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CLASSIFICATION OF A FAMILY
OF HAMILTONIAN-STATIONARY LAGRANGIAN

SUBMANIFOLDS IN COMPLEX HYPERBOLIC 3-SPACE

Bang-Yen Chen

Abstract. A Lagrangian submanifold in a Kaehler manifold is said to be
Hamiltonian-stationary (or simply H-stationary) if it is a critical point of the
area functional restricted to (compactly supported) Hamiltonian variations. In
an earlier paper [12], H-stationary Lagrangian submanifolds of constant cur-
vature in the complex projective 3-space CP3 with positive relative nullity
are classified. In this paper we completely classify H-stationary Lagrangian
submanifolds of constant curvature in the complex hyperbolic 3-space CH3

with positive relative nullity. As an immediate by-product, several explicit
new families of H-stationary Lagrangian submanifolds in CH3 are obtained.

1. INTRODUCTION

Let M̃n(4c) denote a Kähler n-manifold of constant holomorphic sectional cur-
vature 4c. Let J and 〈 , 〉 be the complex structure and the Kaehler metric 〈 , 〉
on M̃n(4c). The Kaehler 2-form ω is defined by ω(· , ·) = 〈J·, ·〉.

An immersion ψ : M → M̃n(4c) of an n-manifold M into M̃n(4c̃) is called
Lagrangian if ψ∗ω = 0 on M . A vector field X on M̃n(4c) is called Hamiltonian
if LXω = fω for some function f ∈ C∞(M̃n(4c)), where L is the Lie derivative.
Thus, there exists a smooth real-valued function ϕ on M̃n(4c) such thatX = J∇̃ϕ,
where ∇̃ is the gradient in M̃n(4c). Since the diffeomorphisms of the flux ψt of
X satisfy ψtω = ehtω, they transform Lagrangian submanifolds into Lagrangian
submanifolds.

A normal vector field ξ to a Lagrangian immersion ψ : Mn → M̃n(4c) is
called Hamiltonian if ξ = J∇f , where f is a smooth function on Mn and ∇f is
the gradient of f with respect to the induced metric.
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The notion of Hamiltonian-stationary (or H-stationary for brevity) Lagrangian
submanifolds was introduced by Oh in 1990 (see [19]) as the critical points of the
volume functional for all Hamiltonian isotropy of the Lagrangian submanifold. The
Euler-Lagrange equation of this variational problem is

(1.1) δαH = 0,

where H is the mean curvature vector of the submanifold, αH is the Maslov form,
and δ is the Hodge-dual of the exterior derivative d onM with respect to the induced
metric. Clearly, Lagrangian submanifolds with parallel mean curvature vector are
H-stationary. Among others, H-stationary Lagrangian submanifolds in complex
space forms have been studied in [1-10, 12, 13, 16-19].

In an earlier paper [12], the author and Garay classify H-stationary Lagrangian
submanifolds of constant curvature in CP 3 with positive relative nullity. In this
paper, we completely classify H-stationary Lagrangian submanifolds of constant
curvature in CH3 with positive relative nullity. As an immediate by-product, several
explicit new families ofH-stationary Lagrangian submanifolds in CH3 are obtained.

2. PRELIMINARIES

2.1. Basic notation and formulas

Let f : M → M̃n(4c) be a Lagrangian isometric immersion of a Riemannian
n-manifold M into M̃n(4c). Denote by ∇ and ∇̃ the Riemannian connections of
M andMn(4c), respectively. Let D be the connection on the normal bundle of the
submanifold.

The formulas of Gauss and Weingarten are given respectively by (cf. [6])

(2.1) ∇̃XY = ∇XY + h(X, Y ),

(2.2) ∇̃Xξ = −AξX +DXξ

for tangent vector fields X, Y and normal vector field ξ. If we denote the Riemann
curvature tensor of ∇ by R, then the equations of Gauss and Codazzi are given
respectively by

(2.3)
〈R(X, Y )Z,W 〉 = 〈h(X,W ), h(Y, Z)〉− 〈h(X,Z), h(Y,W )〉

+c{〈X,W 〉 〈Y, Z〉 − 〈X,Z〉 〈Y,W 〉},

(2.4) (∇h)(X, Y, Z) = (∇h)(Y,X, Z),



Hamiltonian-Stationary Lagrangian Submanifolds in CH3 1263

where (∇h)(X, Y, Z) = DXh(Y, Z)− h(∇XY, Z)− h(Y,∇XZ).
For a Lagrangian submanifoldM we also have (cf. [14])

(2.5) DXJY = J∇XY,

(2.6) 〈h(X, Y ), JZ〉 = 〈h(Y, Z), JX〉 = 〈h(Z,X), JY 〉 .

At a given point p ∈ M , the relative null space Np at p is the subspace of the
tangent space TpM defined by

Np = {X ∈ TpM : h(X, Y ) = 0 ∀Y ∈ TpM}.

The dimension νp of Np is called the relative nullity at p. The submanifold is said
to have positive relative nullity if νp is positive at each point p ∈M .

2.2. Lagrangian and Legendrian submanifolds

If M̃n(4c) is a complete and simply-connected Kähler manifold of constant
holomorphic sectional curvature 4c with c < 0, then M̃n(4c) is holomorphically
isometric to the complex hyperbolic n-space CHn(4c).

Consider the complex number (n + 1)-space Cn+1
1 equipped with the pseudo-

Euclidean metric:

g0 = −dz1dz̄1 +
n+1∑
j=2

dzjdz̄j.

Put H2n+1
1 (−1) =

{
z ∈ Cn+1

1 : 〈z, z〉 = −1
}
and H1

1 = {λ ∈ C : λλ̄ = 1}.
On Cn+1

1 we consider the canonical complex structure J induced by i =
√
−1.

On H2n+1(−1) we consider the canonical contact structure consisting of φ given
by the projection of the complex structure J of Cn+1

1 on the tangent bundle of
H2n+1

1 (−1) and the structure vector field ξ = Jx with x being the position vector.
There exists an H1

1 -action on H
2n+1
1 (−1) given by z �→ λz. At each point

z ∈ H2n+1
1 (−1), iz is tangent to the flow of the action. The orbit lies in the

negative definite plane spanned by z and iz. The quotient space H 2n+1
1 (−1)/∼

is the complex hyperbolic space CHn(−4) with constant holomorphic sectional
curvature −4, whose complex structure is induced from the complex structure on
Cn+1

1 via Hopf’s fibration: π : H2n+1
1 (−1) → CHn(−4).

An isometric immersion f : M → H2n+1
1 (−1) is called Legendrian if ξ is

normal to f∗(TM) and 〈φ(f∗(TM)), f∗(TM)〉 = 0, where 〈 , 〉 denotes the inner
product on Cn+1

1 . The vectors of H2n+1
1 (−1) normal to ξ at a point z define the

horizontal subspace Hz of the Hopf fibration π : H2n+1
1 (−1) → CHn(−4).

Let ψ : M → CHn(−4) be a Lagrangian immersion. Then there is an isometric
covering map τ : M̂ → M and a Legendrian immersion f : M̂ → H2n+1

1 (−1)
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such that ψ(τ) = π(f). Hence, every Lagrangian immersion can be lifted locally (or
globally if we assume the manifold is simply connected) to a Legendrian immersion
of the same Riemannian manifold (see [20] for details).

Conversely, suppose that f : M̂ → H2n+1
1 (−1) is a Legendrian immersion.

Then ψ = π(f) : M → CHn(−4) is again an isometric immersion, which is
Lagrangian. Under this correspondence, the second fundamental forms hf and hψ
of f and ψ satisfy π∗hf = hψ . Moreover, hf is horizontal with respect to π. We
shall denote hf and hψ simply by h.

Let L : M → H2n+1
1 (−1) ⊂ Cn+1

1 be an isometric immersion. Denote by ∇̂
and ∇ the Levi-Civita connections of Cn+1

1 and M , respectively. Let h denote the
second fundamental form of M in H2n+1

1 (−1). Then we have

(2.7) ∇̂XY = ∇XY + h(X, Y ) + 〈X, Y 〉L

for vector fields X, Y tangent to M .

3. TWISTED PRODUCT DECOMPOSITIONS AND ADAPTED IMMERSIONS

We recall a very effective method introduced by Chen, Dillen, Verstraelen
and Vrancken for constructing Lagrangian submanifolds of constant curvature c
in M̃n(4c) (see [11] for details).

Definition 3.1. Let (M1, g1), . . . , (Mm, gm) be Riemannian manifolds, fi a
positive function on M1 × · · · ×Mm and πi : M1 × . . . ×Mm → Mi the i-th
canonical projection for i = 1, . . . , m. Then the twisted product

f1M1 × · · · ×fm Mm

of (M1, g1), . . . , (Mm, gm) is the differentiable manifold M1 × . . .×Mm with the
twisted product metric g defined by

(3.1) g(X, Y ) = f2
1 · g1(π1∗X, π1∗Y ) + · · ·+ f2

m · gm(πm∗X, πm∗Y )

for all vector fields X and Y of M1 × · · · ×Mm.
Let Nn−�(c) be an (n − �)-dimensional real space form of constant curvature

c. For 0 < � < n− 1, consider the twisted product:

(3.2) f1I1 × · · · ×f�
I� ×1 N

n−�(c)

with twisted product metric given by

(3.3) g = f2
1 dx

2
1 + · · ·+ f2

� dx
2
� + g0,
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where g0 is the canonical metric of Nn−�(c) and I1, . . . , I� are open intervals.
For � = n − 1 (resp., � = n), consider the following twisted product instead.

(3.4) f1I1 × · · · ×fn−1 In−1 ×1 In (resp., f1I1 × · · · ×fn In).

If the twisted product given by (3.2) or (3.4) is a real space form Mn(c) of
constant curvature c, it is called a twisted product decomposition of M n(c). The
functions f1, . . . , f� are called the twistor functions. For simplicity, we denote such
a decomposition of Mn(c) by T Pnf1···f�

(c).
The coordinates {x1, . . . , xn} on T Pnf1···f�

(c) are called adapted coordinates if

(i) ∂/∂xj is tangent to Ij for j = 1, . . . , �;
(ii) ∂/∂xr is tangent to Nn−�(c) for r = �+ 1, . . . , n; and
(iii) the metric tensor of T Pnf1···f�

(c) takes the form (3.3).

(3.5) Φ(T P ) = f1dx1 + · · ·+ f�dx�,

which is called the twistor form of T P n
f1···f�

(c). The twistor form Φ(T P ) is said
to be twisted closed if we have

(3.6)
�∑

i,j=1

∂fi
∂xj

dxj ∧ dxi = 0.

When � = 1, the twistor form Φ(T P ) is automatically twisted closed.
The following useful theorem was proved in [11].

Theorem 3.1. Let T Pnf1···f�
(c), 1 ≤ � ≤ n, be a twisted product decomposition

of a simply-connected real space form M n(c). If the twistor form Φ(T P ) of
T Pnf1···f�

(c) is twisted closed, then up to rigid motions of M̃n(4c) there is a unique
Lagrangian isometric immersion:

(3.7) Lf1···f�
: T Pnf1···f�

(c) → M̃n(4c),

whose second fundamental form satisfies

(3.8)
h

(
∂

∂xj
,
∂

∂xj

)
= J

∂

∂xj
, j = 1, . . . , �,

h

(
∂

∂xr
,
∂

∂xt

)
= 0, otherwise,

for any adapted coordinate system {x 1, . . . , xn} on T P n
f1···f�

(c).
Conversely, if L : Mn(c) → M̃n(4c) is a non-totally geodesic Lagrangian

immersion of a real space formM n(c) of constant curvature c into a complex space
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form M̃n(4c), then Mn(c) admits an appropriate twisted product decomposition
with twisted closed twistor form. Moreover, the Lagrangian immersion L is given
by the corresponding adapted Lagrangian immersion of the twisted product.

For an adapted immersion Lf1···f�
: T Pnf1···f�

(c) → M̃n(4c), Dong and Han
[16] computed theH-stationary condition δαH = 0 in terms of the twistor functions
f1, . . . , f� and obtained the following.

Proposition 3.1. Let Lf1···f�
: T P nf1···f�

(c) → M̃n(4c) be an adapted La-
grangian immersion given in Theorem 3.1. Then L f1···f�

is H-stationary if and
only if the twistor functions f 1, . . . , f� satisfy

(3.9)
�∑
j=1

1
f3
j

∂fj
∂xj

=
∑

1≤i�=j≤�

1
fif2

j

∂fi
∂xj

.

Corollary 3.1. [16]. Any adapted Lagrangian immersion L ff : T P nff(c) →
M̃n(4c) (with k = 2 and f1 = f2 = f) is H-stationary.

From Proposition 3.1 we also have the following.

Corollary 3.2. If the twistor functions f 1, . . . , f� of T P n
f1···f�

(c) are indepen-
dent of the adapted coordinates x 1, . . . , x�, then the adapted Lagrangian immersion
Lf1···f�

T P nf1···f�
(c) → M̃n(4c) is H-stationary.

Corollary 3.3. An adapted Lagrangian immersion L f1 : T Pnf1(c) → M̃n(4c)
is H-stationary if and only if the twistor function f 1 is independent of the adapted
coordinate x1.

Remark 3.1. Let T P 2
fk(−1) be a twisted product decomposition of a simply-

connected surface of constant curvature −1. Then the metric tensor of T P2
fk(−1)

takes the form:

(3.10) g = f2(y, z)dy2 + k2(y, z)dz2,

where f(y, z) and k(y, z) are positive functions satisfying

(3.11)
(
fz
k

)
z

+
(
ky
f

)
y

= fk.

From (3.11), we know that f, k cannot be both constant.
The twistor form Φ of T P 2

fk(−1) is given by

Φ = f2(y, z)dy+ k2(y, z)dz,
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which is twisted closed if and only if we have

ffz = kky.

It follows from Proposition 3.1 that the adapted Lagrangian immersion

L : T P 2
fk(−1) → CH2(−4)

is H-stationary if and only if we have

(3.13) k3fy + f3kz = f2kfz + fk2ky.

If the twistor functions f and k of T P 2
fk(−1) are equal and satisfy (3.12), then

f can be chosen to be one of the following functions (see [11]):
(3.14)

f = a sec
(
a√
2
(x+ y)

)
, or f = a csch

(
a√
2
(x+ y)

)
, or f =

√
2

x+ y
,

with a > 0. Their corresponding adapted Lagrangian surfaces in CH2(−4) were
determined in [11]. It follows from Corollary 3.1 that such Lagrangian surfaces
are H-stationary automatically. We call these H-stationary Lagrangian surfaces
H-stationary Lagrangian surfaces of type I.

Remark 3.2. If the twistor functions f and k of T P 2
f2k2(−1) are unequal and

if they satisfy (3.11), (3.12) and (3.13), then the corresponding adapted Lagrangian
immersion in CH2(−4) is also H-stationary. Such H-stationary Lagrangian sur-
faces are called H-stationary Lagrangian surfaces of type II.

Recently, Chen, Garay and Zhou has constructed in [13] five distinct families
of H-stationary Lagrangian surfaces of type II in CH2(−4).

4. H-STATIONARY LAGRANGIAN SUBMANIFOLDS IN CH3(−4)

The following result completely classifiesH-stationary Lagrangian submanifolds
of constant curvature in CH3(−4) with positive relative nullity.

Theorem 4.1. There exist ten families of Hamiltonian-stationary Lagrangian
submanifolds of constant curvature in CH 3(−4) with positive relative nullity:

(1) A totally geodesic Lagrangian submanifold L : H 3(−1) → CH3(−4);
(2) A Lagrangian submanifold defined by

L(s, y, z) = 1
2(1−y2−z2)

(
(2i+s)e

i
2
s
(
2by+

√
1+b2(1+y2+z2)

)
,

se
i
2
s
(
2by+

√
1+b2(1+y2+z2)

)
, 4
√

1+b2y+2b(1+y2+z2), 4z
)
, b ∈ R.
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(3) A Lagrangian submanifold defined by

L(s, y, z) =
1

1 − y2 − z2

(
e

i
2
s(by+a(1+y2+z2)){2δ cosh δs− i sinh δs}

δ
√

4a2 − b2

e
i
2
s(by + a(1 + y2 + z2)) sinhδs

δ
,
4ay − b(1 + y2 + z2)√

4a2 − b2
, 2z

)
,

where a, b, δ are real numbers satisfying 4a2−b2 > 1 and 2δ =
√

4a2 − b2 − 1.

(4) A Lagrangian submanifold defined by

L(s, y, z) =
1

1 − y2 − z2

(
e

i
2
s(by + a(1 + y2 + z2)){2γ cos γs− i sinγs}

γ
√

4a2 − b2

e
i
2
s(by + a(1 + y2 + z2)) sinγs

γ
,
4ay + b(1 + y2 + z2)√

4a2 − b2
, 2z

)
,

where a, b, γ are real numbers satisfying 4a2 < 1 + b2, 2γ =
√

1 + b2 − 4a2

and 4a2 
= b2.

(5) A Lagrangian submanifold defined by

L(s, y, z) =
(

2y − a2(1 + is)((1 + y)2 + z2)√
a2 − 1(1− y2 − z2)

,
2z

1− y2 − z2
,

1 + y2 + z2 + ia2s((1 + y)2 + z2)√
a2 − 1(1− y2 − z2)

,
aeis((1 + y)2 + z2)

1− y2 − z2

)
, a2 
= 0, 1.

(6) A Lagrangian submanifold defined by

L(s, y, z) =
(
is

2
+

3
2
− i+

2i− 3 − is+ (2i− 2 − is)y
1 − y2 − z2

,
2z

1 − y2 − z2
,

is

2
− 1

2
− i+

1 + 2i− is+ (2 + 2i− is)y
1 − y2 − z2

,
eis((1 + y)2 + z2)

1 − y2 − z2

)
.

(7) A Lagrangian submanifold defined by

L(x, s, t) =
coshx√
1 − 2b

(√
2b tan s− i,

√
2beis/

√
2b sec s cos

(√
1 − 2b√

2b
t

)
,

√
2beis/

√
2b sec s sin

(√
1 − 2b√

2b
t

)
,
√

1− 2b tanhx
)
, 0 < 2b < 1.
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(8) A Lagrangian submanifold defined by

L(x, s, t) =
coshx√
1 − 2b

(√
2beis/

√
2b sec s cosh

(√
2b− 1√

2b
t

)
,
√

2b tan s − i,

√
2beis/

√
2b sec s sinh

(√
2b− 1√

2b
t

)
,
√

2b− 1 tanhx
)
, 2b > 1.

(9) A Lagrangian submanifold defined by

L(x, s, t) =
coshx√

2(1 + e2is)

(
i+ 2e2is(s+ i+ it2), i+ 2e2is(s+ it2),

√
2(1 + e2is) tanhx, 2

√
2e2ist

)
.

(10) A Lagrangian submanifold defined by

L(x, y, z) =
(
P̃ (y, z) coshx, sinhx

)
,

where P̃ is a horizontal lift of a type II Hamiltonian-stationary Lagrangian
surface L : T P nf2k2(−1) → CH2(−4) via the Hopf fibration π : H 5

1 (−1) →
CH2(−4).

Conversely, locally every Hamiltonian-stationary Lagrangian submanifold of
constant curvature in CH 3(−4) with positive relative nullity is congruent to an
open portion of a Lagrangian submanifold from one of the above tex families.

Proof. By a straight-forward long computation, we can verify that the each map
defined by one of the above tex families gives rise to an H-stationary Lagrangian
submanifold of constant curvature in CH3(−4) with positive relative nullity.

Conversely, let us assume that L : M → CH3(−4) is an H-stationary La-
grangian isometric immersion with positive relative nullity from a Riemannian 3-
manifold of constant curvature K into CH3(−4).

If the relative nullity is three everywhere, then M is totally geodesic, which
gives case (1) of the theorem.

So, from now on, we assume that M is non-totally geodesic. It follows from
the assumption of positive relative nullity that there exists a local unit vector field
e1 such that

(4.1) h(e1, X) = 0, ∀X ∈ TM.

Hence, by applying equation (2.3) of Gauss, we obtain K = −1. Thus, from (2.3)
and (2.6), we find

[AJX , AJY ] = 0



1270 Bang-Yen Chen

for X, Y ∈ TM . By using (2.6), (4.1), and [AJX , AJY ] = 0, we know that at each
point p ∈M there exist orthonormal vectors e2, e3 perpendicular to e1 such that the
second fundamental form takes the following form:

(4.2)
h(e1, e1) = h(e1, e2) = h(e1, e3) = h(e2, e3) = 0,

h(e2, e2) = αJe2, h(e3, e3) = ϕJe3

for some functions α, ϕ. Since M is assumed to be non-totally geodesic, at least
one of α, ϕ is nonzero.

Let ω1, ω2, ω3 be the dual 1-forms of e1, e2, e3 and (ωji ), i, j = 1, 2, 3, be the
connection forms. Then, by applying (4.2) and Codazzi’s equation, we have

(4.3) αω1
2(e1) = αω1

2(e3) = ϕω1
3(e1) = ϕω1

3(e2) = ω2
3(e1) = 0,

(4.4) αω2
3(e3) = ϕω3

2(e2),

(4.5) e1α = αω1
2(e2), e3α = αω3

2(e2), e1ϕ = ϕω1
3(e3), e2ϕ = ϕω2

3(e3).

It follows from (4.1) that the mean curvature vector satisfies

3H = αJe2 + ϕJe3.

So, the Maslov form, i.e., dual 1-form αH of JH , is given by

(4.6) αH = −1
3
(αω2 + ϕω3).

After applying δ to (4.6) and using (4.3) and the structure equations, we see that
the H-stationary condition (1.1) is equivalent to

(4.7) e2α+ e3ϕ = αω2
3(e3) + ϕω3

2(e2).

Case (a). α = 0. Because M is non-totally geodesic, we have ϕ 
= 0. It
follows from (4.2)-(4.5) and (4.7) that

(4.8) h(e1, ej) = h(e2, e2) = h(e2, e3) = 0, h(e3, e3) = ϕJe3; j = 1, 2, 3,

(4.9) ω1
3(e1) = ω1

3(e2) = ω2
3(e1) = ω2

3(e2) = 0,

(4.10) e1ϕ = ϕω1
3(e3), e2ϕ = ϕω2

3(e3), e3ϕ = 0.

Consider the distributionsD and D⊥ spanned by {e1, e2} and {e3}, respectively.
Clearly, D⊥ is integrable, since it is of rank one. Also, it follows from (4.9) that
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the distributionD is integrable with totally geodesic leaves. Moreover, (4.8) implies
that the leaves of D are totally geodesic in CH3(−4) as well.

Because D and D⊥ are both integrable, there exist local coordinates {s, y, z}
such that ∂/∂s spans D⊥ and {∂/∂y, ∂/∂z} spans D according to Frobenius’
theorem. Since d(ϕω3) = 0, we may choose s in such way that ∂/∂s = ϕ−1e3.

From e3ϕ = 0, we have ϕ = ϕ(y, z). With respect to {s, y, z}, (4.8) becomes

(4.11) h

(
∂

∂s
,
∂

∂s

)
= J

∂

∂s
, h

(
∂

∂s
,
∂

∂xj

)
= h

(
∂

∂xj
,
∂

∂xk

)
= 0, j, k = 2, 3,

with x2 = y, x3 = z.
Let N be an integral submanifold of D. Then N is a totally geodesic and totally

real surface in CH3(−4). Thus, N is an open portion of a unit hyperbolic 2-plane
H2(−1). Hence,M is isometric to an open portion of the warped product manifold
I ×H2(−1) equipped with the warped product metric (see, for instance, [15]):

(4.12) g = φ2ds2 + g1, φ =
1

ϕ(y, z)
,

where I is an open interval and g1 can be chosen to be an isothermal metric on the
hyperbolic plane H2(−1); namely,

(4.13) g1 =
4(dy2 + dz2)
(1 − y2 − z2)2

.

From (4.12) we know that the Levi-Civita connection of M satisfies

(4.14)

∇ ∂
∂s

∂

∂s
= −1

4
(1− y2 − z2)2φ

{
φy

∂

∂y
+ φz

∂

∂z

}
,

∇ ∂
∂s

∂

∂y
=
φy
φ

∂

∂s
, ∇ ∂

∂s

∂

∂z
=
φz
φ

∂

∂s
,

∇ ∂
∂y

∂

∂y
=

2
1 − y2 − z2

(
y
∂

∂y
− z

∂

∂z

)
,

∇ ∂
∂y

∂

∂z
=

2
1 − y2 − z2

(
z
∂

∂y
+ y

∂

∂z

)
,

∇ ∂
∂z

∂

∂z
=

2
1 − y2 − z2

(
−y ∂

∂y
+ z

∂

∂z

)
.

Since M is of constant curvature −1, by computing the curvature tensor R of
M , we find

(4.15)

(1− y2 − z2)
{
(1 − y2 − z2)φyy − 2yφy + 2zφz

}
= 4φ,

(1− y2 − z2)
{
(1 − y2 − z2)φzz + 2yφy − 2zφz

}
= 4φ,

(1− y2 − z2)φyz = 2yφz + 2zφy.
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After solving this PDE system (4.15), we obtain

φ =
a(1 + y2 + z2) + by + cz

1− y2 − z2

for some a, b, c ∈ R. Therefore, by applying a suitable rotation on the yz-plane,
we may put

(4.16) φ =
a(1 + y2 + z2) + by

1 − y2 − z2
.

It follows (2.7), (4.11)-(4.14), and (4.16) that

(4.17)

Lss = iLs −
φ

4
(1 − y2 − z2)2(φyLy + φzLz) + φ2L,

Lsy =
φy
φ
Ls, Lsz =

φz
φ
Ls,

Lyy =
2yLy − 2zLz
1− y2 − z2

+
4L

(1 − y2 − z2)2
,

Lyz =
2zLy + 2yLz
1 − y2 − z2

,

Lzz =
−2yLy + 2zLz

1− y2 − z2
+

4L
(1 − y2 − z2)2

.

Case (a.i). 4a2 
= b2. In this case, after solving system (4.17), we obtain

(4.18) L(s, y, z) = φH(s)− c1y + c2z + c3(1 + y2 + z2)
1 − y2 − z2

− 4ac3 − bc1
4a2 − b2

φ

for some vectors c1, c2, c3 ∈ C4
1, where H(s) is a C4

1-valued function satisfying

(4.19) 4H ′′(s) − 4iH ′(s) − (4a2 − b2)H(s) = 0.

Case (a.i.1). 4a2 − b2 = 1. In this case, (4.16) reduces to

(4.20) φ =
2by +

√
1 + b2(1 + y2 + z2)

2(1− y2 − z2)
.

By solving (4.19) and by applying (4.18) we find

(4.21)
L(s, y, z) = φe

i
2
s (c4 + c5s) + c1y+c2z+c3(1+y2+z2)

1−y2−z2

+(2
√

1 + b2c3 − bc1)φ
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for some vectors c1, . . . , c5 ∈ C4
1. Hence, after choosing suitable initial conditions,

we obtain case (2) of the theorem.

Case (a.i.2). 4a2 − b2 > 1. After solving (4.19) we obtain from (4.18) that

(4.22)
L(s, y, z) = φe

i
2
s (c4 cosh δs+ c5 sinh δs) − 4ac3 − bc1

4a2 − b2
φ

+
c1y + c2z + c3(1 + y2 + z2)

1− y2 − z2

for some vectors c4, c5 ∈ C4
1, where φ is given by (4.16) and δ is given by

2δ =
√

4a2 − b2 − 1.

Hence, after choosing suitable initial conditions, we obtain case (3) of the theorem.

Case (a.i.3). 4a2 − b2 < 1. After solving (4.19) we obtain from (4.18) that

(4.23)

L(s, y, z) = φe
i
2
x (c4 cos γs+ c5 sinγs) + 4ac3−bc1

4a2−b2 φ

−c1y + c2z + c3(1 + y2 + z2)
1 − y2 − z2

for some vectors c4, c5 ∈ C4
1, where γ = 1

2

√
1 + b2 − 4a2. Hence, after choosing

suitable initial conditions, we obtain case (4).

Case (a.ii.) 4a2 = b2. In this case, without loss of generality, we may put

(4.24) φ =
2ay + a(1 + y2 + z2)

1 − y2 − z2
.

Hence, (4.17) reduces to

(4.25)

Lss = iLs −
a2((1 + y)2 + z2)
2(1 − y2 − z2)

×{((1 + y)2 − z2)Ly + 2(1 + y)zLz} + φ2L,

Lsy =
2((1 + y)2 − z2)

(1− y2 − z2)((1 + y)2 + z2)
Ls,

Lsz =
4(1 + y)z

(1 − y2 − z2)((1 + y)2 + z2)
Ls,

Lyy =
2yLy − 2zLz
1 − y2 − z2

+
4L

(1 − y2 − z2)2
,

Lyz =
2zLy + 2yLz
1− y2 − z2

,

Lzz =
−2yLy + 2zLz

1 − y2 − z2
+

4L
(1 − y2 − z2)2

.
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Solving this system yields

(4.26)
L(s, y, z) =

(ia2c1s− c2e
is + c3)((1 + y)2 + z2)

1 − y2 − z2

+
c1(1 + y2 + z2) − c4z

1 − y2 − z2

for some vectors c1, c2, c3, c4 ∈ C4
1.

Case (a.ii.1). a2 
= 1. After choosing suitable initial conditions we obtain case
(5) of the theorem.

Case (a.ii.2). a2 = 1. In this case, we obtain case (6) of the theorem.

Notice that (4.13) and Corollary 3.3 imply that every Lagrangian submanifold
obtained from cases (2)-(6) of the theorem is H-stationary.

Case (b). ϕ = α 
= 0. In this case, (4.2)-(4.5) and (4.7) imply that

(4.27)
h(e1, e1) = h(e1, e2) = h(e1, e3) = h(e2, e3) = 0,

h(e2, e2) = αJe2, h(e3, e3) = αJe3

and

(4.28) ω1
2(e1) = ω1

3(e1) = ω1
3(e2) = ω1

2(e3) = ω2
3(e1) = 0, ω2

3(e3) = ω3
2(e2),

(4.29) e1α = αω1
2(e2) = αω1

3(e3), e2α = e3α = αω2
3(e3).

From (4.28) and (4.29) we get

[e1, α−1e2] = [e1, α−1e3] = [α−1e2, α
−1e3] = 0.

Thus, there exists a coordinate system {x, y, z} such that e1 = ∂/∂x, e2 = α∂/∂y
and e3 = α∂/∂z. So, the metric tensor is given by

(4.30) g = dx2 +
dy2 + dz2

α2
.

Thus, the Levi-Civita connection satisfies

(4.31)

∇ ∂
∂x

∂

∂x
= 0, ∇ ∂

∂x

∂

∂y
= −αx

α

∂

∂y
, ∇ ∂

∂x

∂

∂z
= −αx

α

∂

∂z
,

∇ ∂
∂y

∂

∂y
=
αx
α3

∂

∂x
− αy

α

∂

∂y
+
αz
α

∂

∂z
,

∇ ∂
∂y

∂

∂z
= −αz

α

∂

∂y
− αy

α

∂

∂z
,

∇ ∂
∂z

∂

∂z
=
αx
α3

∂

∂x
+
αy
α

∂

∂y
− αz

α

∂

∂z
.
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From (2.7), (4.27), (4.30) and (4.31), we obtain

(4.32)

Lxx = L,

Lxy = −(lnα)xLy,

Lxz = −(lnα)xLz,

Lyy =
αx
α3
Lx + (i− (lnα)y)Ly +

αz
α
Lz +

L

α2
,

Lyz = −(lnα)zLy − (lnα)yLz,

Lzz =
αx
α3
Lx +

αy
α
Ly + (i− (lnα)z)Lz +

L

α2
.

The compatibility condition of this system is given by

(4.33) ααxx − 2α2
x + α2 = 0, αy = αz, αxy = αxαy,

(4.34) 2α3αyy + α2 = α2
x + 2α2α2

y.

Solving the first two equations in (4.33) gives

(4.35) α =
sech (x+ u(w))

f(w)
, w = y + z

for some functions f(w), u(w). Substituting (4.35) into (4.34) gives

2ff ′′ − 2f ′2 − f4 + (tanh(x+ u)u′′ + sech 2(x+ u)u′2)f2 = 0,

which implies that u ′ = 0 and 2ff ′′−2f ′2 +f4 = 0. Thus, u is a constant. Hence,
by applying a suitable translation in x, we obtain

(4.36) α =
sechx
f(y + z)

, 2ff ′′ − 2f ′2 − f4 = 0.

After solving the second order differential equation in (4.36) and applying a suitable
translation in y, z, we have

f =
√
b sec

(√
b
2(y + z)

)
, α =

1√
b

sechx cos
(√

b
2 (y + z)

)

for some positive number b. Thus, if we put x2 =
√
b/2y and x3 =

√
b/2z, then

we obtain

(4.37) f =
√

2 sec(x2 + x3), α =
1√
2

sechx cos(x2 + x3).
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Substituting this into (4.32) we obtain

(4.38)

Lxx = L, Lxx2 = tanhxLx2, Lxx3 = tanhxLx3,

Lx2x2 = − sinh 2x sec2(x2 + x3)Lx +
(
i
√

2√
b

+ tan(x2 + x3)
)
Lx2

− tan(x2 + x3)Lx3 − 2 cosh2 x sec2(x2 + x3)L,

Lx2x3 = tan(x2 + x3)(Ly + Lz),

Lx3x3 = − sinh 2x sec2(x2 + x3)Lx − tan(x2 + x3)Lx2

+
(
i
√

2√
b

+ tan(x2 + x3)
)
Lx3 + 2 cosh2 x sec2(x2 + x3)L.

To solving this system we make the following change of variables:

s = x2 + x3, t = x2 − x3.

Then we get from (4.38) that

(4.39)

Lxx = L,

Lxs = tanhxLs,

Lxt = tanhxLt,

Lss = −1
2

sinh2x sec2 sLx +
(

i√
2b

+ tan s
)
Ls + cosh2 x sec2 sL,

Lst =
(

i√
2b

+ tan s
)
Lt,

Ltt = −1
2

sinh 2x sec2 sLx +
(

i√
2b

− tan s
)
Ls + cosh2 x sec2 sL.

Case (b.i). 2b < 1. After solving system (4.39) we find

L(x, s, t) = c1 sinhx+ c2(
√

2b tan s− i) coshx

+
{
c3 cos

(√
1 − 2b√

2b
t

)
+ c4 sin

(√
1 − 2b√

2b
t

)}
eis/

√
2b sec s coshx.

Hence, by choosing suitable initial conditions, we obtain case (7) of the theorem.

Case (b.ii). 2b > 1. In this case, the solution of system (4.39) is given by

L(x, s, t) = c1 sinhx+ c2(
√

2b tan s − i) coshx

+
{
c3 cosh

(√
2b− 1√

2b
t

)
+ c4 sinh

(√
2b− 1√

2b
t

)}
eis/

√
2b sec s coshx.
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Hence, after choosing suitable initial conditions, we obtain case (8) of the theorem.

Case (b.iii). 2b = 1. Solving system (4.39) yields

L(x, s, t) = c1 sinhx+
c2(i+ 2e2is(s+ it2)) + e2is(c3t+ 2c4)

1 + e2is
coshx.

Hence, after choosing suitable initial conditions, we may obtain case (9) of the
theorem.

Notice that the Lagrangian submanifolds given in cases (7), (8) and (9) of the
theorem are H-stationary according to (4.30) and Corollary 3.1.

Case (c). ϕ 
= α and α 
= 0 . If ϕ = 0, this reduces to Case (a) after
interchanging e2 and e3. Thus, without loss of generality, we may assume that
ϕ 
= 0. Hence, (4.2)-(4.5) and (4.7) reduce to

(4.40)
h(e1, e1) = h(e1, e2) = h(e1, e3) = h(e2, e3) = 0,

h(e2, e2) = αJe2, h(e3, e3) = ϕJe3

(4.41) ω1
2(e1) = ω1

3(e1) = ω1
3(e2) = ω1

2(e3) = ω2
3(e1) = 0,

(4.42) αω2
3(e3) = ϕω3

2(e2),

(4.43) e1α = αω1
2(e2), e3α = −αω2

3(e2), e1ϕ = ϕω1
3(e3), e2ϕ = ϕω2

3(e3),

(4.44) e2α + e3ϕ = 2αω2
3(e3).

From (4.41) and (4.43) we get

[e1, α−1e2] = [e1, ϕ−1e3] = [α−1e2, ϕ
−1e3] = 0.

Thus, there exists a coordinate system {x, y, z} such that e1 = ∂/∂x, e2 = α∂/∂y
and e3 = ϕ∂/∂z. So, the metric tensor is given by

(4.45) g = dx2 +
dy2

α2
+
dz2

ϕ2
.

The Levi-Civita connection of (4.45) satisfies

(4.46)

∇ ∂
∂x

∂

∂x
= 0, ∇ ∂

∂x

∂

∂y
= −αx

α

∂

∂y
, ∇ ∂

∂x

∂

∂z
= −ϕx

ϕ

∂

∂z
,

∇ ∂
∂y

∂

∂y
=
αx
α3

∂

∂x
− αy

α

∂

∂y
+
αzϕ

2

α3

∂

∂z
,

∇ ∂
∂y

∂

∂z
= −αz

α

∂

∂y
− ϕy

ϕ

∂

∂z
,

∇ ∂
∂z

∂

∂z
=
ϕx
ϕ3

∂

∂x
+
α2ϕy
ϕ3

∂

∂y
− ϕz

ϕ

∂

∂z
.
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From (2.7), (4.40), (4.45) and (4.46) we obtain

(4.47)

Lxx = L, Lxy = −(lnα)xLy, Lxz = −(lnϕ)xLz,

Lyy =
αx
α3
Lx + (i− (lnα)y)Ly +

αzϕ
2

α3
Lz +

L

α2
,

Lyz = −(lnα)zLy − (lnϕ)yLz,

Lzz =
ϕx
ϕ3
Lx +

α2ϕy
ϕ3

Ly + (i− (lnϕ)z)Lz +
L

ϕ2
.

The compatibility condition of this system is given by

(4.48) ααxx − 2α2
x + α2 = 0, ϕϕxx − 2ϕ2

x + ϕ2 = 0,

(4.49) ϕ(2αxαz − ααxz) = ααzϕx,

(4.50) α(2ϕxϕy − ϕϕxy) = ϕϕyαx,

(4.51) α3ϕy = ϕ3αz,

(4.52)
αϕ(ϕ3αzz + α3ϕyy + α2αyϕy + ϕ2ϕzαz) + α2ϕ2

= ααxϕϕx + 2ϕ4α2
z + 2α4ϕ2

y.

Solving (4.48) gives

(4.53) α =
sech (x+ u(y, z))

f(y, z)
, ϕ =

sech (x+ v(y, z))
k(y, z)

for some functions f, k, u, v with f, k 
=0. Substituting(4.53) into(4.49)-(4.51) gives

(4.54) sinh(u− v)fz = −fuz cosh(u− v),

(4.55) sinh(u− v)ky = kvy cosh(u− v),

(4.56) kky = ffz.

Case (c.i). u, v, f, k are constants. By applying a suitable translation in x, we
may assume that

(4.57) α =
sechx
a

, ϕ =
sech (x+ c)

b
, a, b 
= 0.
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Substituting (4.57) into (4.52) gives cosh c = 0, which is impossible.

Case (c.ii). At least one of u, v, f, k is non-constant.
We divide this into three cases.

Case (c.ii.1). u = v. In this case, (4.54) and (4.55) imply uz = vy = 0. Thus,
u = v is constant. Hence, at least one of f, k is non-constant. Therefore, after
applying a suitable translation in x, we may put

(4.58)
g = dx2 + cosh2 x{f2(y, z)dy2 + k2(y, z)dz2},

α =
sechx
f(y, z)

, ϕ =
sechx
k(y, z)

.

Clearly, it follows from the assumption α 
= ϕ that f 
= k.
From (4.47) and (4.58) we obtain

(4.59)

Lxx = L,

Lxy = tanhxLy,

Lxz = tanhxLz,

Lyy = −f2 sinhx coshxLx + (i+ (ln f)y)Ly −
ffz
k2

Lz + f2 cosh2 xL,

Lyz = (ln f)zLy + (lnk)yLz,

Lzz = −k2 sinhx coshxLx − kky

f2 Ly + (i+ (ln k)z)Lz + k2 cosh2 xL.

The compatibility condition of system (4.59) is given by

(4.60) kky = ffz,

(4.61) f2(kfzz − fzkz) + k2(fkyy − fyky) − f3k3 = 0.

Moreover, since the Lagrangian submanifold is H-stationary, it follows from (4.58)
and Proposition 3.1 that

(4.62) k3fy + f3kz = f2kfz + fk2ky.

After solving the first three equations in (4.59) we have

(4.63) L(x, y, z) = c1 sinhx+ P (y, z) coshx

for some vector c1 ∈ C4
1 and C4

1-valued function P (y, z). Since 〈L, L〉 = −1, we
get

〈c1, c1〉 = −〈P, P 〉 = 1, 〈c1, P 〉 = 0.

Thus, P (y, z) lies in the unit anti-de Sitter space H 7
1 (−1) ⊂ C4

1 and c1 is a unit
space-like vector satisfying 〈c1, P 〉 = 0.

Moreover, it follows from (4.58), (4.63) and the Lagrangian condition that
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(a) the induced metric of the surface P (y, z) is given by

g1 = f2(y, z)2dy2 + k2(y, z)dz2;

(b) c1 is perpendicular to Py, Pz, iPy, iPz; and
(c) 〈Py, iPz〉 = 0.

Condition (b) implies that 〈P, ic1〉 is constant, say b. Therefore, by choosing a
suitable coordinate system on C4

1 with c1 = (0, 0, 0, 1) and P = (P1, P2, P3, ib),
we have

(4.64) L(x, y, z) =
(
P̃ (y, z) coshx, sinhx+ ib coshx

)

with P̃ (y, z) = (P1(y, z), P2(y, z), P3(y, z)).
Now, by substituting (4.64) into the fourth equation in (4.59) we find b = 0.

Hence, (4.64) reduces to

(4.65) L(x, y, z) =
(
P̃ (y, z) coshx, sinhx

)
.

It then follows from (4.58), (4.59) and (4.65) that P̃ (y, z) is a Legendrian surface
in H5

1 (−1) ⊂ C3
1 whose metric tensor is also given by g1. This Legendrian surface

gives rise to a Lagrangian surface M̂ in CH2(−4).
It follows from (4.58) and (4.65) that the second fundamental form ĥ of this

Lagrangian surface M̂ in CH2(−4) satisfies

ĥ

(
∂

∂y
,
∂

∂y

)
= J

∂

∂y
, ĥ

(
∂

∂y
,
∂

∂z

)
= 0, ĥ

(
∂

∂z
,
∂

∂z

)
= J

∂

∂z
.

Therefore, P̃ (y, z) gives rise to an H-stationary Lagrangian surface of type II in
CH2(−4). Consequently, we obtain case (10) of the theorem.

Case (c.ii.2). u − v = c is a nonzero constant. We have uy = vy, uz = vz
from u− v = c. So, it follows from (4.54) and (4.55) that

(4.66) (ln f)z = −uz coth c, (lnk)y = uy coth c, fzkuy + kyfuz = 0.

Solving the first equation equations in (4.66) yields

(4.67) f =
e−bu

φ(y)
, k =

ebu

η(z)
, b = coth c

for some positive function φ(y) and η(z). Hence, the metric tensor in (4.53) becomes

g = dx2 + cosh2(x+ u)e2buφ2(y)dy2 + cosh2(x+ u− c)e−2buη2(z)dz2.
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It is straight-forward to verify that the sectional curvature of the plane section
spanned by ∂/∂y and ∂/∂z is not equal to −1, which is a contradiction. Hence,
this case is impossible.

Case (c.ii.3). u− v is non-constant. From (4.45), (4.47) and (4.53) we obtain

(4.68) g = dx2 + f2(y, z) cosh2(x+ u)dy2 + k2(y, z) cosh2(x+ v)dz2

and

(4.69)

Lxx = L, Lxy = tanh(x+ u)Ly, Lxz = tanh(x+ v)Lz,

Lyy = −f
2

2
sinh(2x+ 2u)Lx +

(
i+

fy

f
+ uy tanh(x+ u)

)
Ly

− f cosh(x+ u)
k2 cosh2(x+ v)

{f cosh(x+ u)}zLz + f2 cosh2(x+ u)L,

Lyz =
(
fz
f

+ uz tanh(x+ u)
)
Ly +

(
ky
k

+ vy tanh(x+ v)
)
Lz,

Lzz = −k
2 sinh(2x+ 2v)

2
Lx +

(
i+

kz

k
+ vz tanh(x+ v)

)
Lz

− k cosh(x+ v)
f2 cosh2(x+ u)

{k cosh(x+ v)}yLy + k2 cosh2(x+ v)L.

From the compatibility condition of this system we have

(4.70) fz = −fuz coth(u− v),

(4.71) ky = kvy coth(u− v),

(4.72) f2uz + k2vy = 0.

It follows from (4.70)-(4.72) that

(4.73) ffz = kky.

Since the Lagrangian submanifold is H-stationary, Proposition 3.1 and (4.68)
imply that

(4.74)

f3kz cosh3(x+ u) cosh(x+ v)

+f3k cosh3(x+ u)(uz cosh(x+ v) coth(u− v) + vz sinh(x+ v))

−f3kuz sinh(x+ u) cosh2(x+ u) cosh(x+ v)

−fk3vy cosh2(x+ u) cosh2(x+ v) csch (u− v)

+k3 cosh3(x+ v){fy cosh(x+ u) + fuy sinh(x+ u)} = 0.
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After replacing cosh(x + u), sinh(x + u), cosh(x + v), sinh(x + v) in (4.74)
using

cosh(x+ γ) = coshx cosh γ − sinhx sinhγ,

sinh(x+ γ) = sinhx coshγ + coshx sinhγ,

and applying (4.70)-(4.72) and the following identities:

sinh4 x =
3
8
− cosh2x

2
+

cosh 4x
8

,

cosh4 x =
3
8

+
cosh2x

2
+

cosh 4x
8

,

sinh3 x coshx = −sinh 2x
4

+
sinh4x

8
,

sinhx cosh3 x =
sinh2x

4
+

sinh 4x
8

,

sinh2 x cosh2 x =
cosh 4x− 1

8
,

we obtain from the coefficients of cosh 4x in (4.74) that

(4.75)

f3
{
(sinh 4u− sinh(2u+ 2v))kz

+k[4uz cosh(2(u+ v)) + vz(cosh4u− cosh(2u+ 2v)]
}

+k3fy(sinh(2u+ 2v)− sinh 4v)− fk3uy(cosh4v

− cosh(2u+ 2v)) = 0.

Similarly, from the coefficients of sinh4x we get

(4.76)

f3
{
(cosh4u− cosh(2u+ 2v))kz

+4kuz sinh(2u+ 2v) + kvz(sinh4u− sinh(2u+ 2v))
}

+k3fy(cosh(2u+ 2v)− cosh 4v)− fk3uy(sinh 4v

− sinh(2u+ 2v)) = 0.

From the coefficients of cosh2x we get

(4.77)

f3
{
(2 sinh2u+ sinh(4u− 2v)− 3 sinh2v)kz

+8kuz(cosh2u+ cosh2v) − kvz
(
cosh(4u− 2v)

−4 cosh2u+ 3 sinh2v
)}

+k3fy(3 sinh2u+ sinh(2u− 2v)− 2 sinh2v)

+fk3uy(3 cosh2u+ cosh(2u− 2v)− 4 cosh2v) = 0.
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From the coefficients of sinh 2x we get

(4.78)

f3{(2 cosh2u+ cosh(4u− 2v)− 3 cosh2v)kz

+8kuz(sinh2u+ sinh2v)− kvz
(
sinh(4u− 2v)

−4 sinh2u+ 3 cosh2v)
)}

+k3fy(3 cosh2u− cosh(2u− 2v)− 2 cosh2v)

+fk3uy(3 sinh2u− sinh(2u− 2v)− 4 sinh2v) = 0.

Also, from the coefficients which do not involve cosh4x, sinh4x, cosh2x or sinh2x,
we find

(4.79)
f3{3 sinh(2u−2v)kz+4kuz(2+cosh(2u−2v))−6kvz sinh2(u−v)

}
+3k3fy sinh(2u− 2v)− 2 cosh2v) + 6fk3uy sinh(u− v) = 0.

Solving system (4.75)-(4.79) for fy, uy, kz, uz, vz gives fy = uy = kz = uz = vz =
0. Combining these with conditions (4.70)-(4.73) shows that f, k, u, v are constant.
This is a contradiction. Consequently, this case is impossible.
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