_{\ell}, \tag{3.5}
\end{equation*}
$$

which is called the twistor form of $\mathcal{T} P_{f_{1} \cdots f_{\ell}}^{n}(c)$. The twistor form $\Phi(\mathcal{T} P)$ is said to be twisted closed if we have

$$
\begin{equation*}
\sum_{i, j=1}^{\ell} \frac{\partial f_{i}}{\partial x_{j}} d x_{j} \wedge d x_{i}=0 \tag{3.6}
\end{equation*}
$$

When $\ell=1$, the twistor form $\Phi(\mathcal{T} P)$ is automatically twisted closed.
The following useful theorem was proved in [11].
Theorem 3.1. Let $\mathcal{T} P_{f_{1} \cdots f_{\ell}}^{n}(c), 1 \leq \ell \leq n$, be a twisted product decomposition of a simply-connected real space form $M^{n}(c)$. If the twistor form $\Phi(\mathcal{T} P)$ of $\mathcal{T} P_{f_{1} \cdots f_{\ell}}^{n}(c)$ is twisted closed, then up to rigid motions of $\tilde{M}^{n}(4 c)$ there is a unique Lagrangian isometric immersion:

$$
\begin{equation*}
L_{f_{1} \cdots f_{\ell}}: \mathcal{T} P_{f_{1} \cdots f_{\ell}}^{n}(c) \rightarrow \tilde{M}^{n}(4 c) \tag{3.7}
\end{equation*}
$$

whose second fundamental form satisfies

$$
\begin{align*}
& h\left(\frac{\partial}{\partial x_{j}}, \frac{\partial}{\partial x_{j}}\right)=J \frac{\partial}{\partial x_{j}}, j=1, \ldots, \ell, \tag{3.8}\\
& h\left(\frac{\partial}{\partial x_{r}}, \frac{\partial}{\partial x_{t}}\right)=0, \text { otherwise }
\end{align*}
$$

for any adapted coordinate system $\left\{x_{1}, \ldots, x_{n}\right\}$ on $\mathcal{T} P_{f_{1} \cdots f_{\ell}}^{n}(c)$.
Conversely, if $L: M^{n}(c) \rightarrow \tilde{M}^{n}(4 c)$ is a non-totally geodesic Lagrangian immersion of a real space form $M^{n}(c)$ of constant curvature c into a complex space
form $\tilde{M}^{n}(4 c)$, then $M^{n}(c)$ admits an appropriate twisted product decomposition with twisted closed twistor form. Moreover, the Lagrangian immersion L is given by the corresponding adapted Lagrangian immersion of the twisted product.

For an adapted immersion $L_{f_{1} \cdots f_{\ell}}: \mathcal{T} P_{f_{1} \cdots f_{\ell}}^{n}(c) \rightarrow \tilde{M}^{n}(4 c)$, Dong and Han [16] computed the H-stationary condition $\delta \alpha_{H}=0$ in terms of the twistor functions f_{1}, \ldots, f_{ℓ} and obtained the following.

Proposition 3.1. Let $L_{f_{1} \cdots f_{\ell}}: \mathcal{T} P_{f_{1} \cdots f_{\ell}}^{n}(c) \rightarrow \tilde{M}^{n}(4 c)$ be an adapted Lagrangian immersion given in Theorem 3.1. Then $L_{f_{1} \cdots f_{\ell}}$ is H-stationary if and only if the twistor functions f_{1}, \ldots, f_{ℓ} satisfy

$$
\begin{equation*}
\sum_{j=1}^{\ell} \frac{1}{f_{j}^{3}} \frac{\partial f_{j}}{\partial x_{j}}=\sum_{1 \leq i \neq j \leq \ell} \frac{1}{f_{i} f_{j}^{2}} \frac{\partial f_{i}}{\partial x_{j}} \tag{3.9}
\end{equation*}
$$

Corollary 3.1. [16]. Any adapted Lagrangian immersion $L_{f f}: \mathcal{T} P_{f f}^{n}(c) \rightarrow$ $\tilde{M}^{n}(4 c)$ (with $k=2$ and $\left.f_{1}=f_{2}=f\right)$ is H-stationary.

From Proposition 3.1 we also have the following.
Corollary 3.2. If the twistor functions f_{1}, \ldots, f_{ℓ} of $\mathcal{T} P_{f_{1} \ldots f_{\ell}}^{n}(c)$ are independent of the adapted coordinates x_{1}, \ldots, x_{ℓ}, then the adapted Lagrangian immersion $L_{f_{1} \cdots f_{\ell}} \mathcal{T} P_{f_{1} \cdots f_{\ell}}^{n}(c) \rightarrow \tilde{M}^{n}(4 c)$ is H-stationary.

Corollary 3.3. An adapted Lagrangian immersion $L_{f_{1}}: \mathcal{T} P_{f_{1}}^{n}(c) \rightarrow \tilde{M}^{n}(4 c)$ is H-stationary if and only if the twistor function f_{1} is independent of the adapted coordinate x_{1}.

Remark 3.1. Let $\mathcal{T} P_{f k}^{2}(-1)$ be a twisted product decomposition of a simplyconnected surface of constant curvature -1 . Then the metric tensor of $\mathcal{T} P_{f k}^{2}(-1)$ takes the form:

$$
\begin{equation*}
g=f^{2}(y, z) d y^{2}+k^{2}(y, z) d z^{2} \tag{3.10}
\end{equation*}
$$

where $f(y, z)$ and $k(y, z)$ are positive functions satisfying

$$
\begin{equation*}
\left(\frac{f_{z}}{k}\right)_{z}+\left(\frac{k_{y}}{f}\right)_{y}=f k \tag{3.11}
\end{equation*}
$$

From (3.11), we know that f, k cannot be both constant.
The twistor form Φ of $\mathcal{T} P_{f k}^{2}(-1)$ is given by

$$
\Phi=f^{2}(y, z) d y+k^{2}(y, z) d z
$$

which is twisted closed if and only if we have

$$
f f_{z}=k k_{y} .
$$

It follows from Proposition 3.1 that the adapted Lagrangian immersion

$$
L: \mathcal{T} P_{f k}^{2}(-1) \rightarrow C H^{2}(-4)
$$

is H-stationary if and only if we have

$$
\begin{equation*}
k^{3} f_{y}+f^{3} k_{z}=f^{2} k f_{z}+f k^{2} k_{y} . \tag{3.13}
\end{equation*}
$$

If the twistor functions f and k of $\mathcal{T} P_{f k}^{2}(-1)$ are equal and satisfy (3.12), then f can be chosen to be one of the following functions (see [11]):

$$
\begin{equation*}
f=a \sec \left(\frac{a}{\sqrt{2}}(x+y)\right), \text { or } f=a \operatorname{csch}\left(\frac{a}{\sqrt{2}}(x+y)\right), \text { or } f=\frac{\sqrt{2}}{x+y}, \tag{3.14}
\end{equation*}
$$

with $a>0$. Their corresponding adapted Lagrangian surfaces in $C H^{2}(-4)$ were determined in [11]. It follows from Corollary 3.1 that such Lagrangian surfaces are H-stationary automatically. We call these H-stationary Lagrangian surfaces H-stationary Lagrangian surfaces of type I.

Remark 3.2. If the twistor functions f and k of $\mathcal{T} P_{f^{2} k^{2}}^{2}(-1)$ are unequal and if they satisfy (3.11), (3.12) and (3.13), then the corresponding adapted Lagrangian immersion in $\mathrm{CH}^{2}(-4)$ is also H-stationary. Such H-stationary Lagrangian surfaces are called H-stationary Lagrangian surfaces of type II.

Recently, Chen, Garay and Zhou has constructed in [13] five distinct families of H -stationary Lagrangian surfaces of type II in $\mathrm{CH}^{2}(-4)$.

4. H -Stationary Lagrangian Submanifolds in $\mathrm{CH}^{3}(-4)$

The following result completely classifies H-stationary Lagrangian submanifolds of constant curvature in $\mathrm{CH}^{3}(-4)$ with positive relative nullity.

Theorem 4.1. There exist ten families of Hamiltonian-stationary Lagrangian submanifolds of constant curvature in $\mathrm{CH}^{3}(-4)$ with positive relative nullity:
(1) A totally geodesic Lagrangian submanifold $L: H^{3}(-1) \rightarrow C H^{3}(-4)$;
(2) A Lagrangian submanifold defined by

$$
\begin{gathered}
L(s, y, z)=\frac{1}{2\left(1-y^{2}-z^{2}\right)}\left((2 i+s) e^{\frac{i}{2} s}\left(2 b y+\sqrt{1+b^{2}}\left(1+y^{2}+z^{2}\right)\right),\right. \\
\left.s e^{\frac{i}{2} s}\left(2 b y+\sqrt{1+b^{2}}\left(1+y^{2}+z^{2}\right)\right), 4 \sqrt{1+b^{2}} y+2 b\left(1+y^{2}+z^{2}\right), 4 z\right), b \in \mathbf{R} .
\end{gathered}
$$

(3) A Lagrangian submanifold defined by

$$
\begin{aligned}
L(s, y, z)= & \frac{1}{1-y^{2}-z^{2}}\left(\frac{e^{\frac{i}{2} s}\left(b y+a\left(1+y^{2}+z^{2}\right)\right)\{2 \delta \cosh \delta s-i \sinh \delta s\}}{\delta \sqrt{4 a^{2}-b^{2}}}\right. \\
& \left.\frac{e^{\frac{i}{2} s}\left(b y+a\left(1+y^{2}+z^{2}\right)\right) \sinh \delta s}{\delta}, \frac{4 a y-b\left(1+y^{2}+z^{2}\right)}{\sqrt{4 a^{2}-b^{2}}}, 2 z\right),
\end{aligned}
$$

where a, b, δ are real numbers satisfying $4 a^{2}-b^{2}>1$ and $2 \delta=\sqrt{4 a^{2}-b^{2}-1}$.
(4) A Lagrangian submanifold defined by

$$
\begin{aligned}
L(s, y, z)= & \frac{1}{1-y^{2}-z^{2}}\left(\frac{e^{\frac{i}{2} s}\left(b y+a\left(1+y^{2}+z^{2}\right)\right)\{2 \gamma \cos \gamma s-i \sin \gamma s\}}{\gamma \sqrt{4 a^{2}-b^{2}}}\right. \\
& \left.\frac{e^{\frac{i}{2} s}\left(b y+a\left(1+y^{2}+z^{2}\right)\right) \sin \gamma s}{\gamma}, \frac{4 a y+b\left(1+y^{2}+z^{2}\right)}{\sqrt{4 a^{2}-b^{2}}}, 2 z\right),
\end{aligned}
$$

where a, b, γ are real numbers satisfying $4 a^{2}<1+b^{2}, 2 \gamma=\sqrt{1+b^{2}-4 a^{2}}$ and $4 a^{2} \neq b^{2}$.
(5) A Lagrangian submanifold defined by

$$
\begin{gathered}
L(s, y, z)=\left(\frac{2 y-a^{2}(1+i s)\left((1+y)^{2}+z^{2}\right)}{\sqrt{a^{2}-1}\left(1-y^{2}-z^{2}\right)}, \frac{2 z}{1-y^{2}-z^{2}}\right. \\
\left.\frac{1+y^{2}+z^{2}+i a^{2} s\left((1+y)^{2}+z^{2}\right)}{\sqrt{a^{2}-1}\left(1-y^{2}-z^{2}\right)}, \frac{a e^{i s}\left((1+y)^{2}+z^{2}\right)}{1-y^{2}-z^{2}}\right), \quad a^{2} \neq 0,1 .
\end{gathered}
$$

(6) A Lagrangian submanifold defined by

$$
\begin{gathered}
L(s, y, z)=\left(\frac{i s}{2}+\frac{3}{2}-i+\frac{2 i-3-i s+(2 i-2-i s) y}{1-y^{2}-z^{2}}, \frac{2 z}{1-y^{2}-z^{2}},\right. \\
\left.\frac{i s}{2}-\frac{1}{2}-i+\frac{1+2 i-i s+(2+2 i-i s) y}{1-y^{2}-z^{2}}, \frac{e^{i s}\left((1+y)^{2}+z^{2}\right)}{1-y^{2}-z^{2}}\right) .
\end{gathered}
$$

(7) A Lagrangian submanifold defined by

$$
\begin{gathered}
L(x, s, t)=\frac{\cosh x}{\sqrt{1-2 b}}\left(\sqrt{2 b} \tan s-i, \sqrt{2 b} e^{i s / \sqrt{2 b}} \sec s \cos \left(\frac{\sqrt{1-2 b}}{\sqrt{2 b}} t\right),\right. \\
\left.\sqrt{2 b} e^{i s / \sqrt{2 b}} \sec s \sin \left(\frac{\sqrt{1-2 b}}{\sqrt{2 b}} t\right), \sqrt{1-2 b} \tanh x\right), \quad 0<2 b<1 .
\end{gathered}
$$

(8) A Lagrangian submanifold defined by

$$
\begin{gathered}
L(x, s, t)=\frac{\cosh x}{\sqrt{1-2 b}}\left(\sqrt{2 b} e^{i s / \sqrt{2 b}} \sec s \cosh \left(\frac{\sqrt{2 b-1}}{\sqrt{2 b}} t\right), \sqrt{2 b} \tan s-i,\right. \\
\left.\sqrt{2 b} e^{i s / \sqrt{2 b}} \sec s \sinh \left(\frac{\sqrt{2 b-1}}{\sqrt{2 b}} t\right), \sqrt{2 b-1} \tanh x\right), 2 b>1 .
\end{gathered}
$$

(9) A Lagrangian submanifold defined by

$$
\begin{aligned}
L(x, s, t)= & \frac{\cosh x}{\sqrt{2}\left(1+e^{2 i s}\right)}\left(i+2 e^{2 i s}\left(s+i+i t^{2}\right), i+2 e^{2 i s}\left(s+i t^{2}\right),\right. \\
& \left.\sqrt{2}\left(1+e^{2 i s}\right) \tanh x, 2 \sqrt{2} e^{2 i s} t\right) .
\end{aligned}
$$

(10) A Lagrangian submanifold defined by

$$
L(x, y, z)=(\tilde{P}(y, z) \cosh x, \sinh x)
$$

where \tilde{P} is a horizontal lift of a type II Hamiltonian-stationary Lagrangian surface $L: \mathcal{T} P_{f^{2} k^{2}}^{n}(-1) \rightarrow C H^{2}(-4)$ via the Hopf fibration $\pi: H_{1}^{5}(-1) \rightarrow$ $\mathrm{CH}^{2}(-4)$.

Conversely, locally every Hamiltonian-stationary Lagrangian submanifold of constant curvature in $\mathrm{CH}^{3}(-4)$ with positive relative nullity is congruent to an open portion of a Lagrangian submanifold from one of the above tex families.

Proof. By a straight-forward long computation, we can verify that the each map defined by one of the above tex families gives rise to an H-stationary Lagrangian submanifold of constant curvature in $C H^{3}(-4)$ with positive relative nullity.

Conversely, let us assume that $L: M \rightarrow C H^{3}(-4)$ is an H-stationary Lagrangian isometric immersion with positive relative nullity from a Riemannian 3manifold of constant curvature K into $C H^{3}(-4)$.

If the relative nullity is three everywhere, then M is totally geodesic, which gives case (1) of the theorem.

So, from now on, we assume that M is non-totally geodesic. It follows from the assumption of positive relative nullity that there exists a local unit vector field e_{1} such that

$$
\begin{equation*}
h\left(e_{1}, X\right)=0, \quad \forall X \in T M \tag{4.1}
\end{equation*}
$$

Hence, by applying equation (2.3) of Gauss, we obtain $K=-1$. Thus, from (2.3) and (2.6), we find

$$
\left[A_{J X}, A_{J Y}\right]=0
$$

for $X, Y \in T M$. By using (2.6), (4.1), and $\left[A_{J X}, A_{J Y}\right]=0$, we know that at each point $p \in M$ there exist orthonormal vectors e_{2}, e_{3} perpendicular to e_{1} such that the second fundamental form takes the following form:

$$
\begin{align*}
& h\left(e_{1}, e_{1}\right)=h\left(e_{1}, e_{2}\right)=h\left(e_{1}, e_{3}\right)=h\left(e_{2}, e_{3}\right)=0 \\
& h\left(e_{2}, e_{2}\right)=\alpha J e_{2}, \quad h\left(e_{3}, e_{3}\right)=\varphi J e_{3} \tag{4.2}
\end{align*}
$$

for some functions α, φ. Since M is assumed to be non-totally geodesic, at least one of α, φ is nonzero.

Let $\omega^{1}, \omega^{2}, \omega^{3}$ be the dual 1 -forms of e_{1}, e_{2}, e_{3} and $\left(\omega_{i}^{j}\right), i, j=1,2,3$, be the connection forms. Then, by applying (4.2) and Codazzi's equation, we have

$$
\begin{equation*}
\alpha \omega_{2}^{1}\left(e_{1}\right)=\alpha \omega_{2}^{1}\left(e_{3}\right)=\varphi \omega_{3}^{1}\left(e_{1}\right)=\varphi \omega_{3}^{1}\left(e_{2}\right)=\omega_{3}^{2}\left(e_{1}\right)=0 \tag{4.3}
\end{equation*}
$$

$$
\begin{equation*}
\alpha \omega_{3}^{2}\left(e_{3}\right)=\varphi \omega_{2}^{3}\left(e_{2}\right) \tag{4.4}
\end{equation*}
$$

$$
\begin{equation*}
e_{1} \alpha=\alpha \omega_{2}^{1}\left(e_{2}\right), e_{3} \alpha=\alpha \omega_{2}^{3}\left(e_{2}\right), e_{1} \varphi=\varphi \omega_{3}^{1}\left(e_{3}\right), e_{2} \varphi=\varphi \omega_{3}^{2}\left(e_{3}\right) \tag{4.5}
\end{equation*}
$$

It follows from (4.1) that the mean curvature vector satisfies

$$
3 H=\alpha J e_{2}+\varphi J e_{3}
$$

So, the Maslov form, i.e., dual 1-form α_{H} of $J H$, is given by

$$
\begin{equation*}
\alpha_{H}=-\frac{1}{3}\left(\alpha \omega^{2}+\varphi \omega^{3}\right) \tag{4.6}
\end{equation*}
$$

After applying δ to (4.6) and using (4.3) and the structure equations, we see that the H-stationary condition (1.1) is equivalent to

$$
\begin{equation*}
e_{2} \alpha+e_{3} \varphi=\alpha \omega_{3}^{2}\left(e_{3}\right)+\varphi \omega_{2}^{3}\left(e_{2}\right) \tag{4.7}
\end{equation*}
$$

Case (a). $\quad \alpha=0$. Because M is non-totally geodesic, we have $\varphi \neq 0$. It follows from (4.2)-(4.5) and (4.7) that

$$
\begin{gather*}
h\left(e_{1}, e_{j}\right)=h\left(e_{2}, e_{2}\right)=h\left(e_{2}, e_{3}\right)=0, h\left(e_{3}, e_{3}\right)=\varphi J e_{3} ; j=1,2,3 \tag{4.8}\\
\omega_{3}^{1}\left(e_{1}\right)=\omega_{3}^{1}\left(e_{2}\right)=\omega_{3}^{2}\left(e_{1}\right)=\omega_{3}^{2}\left(e_{2}\right)=0 \tag{4.9}\\
e_{1} \varphi=\varphi \omega_{3}^{1}\left(e_{3}\right), \quad e_{2} \varphi=\varphi \omega_{3}^{2}\left(e_{3}\right), \quad e_{3} \varphi=0 \tag{4.10}
\end{gather*}
$$

Consider the distributions \mathcal{D} and \mathcal{D}^{\perp} spanned by $\left\{e_{1}, e_{2}\right\}$ and $\left\{e_{3}\right\}$, respectively. Clearly, \mathcal{D}^{\perp} is integrable, since it is of rank one. Also, it follows from (4.9) that
the distribution \mathcal{D} is integrable with totally geodesic leaves. Moreover, (4.8) implies that the leaves of \mathcal{D} are totally geodesic in $C H^{3}(-4)$ as well.

Because \mathcal{D} and \mathcal{D}^{\perp} are both integrable, there exist local coordinates $\{s, y, z\}$ such that $\partial / \partial s$ spans \mathcal{D}^{\perp} and $\{\partial / \partial y, \partial / \partial z\}$ spans \mathcal{D} according to Frobenius' theorem. Since $d\left(\varphi \omega^{3}\right)=0$, we may choose s in such way that $\partial / \partial s=\varphi^{-1} e_{3}$.

From $e_{3} \varphi=0$, we have $\varphi=\varphi(y, z)$. With respect to $\{s, y, z\}$, (4.8) becomes

$$
\begin{equation*}
h\left(\frac{\partial}{\partial s}, \frac{\partial}{\partial s}\right)=J \frac{\partial}{\partial s}, h\left(\frac{\partial}{\partial s}, \frac{\partial}{\partial x_{j}}\right)=h\left(\frac{\partial}{\partial x_{j}}, \frac{\partial}{\partial x_{k}}\right)=0, j, k=2,3, \tag{4.11}
\end{equation*}
$$

with $x_{2}=y, x_{3}=z$.
Let N be an integral submanifold of \mathcal{D}. Then N is a totally geodesic and totally real surface in $C H^{3}(-4)$. Thus, N is an open portion of a unit hyperbolic 2-plane $H^{2}(-1)$. Hence, M is isometric to an open portion of the warped product manifold $I \times H^{2}(-1)$ equipped with the warped product metric (see, for instance, [15]):

$$
\begin{equation*}
g=\phi^{2} d s^{2}+g_{1}, \quad \phi=\frac{1}{\varphi(y, z)} \tag{4.12}
\end{equation*}
$$

where I is an open interval and g_{1} can be chosen to be an isothermal metric on the hyperbolic plane $H^{2}(-1)$; namely,

$$
\begin{equation*}
g_{1}=\frac{4\left(d y^{2}+d z^{2}\right)}{\left(1-y^{2}-z^{2}\right)^{2}} \tag{4.13}
\end{equation*}
$$

From (4.12) we know that the Levi-Civita connection of M satisfies

$$
\begin{align*}
& \nabla_{\frac{\partial}{\partial s}} \frac{\partial}{\partial s}=-\frac{1}{4}\left(1-y^{2}-z^{2}\right)^{2} \phi\left\{\phi_{y} \frac{\partial}{\partial y}+\phi_{z} \frac{\partial}{\partial z}\right\}, \\
& \nabla_{\frac{\partial}{\partial s}} \frac{\partial}{\partial y}=\frac{\phi_{y}}{\phi} \frac{\partial}{\partial s}, \quad \nabla_{\frac{\partial}{\partial s}} \frac{\partial}{\partial z}=\frac{\phi_{z}}{\phi} \frac{\partial}{\partial s}, \\
& \nabla_{\frac{\partial}{\partial y}} \frac{\partial}{\partial y}=\frac{2}{1-y^{2}-z^{2}}\left(y \frac{\partial}{\partial y}-z \frac{\partial}{\partial z}\right), \tag{4.14}\\
& \nabla_{\frac{\partial}{\partial y}} \frac{\partial}{\partial z}=\frac{2}{1-y^{2}-z^{2}}\left(z \frac{\partial}{\partial y}+y \frac{\partial}{\partial z}\right), \\
& \nabla_{\frac{\partial}{\partial z}} \frac{\partial}{\partial z}=\frac{2}{1-y^{2}-z^{2}}\left(-y \frac{\partial}{\partial y}+z \frac{\partial}{\partial z}\right) .
\end{align*}
$$

Since M is of constant curvature -1 , by computing the curvature tensor R of M, we find

$$
\begin{align*}
& \left(1-y^{2}-z^{2}\right)\left\{\left(1-y^{2}-z^{2}\right) \phi_{y y}-2 y \phi_{y}+2 z \phi_{z}\right\}=4 \phi, \\
& \left(1-y^{2}-z^{2}\right)\left\{\left(1-y^{2}-z^{2}\right) \phi_{z z}+2 y \phi_{y}-2 z \phi_{z}\right\}=4 \phi, \tag{4.15}\\
& \left(1-y^{2}-z^{2}\right) \phi_{y z}=2 y \phi_{z}+2 z \phi_{y} .
\end{align*}
$$

After solving this PDE system (4.15), we obtain

$$
\phi=\frac{a\left(1+y^{2}+z^{2}\right)+b y+c z}{1-y^{2}-z^{2}}
$$

for some $a, b, c \in \mathbf{R}$. Therefore, by applying a suitable rotation on the $y z$-plane, we may put

$$
\begin{equation*}
\phi=\frac{a\left(1+y^{2}+z^{2}\right)+b y}{1-y^{2}-z^{2}} \tag{4.16}
\end{equation*}
$$

It follows (2.7), (4.11)-(4.14), and (4.16) that

$$
\begin{align*}
L_{s s} & =i L_{s}-\frac{\phi}{4}\left(1-y^{2}-z^{2}\right)^{2}\left(\phi_{y} L_{y}+\phi_{z} L_{z}\right)+\phi^{2} L \\
L_{s y} & =\frac{\phi_{y}}{\phi} L_{s}, \quad L_{s z}=\frac{\phi_{z}}{\phi} L_{s} \\
L_{y y} & =\frac{2 y L_{y}-2 z L_{z}}{1-y^{2}-z^{2}}+\frac{4 L}{\left(1-y^{2}-z^{2}\right)^{2}} \tag{4.17}\\
L_{y z} & =\frac{2 z L_{y}+2 y L_{z}}{1-y^{2}-z^{2}} \\
L_{z z} & =\frac{-2 y L_{y}+2 z L_{z}}{1-y^{2}-z^{2}}+\frac{4 L}{\left(1-y^{2}-z^{2}\right)^{2}}
\end{align*}
$$

Case (a.i). $\quad 4 a^{2} \neq b^{2}$. In this case, after solving system (4.17), we obtain

$$
\begin{equation*}
L(s, y, z)=\phi H(s)-\frac{c_{1} y+c_{2} z+c_{3}\left(1+y^{2}+z^{2}\right)}{1-y^{2}-z^{2}}-\frac{4 a c_{3}-b c_{1}}{4 a^{2}-b^{2}} \phi \tag{4.18}
\end{equation*}
$$

for some vectors $c_{1}, c_{2}, c_{3} \in \mathbf{C}_{1}^{4}$, where $H(s)$ is a \mathbf{C}_{1}^{4}-valued function satisfying

$$
\begin{equation*}
4 H^{\prime \prime}(s)-4 i H^{\prime}(s)-\left(4 a^{2}-b^{2}\right) H(s)=0 \tag{4.19}
\end{equation*}
$$

Case (a.i.1). $4 a^{2}-b^{2}=1$. In this case, (4.16) reduces to

$$
\begin{equation*}
\phi=\frac{2 b y+\sqrt{1+b^{2}}\left(1+y^{2}+z^{2}\right)}{2\left(1-y^{2}-z^{2}\right)} \tag{4.20}
\end{equation*}
$$

By solving (4.19) and by applying (4.18) we find

$$
\begin{gather*}
L(s, y, z)=\phi e^{\frac{i}{2} s}\left(c_{4}+c_{5} s\right)+\frac{c_{1} y+c_{2} z+c_{3}\left(1+y^{2}+z^{2}\right)}{1-y^{2}-z^{2}} \tag{4.21}\\
+\left(2 \sqrt{1+b^{2}} c_{3}-b c_{1}\right) \phi
\end{gather*}
$$

for some vectors $c_{1}, \ldots, c_{5} \in \mathbf{C}_{1}^{4}$. Hence, after choosing suitable initial conditions, we obtain case (2) of the theorem.

Case (a.i.2). $4 a^{2}-b^{2}>1$. After solving (4.19) we obtain from (4.18) that

$$
\begin{align*}
L(s, y, z)= & \phi e^{\frac{i}{2} s}\left(c_{4} \cosh \delta s+c_{5} \sinh \delta s\right)-\frac{4 a c_{3}-b c_{1}}{4 a^{2}-b^{2}} \phi \\
& +\frac{c_{1} y+c_{2} z+c_{3}\left(1+y^{2}+z^{2}\right)}{1-y^{2}-z^{2}} \tag{4.22}
\end{align*}
$$

for some vectors $c_{4}, c_{5} \in \mathbf{C}_{1}^{4}$, where ϕ is given by (4.16) and δ is given by

$$
2 \delta=\sqrt{4 a^{2}-b^{2}-1}
$$

Hence, after choosing suitable initial conditions, we obtain case (3) of the theorem.
Case (a.i.3). $4 a^{2}-b^{2}<1$. After solving (4.19) we obtain from (4.18) that

$$
L(s, y, z)=\phi e^{\frac{i}{2} x}\left(c_{4} \cos \gamma s+c_{5} \sin \gamma s\right)+\frac{4 a c_{3}-b c_{1}}{4 a^{2}-b^{2}} \phi
$$

$$
\begin{equation*}
-\frac{c_{1} y+c_{2} z+c_{3}\left(1+y^{2}+z^{2}\right)}{1-y^{2}-z^{2}} \tag{4.23}
\end{equation*}
$$

for some vectors $c_{4}, c_{5} \in \mathbf{C}_{1}^{4}$, where $\gamma=\frac{1}{2} \sqrt{1+b^{2}-4 a^{2}}$. Hence, after choosing suitable initial conditions, we obtain case (4).

Case (a.ii.) $4 a^{2}=b^{2}$. In this case, without loss of generality, we may put

$$
\begin{equation*}
\phi=\frac{2 a y+a\left(1+y^{2}+z^{2}\right)}{1-y^{2}-z^{2}} \tag{4.24}
\end{equation*}
$$

Hence, (4.17) reduces to

$$
\begin{align*}
L_{s s}= & i L_{s}-\frac{a^{2}\left((1+y)^{2}+z^{2}\right)}{2\left(1-y^{2}-z^{2}\right)} \\
& \times\left\{\left((1+y)^{2}-z^{2}\right) L_{y}+2(1+y) z L_{z}\right\}+\phi^{2} L \\
L_{s y}= & \frac{2\left((1+y)^{2}-z^{2}\right)}{\left(1-y^{2}-z^{2}\right)\left((1+y)^{2}+z^{2}\right)} L_{s} \\
L_{s z}= & \frac{4(1+y) z}{\left(1-y^{2}-z^{2}\right)\left((1+y)^{2}+z^{2}\right)} L_{s} \tag{4.25}\\
L_{y y}= & \frac{2 y L_{y}-2 z L_{z}}{1-y^{2}-z^{2}}+\frac{4 L}{\left(1-y^{2}-z^{2}\right)^{2}} \\
L_{y z}= & \frac{2 z L_{y}+2 y L_{z}}{1-y^{2}-z^{2}} \\
L_{z z}= & \frac{-2 y L_{y}+2 z L_{z}}{1-y^{2}-z^{2}}+\frac{4 L}{\left(1-y^{2}-z^{2}\right)^{2}}
\end{align*}
$$

Solving this system yields

$$
\begin{align*}
L(s, y, z)= & \frac{\left(i a^{2} c_{1} s-c_{2} e^{i s}+c_{3}\right)\left((1+y)^{2}+z^{2}\right)}{1-y^{2}-z^{2}} \\
& +\frac{c_{1}\left(1+y^{2}+z^{2}\right)-c_{4} z}{1-y^{2}-z^{2}} \tag{4.26}
\end{align*}
$$

for some vectors $c_{1}, c_{2}, c_{3}, c_{4} \in \mathbf{C}_{1}^{4}$.
Case (a.ii.1). $a^{2} \neq 1$. After choosing suitable initial conditions we obtain case (5) of the theorem.

Case (a.ii.2). $a^{2}=1$. In this case, we obtain case (6) of the theorem.
Notice that (4.13) and Corollary 3.3 imply that every Lagrangian submanifold obtained from cases (2)-(6) of the theorem is H-stationary.

Case (b). $\varphi=\alpha \neq 0$. In this case, (4.2)-(4.5) and (4.7) imply that

$$
\begin{align*}
& h\left(e_{1}, e_{1}\right)=h\left(e_{1}, e_{2}\right)=h\left(e_{1}, e_{3}\right)=h\left(e_{2}, e_{3}\right)=0 \\
& h\left(e_{2}, e_{2}\right)=\alpha J e_{2}, h\left(e_{3}, e_{3}\right)=\alpha J e_{3} \tag{4.27}
\end{align*}
$$

and
(4.28) $\quad \omega_{2}^{1}\left(e_{1}\right)=\omega_{3}^{1}\left(e_{1}\right)=\omega_{3}^{1}\left(e_{2}\right)=\omega_{2}^{1}\left(e_{3}\right)=\omega_{3}^{2}\left(e_{1}\right)=0, \omega_{3}^{2}\left(e_{3}\right)=\omega_{2}^{3}\left(e_{2}\right)$,

$$
\begin{equation*}
e_{1} \alpha=\alpha \omega_{2}^{1}\left(e_{2}\right)=\alpha \omega_{3}^{1}\left(e_{3}\right), \quad e_{2} \alpha=e_{3} \alpha=\alpha \omega_{3}^{2}\left(e_{3}\right) \tag{4.29}
\end{equation*}
$$

From (4.28) and (4.29) we get

$$
\left[e_{1}, \alpha^{-1} e_{2}\right]=\left[e_{1}, \alpha^{-1} e_{3}\right]=\left[\alpha^{-1} e_{2}, \alpha^{-1} e_{3}\right]=0
$$

Thus, there exists a coordinate system $\{x, y, z\}$ such that $e_{1}=\partial / \partial x, e_{2}=\alpha \partial / \partial y$ and $e_{3}=\alpha \partial / \partial z$. So, the metric tensor is given by

$$
\begin{equation*}
g=d x^{2}+\frac{d y^{2}+d z^{2}}{\alpha^{2}} \tag{4.30}
\end{equation*}
$$

Thus, the Levi-Civita connection satisfies

$$
\begin{align*}
& \nabla_{\frac{\partial}{\partial x}} \frac{\partial}{\partial x}=0, \nabla_{\frac{\partial}{\partial x}} \frac{\partial}{\partial y}=-\frac{\alpha_{x}}{\alpha} \frac{\partial}{\partial y}, \nabla_{\frac{\partial}{\partial x}} \frac{\partial}{\partial z}=-\frac{\alpha_{x}}{\alpha} \frac{\partial}{\partial z}, \\
& \nabla_{\frac{\partial}{\partial y}} \frac{\partial}{\partial y}=\frac{\alpha_{x}}{\alpha^{3}} \frac{\partial}{\partial x}-\frac{\alpha_{y}}{\alpha} \frac{\partial}{\partial y}+\frac{\alpha_{z}}{\alpha} \frac{\partial}{\partial z}, \tag{4.31}\\
& \nabla_{\frac{\partial}{\partial y}} \frac{\partial}{\partial z}=-\frac{\alpha_{z}}{\alpha} \frac{\partial}{\partial y}-\frac{\alpha_{y}}{\alpha} \frac{\partial}{\partial z}, \\
& \nabla_{\frac{\partial}{\partial z}} \frac{\partial}{\partial z}=\frac{\alpha_{x}}{\alpha^{3}} \frac{\partial}{\partial x}+\frac{\alpha_{y}}{\alpha} \frac{\partial}{\partial y}-\frac{\alpha_{z}}{\alpha} \frac{\partial}{\partial z} .
\end{align*}
$$

From (2.7), (4.27), (4.30) and (4.31), we obtain

$$
\begin{align*}
L_{x x} & =L \\
L_{x y} & =-(\ln \alpha)_{x} L_{y} \\
L_{x z} & =-(\ln \alpha)_{x} L_{z} \\
L_{y y} & =\frac{\alpha_{x}}{\alpha^{3}} L_{x}+\left(i-(\ln \alpha)_{y}\right) L_{y}+\frac{\alpha_{z}}{\alpha} L_{z}+\frac{L}{\alpha^{2}} \tag{4.32}\\
L_{y z} & =-(\ln \alpha)_{z} L_{y}-(\ln \alpha)_{y} L_{z} \\
L_{z z} & =\frac{\alpha_{x}}{\alpha^{3}} L_{x}+\frac{\alpha_{y}}{\alpha} L_{y}+\left(i-(\ln \alpha)_{z}\right) L_{z}+\frac{L}{\alpha^{2}}
\end{align*}
$$

The compatibility condition of this system is given by

$$
\begin{gather*}
\alpha \alpha_{x x}-2 \alpha_{x}^{2}+\alpha^{2}=0, \quad \alpha_{y}=\alpha_{z}, \quad \alpha_{x y}=\alpha_{x} \alpha_{y} \tag{4.33}\\
2 \alpha^{3} \alpha_{y y}+\alpha^{2}=\alpha_{x}^{2}+2 \alpha^{2} \alpha_{y}^{2} \tag{4.34}
\end{gather*}
$$

Solving the first two equations in (4.33) gives

$$
\begin{equation*}
\alpha=\frac{\operatorname{sech}(x+u(w))}{f(w)}, \quad w=y+z \tag{4.35}
\end{equation*}
$$

for some functions $f(w), u(w)$. Substituting (4.35) into (4.34) gives

$$
2 f f^{\prime \prime}-2 f^{\prime 2}-f^{4}+\left(\tanh (x+u) u^{\prime \prime}+\operatorname{sech}^{2}(x+u) u^{2}\right) f^{2}=0
$$

which implies that $u^{\prime}=0$ and $2 f f^{\prime \prime}-2 f^{\prime 2}+f^{4}=0$. Thus, u is a constant. Hence, by applying a suitable translation in x, we obtain

$$
\begin{equation*}
\alpha=\frac{\operatorname{sech} x}{f(y+z)}, \quad 2 f f^{\prime \prime}-2 f^{\prime 2}-f^{4}=0 \tag{4.36}
\end{equation*}
$$

After solving the second order differential equation in (4.36) and applying a suitable translation in y, z, we have

$$
f=\sqrt{b} \sec \left(\sqrt{\frac{b}{2}}(y+z)\right), \quad \alpha=\frac{1}{\sqrt{b}} \operatorname{sech} x \cos \left(\sqrt{\frac{b}{2}}(y+z)\right)
$$

for some positive number b. Thus, if we put $x_{2}=\sqrt{b / 2} y$ and $x_{3}=\sqrt{b / 2} z$, then we obtain

$$
\begin{equation*}
f=\sqrt{2} \sec \left(x_{2}+x_{3}\right), \quad \alpha=\frac{1}{\sqrt{2}} \operatorname{sech} x \cos \left(x_{2}+x_{3}\right) \tag{4.37}
\end{equation*}
$$

Substituting this into (4.32) we obtain

$$
\begin{align*}
L_{x x}= & L, \quad L_{x x_{2}}=\tanh x L_{x_{2}}, L_{x x_{3}}=\tanh x L_{x_{3}} \\
L_{x_{2} x_{2}}= & -\sinh 2 x \sec ^{2}\left(x_{2}+x_{3}\right) L_{x}+\left(\frac{i \sqrt{2}}{\sqrt{b}}+\tan \left(x_{2}+x_{3}\right)\right) L_{x_{2}} \\
& -\tan \left(x_{2}+x_{3}\right) L_{x_{3}}-2 \cosh ^{2} x \sec ^{2}\left(x_{2}+x_{3}\right) L \\
L_{x_{2} x_{3}}= & \tan \left(x_{2}+x_{3}\right)\left(L_{y}+L_{z}\right) \tag{4.38}\\
L_{x_{3} x_{3}}= & -\sinh 2 x \sec ^{2}\left(x_{2}+x_{3}\right) L_{x}-\tan \left(x_{2}+x_{3}\right) L_{x_{2}} \\
& +\left(\frac{i \sqrt{2}}{\sqrt{b}}+\tan \left(x_{2}+x_{3}\right)\right) L_{x_{3}}+2 \cosh ^{2} x \sec ^{2}\left(x_{2}+x_{3}\right) L
\end{align*}
$$

To solving this system we make the following change of variables:

$$
s=x_{2}+x_{3}, \quad t=x_{2}-x_{3}
$$

Then we get from (4.38) that

$$
\begin{aligned}
L_{x x} & =L \\
L_{x s} & =\tanh x L_{s} \\
L_{x t} & =\tanh x L_{t} \\
L_{s s} & =-\frac{1}{2} \sinh 2 x \sec ^{2} s L_{x}+\left(\frac{i}{\sqrt{2 b}}+\tan s\right) L_{s}+\cosh ^{2} x \sec ^{2} s L \\
L_{s t} & =\left(\frac{i}{\sqrt{2 b}}+\tan s\right) L_{t} \\
L_{t t} & =-\frac{1}{2} \sinh 2 x \sec ^{2} s L_{x}+\left(\frac{i}{\sqrt{2 b}}-\tan s\right) L_{s}+\cosh ^{2} x \sec ^{2} s L
\end{aligned}
$$

Case (b.i). $2 b<1$. After solving system (4.39) we find

$$
\begin{aligned}
L(x, s, t)= & c_{1} \sinh x+c_{2}(\sqrt{2 b} \tan s-i) \cosh x \\
& +\left\{c_{3} \cos \left(\frac{\sqrt{1-2 b}}{\sqrt{2 b}} t\right)+c_{4} \sin \left(\frac{\sqrt{1-2 b}}{\sqrt{2 b}} t\right)\right\} e^{i s / \sqrt{2 b}} \sec s \cosh x
\end{aligned}
$$

Hence, by choosing suitable initial conditions, we obtain case (7) of the theorem.
Case (b.ii). $2 b>1$. In this case, the solution of system (4.39) is given by

$$
L(x, s, t)=c_{1} \sinh x+c_{2}(\sqrt{2 b} \tan s-i) \cosh x
$$

$$
+\left\{c_{3} \cosh \left(\frac{\sqrt{2 b-1}}{\sqrt{2 b}} t\right)+c_{4} \sinh \left(\frac{\sqrt{2 b-1}}{\sqrt{2 b}} t\right)\right\} e^{i s / \sqrt{2 b}} \sec s \cosh x
$$

Hence, after choosing suitable initial conditions, we obtain case (8) of the theorem.
Case (b.iii). $2 b=1$. Solving system (4.39) yields

$$
L(x, s, t)=c_{1} \sinh x+\frac{c_{2}\left(i+2 e^{2 i s}\left(s+i t^{2}\right)\right)+e^{2 i s}\left(c_{3} t+2 c_{4}\right)}{1+e^{2 i s}} \cosh x .
$$

Hence, after choosing suitable initial conditions, we may obtain case (9) of the theorem.

Notice that the Lagrangian submanifolds given in cases (7), (8) and (9) of the theorem are H-stationary according to (4.30) and Corollary 3.1.

Case (c). $\varphi \neq \alpha$ and $\alpha \neq 0$. If $\varphi=0$, this reduces to Case (a) after interchanging e_{2} and e_{3}. Thus, without loss of generality, we may assume that $\varphi \neq 0$. Hence, (4.2)-(4.5) and (4.7) reduce to

$$
\begin{gather*}
h\left(e_{1}, e_{1}\right)=h\left(e_{1}, e_{2}\right)=h\left(e_{1}, e_{3}\right)=h\left(e_{2}, e_{3}\right)=0, \\
h\left(e_{2}, e_{2}\right)=\alpha J e_{2}, h\left(e_{3}, e_{3}\right)=\varphi J e_{3} \tag{4.40}\\
\omega_{2}^{1}\left(e_{1}\right)=\omega_{3}^{1}\left(e_{1}\right)=\omega_{3}^{1}\left(e_{2}\right)=\omega_{2}^{1}\left(e_{3}\right)=\omega_{3}^{2}\left(e_{1}\right)=0, \tag{4.41}\\
\alpha \omega_{3}^{2}\left(e_{3}\right)=\varphi \omega_{2}^{3}\left(e_{2}\right), \tag{4.42}\\
e_{1} \alpha=\alpha \omega_{2}^{1}\left(e_{2}\right), e_{3} \alpha=-\alpha \omega_{3}^{2}\left(e_{2}\right), e_{1} \varphi=\varphi \omega_{3}^{1}\left(e_{3}\right), e_{2} \varphi=\varphi \omega_{3}^{2}\left(e_{3}\right), \tag{4.43}\\
e_{2} \alpha+e_{3} \varphi=2 \alpha \omega_{3}^{2}\left(e_{3}\right) . \tag{4.44}
\end{gather*}
$$

From (4.41) and (4.43) we get

$$
\left[e_{1}, \alpha^{-1} e_{2}\right]=\left[e_{1}, \varphi^{-1} e_{3}\right]=\left[\alpha^{-1} e_{2}, \varphi^{-1} e_{3}\right]=0 .
$$

Thus, there exists a coordinate system $\{x, y, z\}$ such that $e_{1}=\partial / \partial x, e_{2}=\alpha \partial / \partial y$ and $e_{3}=\varphi \partial / \partial z$. So, the metric tensor is given by

$$
\begin{equation*}
g=d x^{2}+\frac{d y^{2}}{\alpha^{2}}+\frac{d z^{2}}{\varphi^{2}} . \tag{4.45}
\end{equation*}
$$

The Levi-Civita connection of (4.45) satisfies

$$
\begin{align*}
& \nabla_{\frac{\partial}{\partial x}} \frac{\partial}{\partial x}=0, \nabla_{\frac{\partial}{\partial x}} \frac{\partial}{\partial y}=-\frac{\alpha_{x}}{\alpha} \frac{\partial}{\partial y}, \nabla_{\frac{\partial}{\partial x}} \frac{\partial}{\partial z}=-\frac{\varphi_{x}}{\varphi} \frac{\partial}{\partial z}, \\
& \nabla_{\frac{\partial}{\partial y}} \frac{\partial}{\partial y}=\frac{\alpha_{x}}{\alpha^{3}} \frac{\partial}{\partial x}-\frac{\alpha_{y}}{\alpha} \frac{\partial}{\partial y}+\frac{\alpha_{z} \varphi^{2}}{\alpha^{3}} \frac{\partial}{\partial z}, \tag{4.46}\\
& \nabla_{\frac{\partial}{\partial y}} \frac{\partial}{\partial z}=-\frac{\alpha_{z}}{\alpha} \frac{\partial}{\partial y}-\frac{\varphi_{y}}{\varphi} \frac{\partial}{\partial z} \\
& \nabla_{\frac{\partial}{\partial z}} \frac{\partial}{\partial z}=\frac{\varphi_{x}}{\varphi^{3}} \frac{\partial}{\partial x}+\frac{\alpha^{2} \varphi_{y}}{\varphi^{3}} \frac{\partial}{\partial y}-\frac{\varphi_{z}}{\varphi} \frac{\partial}{\partial z} .
\end{align*}
$$

From (2.7), (4.40), (4.45) and (4.46) we obtain

$$
\begin{align*}
& L_{x x}=L, L_{x y}=-(\ln \alpha)_{x} L_{y}, L_{x z}=-(\ln \varphi)_{x} L_{z}, \\
& L_{y y}=\frac{\alpha_{x}}{\alpha^{3}} L_{x}+\left(i-(\ln \alpha)_{y}\right) L_{y}+\frac{\alpha_{z} \varphi^{2}}{\alpha^{3}} L_{z}+\frac{L}{\alpha^{2}}, \tag{4.47}\\
& L_{y z}=-(\ln \alpha)_{z} L_{y}-(\ln \varphi)_{y} L_{z}, \\
& L_{z z}=\frac{\varphi_{x}}{\varphi^{3}} L_{x}+\frac{\alpha^{2} \varphi_{y}}{\varphi^{3}} L_{y}+\left(i-(\ln \varphi)_{z}\right) L_{z}+\frac{L}{\varphi^{2}} .
\end{align*}
$$

The compatibility condition of this system is given by

$$
\begin{equation*}
\alpha \alpha_{x x}-2 \alpha_{x}^{2}+\alpha^{2}=0, \varphi \varphi_{x x}-2 \varphi_{x}^{2}+\varphi^{2}=0, \tag{4.48}
\end{equation*}
$$

$$
\begin{equation*}
\varphi\left(2 \alpha_{x} \alpha_{z}-\alpha \alpha_{x z}\right)=\alpha \alpha_{z} \varphi_{x} \tag{4.49}
\end{equation*}
$$

$$
\begin{equation*}
\alpha\left(2 \varphi_{x} \varphi_{y}-\varphi \varphi_{x y}\right)=\varphi \varphi_{y} \alpha_{x}, \tag{4.50}
\end{equation*}
$$

$$
\begin{equation*}
\alpha^{3} \varphi_{y}=\varphi^{3} \alpha_{z} \tag{4.51}
\end{equation*}
$$

$$
\begin{aligned}
& \alpha \varphi\left(\varphi^{3} \alpha_{z z}+\alpha^{3} \varphi_{y y}+\alpha^{2} \alpha_{y} \varphi_{y}+\varphi^{2} \varphi_{z} \alpha_{z}\right)+\alpha^{2} \varphi^{2} \\
& \quad=\alpha \alpha_{x} \varphi \varphi_{x}+2 \varphi^{4} \alpha_{z}^{2}+2 \alpha^{4} \varphi_{y}^{2} .
\end{aligned}
$$

Solving (4.48) gives

$$
\begin{equation*}
\alpha=\frac{\operatorname{sech}(x+u(y, z))}{f(y, z)}, \varphi=\frac{\operatorname{sech}(x+v(y, z))}{k(y, z)} \tag{4.53}
\end{equation*}
$$

for some functions f, k, u, v with $f, k \neq 0$. Substituting(4.53) into(4.49)-(4.51) gives

$$
\begin{align*}
\sinh (u-v) f_{z} & =-f u_{z} \cosh (u-v), \tag{4.54}\\
\sinh (u-v) k_{y} & =k v_{y} \cosh (u-v), \\
k k_{y} & =f f_{z} .
\end{align*}
$$

Case (c.i). u, v, f, k are constants. By applying a suitable translation in x, we may assume that

$$
\begin{equation*}
\alpha=\frac{\operatorname{sech} x}{a}, \varphi=\frac{\operatorname{sech}(x+c)}{b}, a, b \neq 0 . \tag{4.57}
\end{equation*}
$$

Substituting (4.57) into (4.52) gives $\cosh c=0$, which is impossible.
Case (c.ii). At least one of u, v, f, k is non-constant.
We divide this into three cases.
Case (c.ii.1). $u=v$. In this case, (4.54) and (4.55) imply $u_{z}=v_{y}=0$. Thus, $u=v$ is constant. Hence, at least one of f, k is non-constant. Therefore, after applying a suitable translation in x, we may put

$$
\begin{align*}
& g=d x^{2}+\cosh ^{2} x\left\{f^{2}(y, z) d y^{2}+k^{2}(y, z) d z^{2}\right\}, \\
& \alpha=\frac{\operatorname{sech} x}{f(y, z)}, \quad \varphi=\frac{\operatorname{sech} x}{k(y, z)} . \tag{4.58}
\end{align*}
$$

Clearly, it follows from the assumption $\alpha \neq \varphi$ that $f \neq k$.
From (4.47) and (4.58) we obtain

$$
\begin{aligned}
& L_{x x}=L \\
& L_{x y}=\tanh x L_{y} \\
& L_{x z}=\tanh x L_{z}, \\
& L_{y y}=-f^{2} \sinh x \cosh x L_{x}+\left(i+(\ln f)_{y}\right) L_{y}-\frac{f f_{z}}{k^{2}} L_{z}+f^{2} \cosh ^{2} x L \\
& L_{y z}=(\ln f)_{z} L_{y}+(\ln k)_{y} L_{z} \\
& L_{z z}=-k^{2} \sinh x \cosh x L_{x}-\frac{k k_{y}}{f^{2}} L_{y}+\left(i+(\ln k)_{z}\right) L_{z}+k^{2} \cosh ^{2} x L
\end{aligned}
$$

The compatibility condition of system (4.59) is given by

$$
\begin{equation*}
k k_{y}=f f_{z} \tag{4.60}
\end{equation*}
$$

$$
\begin{equation*}
f^{2}\left(k f_{z z}-f_{z} k_{z}\right)+k^{2}\left(f k_{y y}-f_{y} k_{y}\right)-f^{3} k^{3}=0 \tag{4.61}
\end{equation*}
$$

Moreover, since the Lagrangian submanifold is H-stationary, it follows from (4.58) and Proposition 3.1 that

$$
\begin{equation*}
k^{3} f_{y}+f^{3} k_{z}=f^{2} k f_{z}+f k^{2} k_{y} . \tag{4.62}
\end{equation*}
$$

After solving the first three equations in (4.59) we have

$$
\begin{equation*}
L(x, y, z)=c_{1} \sinh x+P(y, z) \cosh x \tag{4.63}
\end{equation*}
$$

for some vector $c_{1} \in \mathbf{C}_{1}^{4}$ and \mathbf{C}_{1}^{4}-valued function $P(y, z)$. Since $\langle L, L\rangle=-1$, we get

$$
\left\langle c_{1}, c_{1}\right\rangle=-\langle P, P\rangle=1, \quad\left\langle c_{1}, P\right\rangle=0 .
$$

Thus, $P(y, z)$ lies in the unit anti-de Sitter space $H_{1}^{7}(-1) \subset \mathbf{C}_{1}^{4}$ and c_{1} is a unit space-like vector satisfying $\left\langle c_{1}, P\right\rangle=0$.

Moreover, it follows from (4.58), (4.63) and the Lagrangian condition that
(a) the induced metric of the surface $P(y, z)$ is given by

$$
g_{1}=f^{2}(y, z)^{2} d y^{2}+k^{2}(y, z) d z^{2}
$$

(b) c_{1} is perpendicular to $P_{y}, P_{z}, i P_{y}, i P_{z}$; and
(c) $\left\langle P_{y}, i P_{z}\right\rangle=0$.

Condition (b) implies that $\left\langle P, i c_{1}\right\rangle$ is constant, say b. Therefore, by choosing a suitable coordinate system on \mathbf{C}_{1}^{4} with $c_{1}=(0,0,0,1)$ and $P=\left(P_{1}, P_{2}, P_{3}, i b\right)$, we have

$$
\begin{equation*}
L(x, y, z)=(\tilde{P}(y, z) \cosh x, \sinh x+i b \cosh x) \tag{4.64}
\end{equation*}
$$

with $\tilde{P}(y, z)=\left(P_{1}(y, z), P_{2}(y, z), P_{3}(y, z)\right)$.
Now, by substituting (4.64) into the fourth equation in (4.59) we find $b=0$. Hence, (4.64) reduces to

$$
\begin{equation*}
L(x, y, z)=(\tilde{P}(y, z) \cosh x, \sinh x) \tag{4.65}
\end{equation*}
$$

It then follows from (4.58), (4.59) and (4.65) that $\tilde{P}(y, z)$ is a Legendrian surface in $H_{1}^{5}(-1) \subset \mathbf{C}_{1}^{3}$ whose metric tensor is also given by g_{1}. This Legendrian surface gives rise to a Lagrangian surface \hat{M} in $\mathrm{CH}^{2}(-4)$.

It follows from (4.58) and (4.65) that the second fundamental form \hat{h} of this Lagrangian surface \hat{M} in $C H^{2}(-4)$ satisfies

$$
\hat{h}\left(\frac{\partial}{\partial y}, \frac{\partial}{\partial y}\right)=J \frac{\partial}{\partial y}, \quad \hat{h}\left(\frac{\partial}{\partial y}, \frac{\partial}{\partial z}\right)=0, \quad \hat{h}\left(\frac{\partial}{\partial z}, \frac{\partial}{\partial z}\right)=J \frac{\partial}{\partial z} .
$$

Therefore, $\tilde{P}(y, z)$ gives rise to an H-stationary Lagrangian surface of type II in $C H^{2}(-4)$. Consequently, we obtain case (10) of the theorem.

Case (c.ii.2). $u-v=c$ is a nonzero constant. We have $u_{y}=v_{y}, u_{z}=v_{z}$ from $u-v=c$. So, it follows from (4.54) and (4.55) that
(4.66) $\quad(\ln f)_{z}=-u_{z} \operatorname{coth} c, \quad(\ln k)_{y}=u_{y} \operatorname{coth} c, \quad f_{z} k u_{y}+k_{y} f u_{z}=0$.

Solving the first equation equations in (4.66) yields

$$
\begin{equation*}
f=\frac{e^{-b u}}{\phi(y)}, \quad k=\frac{e^{b u}}{\eta(z)}, \quad b=\operatorname{coth} c \tag{4.67}
\end{equation*}
$$

for some positive function $\phi(y)$ and $\eta(z)$. Hence, the metric tensor in (4.53) becomes

$$
g=d x^{2}+\cosh ^{2}(x+u) e^{2 b u} \phi^{2}(y) d y^{2}+\cosh ^{2}(x+u-c) e^{-2 b u} \eta^{2}(z) d z^{2}
$$

It is straight-forward to verify that the sectional curvature of the plane section spanned by $\partial / \partial y$ and $\partial / \partial z$ is not equal to -1 , which is a contradiction. Hence, this case is impossible.

Case (c.ii.3). $u-v$ is non-constant. From (4.45), (4.47) and (4.53) we obtain

$$
\begin{equation*}
g=d x^{2}+f^{2}(y, z) \cosh ^{2}(x+u) d y^{2}+k^{2}(y, z) \cosh ^{2}(x+v) d z^{2} \tag{4.68}
\end{equation*}
$$

and

$$
\begin{align*}
L_{x x}= & L, L_{x y}=\tanh (x+u) L_{y}, \quad L_{x z}=\tanh (x+v) L_{z}, \\
L_{y y}= & -\frac{f^{2}}{2} \sinh (2 x+2 u) L_{x}+\left(i+\frac{f_{y}}{f}+u_{y} \tanh (x+u)\right) L_{y} \\
& -\frac{f \cosh (x+u)}{k^{2} \cosh ^{2}(x+v)}\{f \cosh (x+u)\}_{z} L_{z}+f^{2} \cosh ^{2}(x+u) L, \\
L_{y z}= & \left(\frac{f_{z}}{f}+u_{z} \tanh (x+u)\right) L_{y}+\left(\frac{k_{y}}{k}+v_{y} \tanh (x+v)\right) L_{z}, \tag{4.69}\\
L_{z z}= & -\frac{k^{2} \sinh (2 x+2 v)}{2} L_{x}+\left(i+\frac{k_{z}}{k}+v_{z} \tanh (x+v)\right) L_{z} \\
& -\frac{k \cosh (x+v)}{f^{2} \cosh ^{2}(x+u)}\{k \cosh (x+v)\}_{y} L_{y}+k^{2} \cosh ^{2}(x+v) L .
\end{align*}
$$

From the compatibility condition of this system we have

$$
\begin{gather*}
f_{z}=-f u_{z} \operatorname{coth}(u-v), \tag{4.70}\\
k_{y}=k v_{y} \operatorname{coth}(u-v), \tag{4.71}\\
f^{2} u_{z}+k^{2} v_{y}=0 . \tag{4.72}
\end{gather*}
$$

It follows from (4.70)-(4.72) that

$$
\begin{equation*}
f f_{z}=k k_{y} . \tag{4.73}
\end{equation*}
$$

Since the Lagrangian submanifold is H-stationary, Proposition 3.1 and (4.68) imply that

$$
\begin{aligned}
& \quad f^{3} k_{z} \cosh ^{3}(x+u) \cosh (x+v) \\
& + \\
& +f^{3} k \cosh ^{3}(x+u)\left(u_{z} \cosh (x+v) \operatorname{coth}(u-v)+v_{z} \sinh (x+v)\right) \\
& - \\
& -f^{3} k u_{z} \sinh (x+u) \cosh ^{2}(x+u) \cosh (x+v) \\
& - \\
& -f k^{3} v_{y} \cosh ^{2}(x+u) \cosh ^{2}(x+v) \operatorname{csch}(u-v) \\
& + \\
& +k^{3} \cosh ^{3}(x+v)\left\{f_{y} \cosh (x+u)+f u_{y} \sinh (x+u)\right\}=0 .
\end{aligned}
$$

After replacing $\cosh (x+u), \sinh (x+u), \cosh (x+v), \sinh (x+v)$ in (4.74) using

$$
\begin{aligned}
& \cosh (x+\gamma)=\cosh x \cosh \gamma-\sinh x \sinh \gamma \\
& \sinh (x+\gamma)=\sinh x \cosh \gamma+\cosh x \sinh \gamma
\end{aligned}
$$

and applying (4.70)-(4.72) and the following identities:

$$
\begin{aligned}
& \sinh ^{4} x=\frac{3}{8}-\frac{\cosh 2 x}{2}+\frac{\cosh 4 x}{8} \\
& \cosh ^{4} x=\frac{3}{8}+\frac{\cosh 2 x}{2}+\frac{\cosh 4 x}{8} \\
& \sinh ^{3} x \cosh x=-\frac{\sinh 2 x}{4}+\frac{\sinh 4 x}{8} \\
& \sinh x \cosh ^{3} x=\frac{\sinh 2 x}{4}+\frac{\sinh 4 x}{8} \\
& \sinh ^{2} x \cosh ^{2} x=\frac{\cosh 4 x-1}{8}
\end{aligned}
$$

we obtain from the coefficients of $\cosh 4 x$ in (4.74) that

$$
\begin{align*}
& f^{3}\left\{(\sinh 4 u-\sinh (2 u+2 v)) k_{z}\right. \\
+ & k\left[4 u_{z} \cosh (2(u+v))+v_{z}(\cosh 4 u-\cosh (2 u+2 v)]\right\} \\
+ & k^{3} f_{y}(\sinh (2 u+2 v)-\sinh 4 v)-f k^{3} u_{y}(\cosh 4 v \tag{4.75}\\
- & \cosh (2 u+2 v))=0
\end{align*}
$$

Similarly, from the coefficients of $\sinh 4 x$ we get

$$
\begin{align*}
& f^{3}\left\{(\cosh 4 u-\cosh (2 u+2 v)) k_{z}\right. \\
+ & \left.4 k u_{z} \sinh (2 u+2 v)+k v_{z}(\sinh 4 u-\sinh (2 u+2 v))\right\} \tag{4.76}\\
+ & k^{3} f_{y}(\cosh (2 u+2 v)-\cosh 4 v)-f k^{3} u_{y}(\sinh 4 v \\
- & \sinh (2 u+2 v))=0
\end{align*}
$$

From the coefficients of $\cosh 2 x$ we get

$$
\begin{align*}
& f^{3}\left\{(2 \sinh 2 u+\sinh (4 u-2 v)-3 \sinh 2 v) k_{z}\right. \\
+ & 8 k u_{z}(\cosh 2 u+\cosh 2 v)-k v_{z}(\cosh (4 u-2 v) \\
- & 4 \cosh 2 u+3 \sinh 2 v)\} \tag{4.77}\\
+ & k^{3} f_{y}(3 \sinh 2 u+\sinh (2 u-2 v)-2 \sinh 2 v) \\
+ & f k^{3} u_{y}(3 \cosh 2 u+\cosh (2 u-2 v)-4 \cosh 2 v)=0
\end{align*}
$$

From the coefficients of $\sinh 2 x$ we get

$$
\begin{align*}
& f^{3}\left\{(2 \cosh 2 u+\cosh (4 u-2 v)-3 \cosh 2 v) k_{z}\right. \\
+ & 8 k u_{z}(\sinh 2 u+\sinh 2 v)-k v_{z}(\sinh (4 u-2 v) \\
- & 4 \sinh 2 u+3 \cosh 2 v))\} \tag{4.78}\\
+ & k^{3} f_{y}(3 \cosh 2 u-\cosh (2 u-2 v)-2 \cosh 2 v) \\
+ & f k^{3} u_{y}(3 \sinh 2 u-\sinh (2 u-2 v)-4 \sinh 2 v)=0
\end{align*}
$$

Also, from the coefficients which do not involve $\cosh 4 x, \sinh 4 x, \cosh 2 x$ or $\sinh 2 x$, we find

$$
\begin{align*}
& f^{3}\left\{3 \sinh (2 u-2 v) k_{z}+4 k u_{z}(2+\cosh (2 u-2 v))-6 k v_{z} \sinh ^{2}(u-v)\right\} \tag{4.79}\\
+ & \left.3 k^{3} f_{y} \sinh (2 u-2 v)-2 \cosh 2 v\right)+6 f k^{3} u_{y} \sinh (u-v)=0
\end{align*}
$$

Solving system (4.75)-(4.79) for $f_{y}, u_{y}, k_{z}, u_{z}, v_{z}$ gives $f_{y}=u_{y}=k_{z}=u_{z}=v_{z}=$ 0 . Combining these with conditions (4.70)-(4.73) shows that f, k, u, v are constant. This is a contradiction. Consequently, this case is impossible.

References

1. A. Amarzaya and Y. Ohnita, Hamiltonian stability of certain minimal Lagrangian submanifolds in complex projective spaces, Tohoku Math. J., 55 (2003), 583-610.
2. H. Anciaux, I. Castro and P. Romon, Lagrangian submanifolds foliated by $(n-1)$ spheres in $\mathbb{E}^{2 n}$, Acta Math. Sinica (Engl. Ser.), 22 (2006), 1197-1214.
3. I. Castro and B. Y. Chen, Lagrangian surfaces in complex Euclidean plane via spherical and hyperbolic curves, Tohoku Math. J., 58 (2006), 565-579.
4. I. Castro and F. Urbano, Examples of unstable Hamiltonian-minimal Lagrangian tori in \mathbf{C}^{2}, Compositio Math., 111 (1998), 1-14.
5. I. Castro, H. Li and F. Urbano, Hamiltonian-stationary submanifolds in complex space forms, Pacific J. Math., 227 (2006), 43-63.
6. B. Y. Chen, Geometry of Submanifolds, Dekker, New York, 1973.
7. B. Y. Chen, Construction of Lagrangian surfaces in complex Euclidean plane with Legendre curves, Kodai Math. J., 29 (2006), 84-112.
8. B. Y. Chen, Classification of a family of Hamiltonian-stationary Lagrangian submanifolds in \mathbf{C}^{n}, Proc. Japan. Acad. Ser. A. Math., 82 (2006), 173-178.
9. B. Y. Chen, Construction of Hamiltonian-stationary Lagrangian submanifolds of constant curvature ε in complex space forms $M^{n}(4 \varepsilon)$, Proc. Intern. Conf. on Riemannian Geometry and Applications, (Brasov, Romania, June 21-25, 2007), Bull. Transilv. Univ. Brasov Ser. B (N.S.), 14 (2007), 51-74.
10. B. Y. Chen and F. Dillen, Warped product decompositions and Hamiltonian-stationary Lagrangian submanifolds, Nonlinear Analysis, (2007), doi:10.1016/j.na.2007.09.033.
11. B. Y. Chen, F. Dillen, L. Verstraelen and L. Vrancken, Lagrangian isometric immersions of a real-space-form $M^{n}(c)$ into a complex-space-form $\tilde{M}^{n}(4 c)$, Math. Proc. Cambridge Philo. Soc., 124 (1998), 107-125.
12. B. Y. Chen and O. J. Garay, Classification of Hamiltonian-stationary Lagrangian submanifolds of constant curvature in $C P^{3}(4)$ with positive relative nullity, Nonlinear Analysis, (2007), doi:10.1016/j.na.2007.06.005.
13. B. Y. Chen, O. J. Garay and Z. Zhou, Hamiltonian-stationary Lagrangian surfaces of constant curvature ε in complex space form $\tilde{M}^{2}(4 \varepsilon)$, (submitted for publication).
14. B. Y. Chen and K. Ogiue, On totally real submanifolds, Trans. Amer. Math. Soc., 193 (1974), 257-266.
15. F. Dillen and S. Nölker, Semi-parallelity, muti-rotation surfaces and the helix-property, J. Reine Angew. Math., 435 (1993), 33-63.
16. Y. Dong and Y. Han, Some explicit examples of Hamiltonian minimal Lagrangian submanifolds in complex space forms, Nonlinear Analysis, 66 (2007), 1091-1099.
17. F. Hélein and P. Romon, Hamiltonian stationary Lagrangian surfaces in \mathbb{C}^{2}, Comm. Anal. Geom., 10 (2002), 79-126.
18. A. E. Mironov, On Hamiltonian-minimal and minimal Lagrangian submanifolds in $\tilde{M}^{n}(4 \tilde{c})$ and $C P^{n}$, Dokl. Akad. Nauk, 396 (2004), 159-161.
19. Y.-G. Oh, Second variation and stabilities of minimal Lagrangian submanifolds in Kaehler manifolds, Invent. Math., 101 (1990), 501-519.
20. H. Reckziegel, Horizontal lifts of isometric immersions into the bundle space of a pseudo-Riemannian submersion, Global Diff. Geom and Global Analysis (1984), Lecture Notes in Mathematics, 12 (1985), 264-279.

Bang-Yen Chen
Department of Mathematics,
Michigan State University,
East Lansing, Michigan 48824-1027
U.S.A.
E-mail: bychen@math.msu.edu

[^0]: Received and accepted August 16, 2007.
 Communicated by J. C. Yao.
 2000 Mathematics Subject Classification: Primary: 53D12; Secondary 53C40, 53C42.
 Key words and phrases: Hamiltonian-stationary, H-stationary, Lorentzian complex space form, Lagrangian surfaces, Twisted product decompositions.

