ANNIHILATOR CONDITIONS ON NEARRING OF SKEW POLYNOMIALS OVER A RING

E. Hashemi

Abstract

Let R be a ring with unity. For a ring endomorphism α and an α-derivation δ, the system $R[x ; \alpha, \delta]$ forms an abelian nearring under addition and substitution operations. In this paper we extend the study of annihilator conditions on nearring of polynomials to skew nearring ($R[x ; \alpha, \delta],+, \circ$), when R is an α-rigid ring. Also, we give a characterization of α-rigid rings. An example to show that " α-rigid condition on R " is not superfluous is given.

1. Introduction

Throughout this paper all rings are associative and all nearrings are left nearrings. We use R and N to denote a ring and a nearring respectively. Recall from [12] that a ring R is Baer if R has a unity and the right annihilator of every nonempty subset of R is generated, as a right ideal, by an idempotent. Kaplansky [12] shows that the definition of a Baer ring is left-right symmetric. For example, the class of Baer rings includes all right Notherian PP rings and all von Neumann regular rings. In 1974, Armendariz obtained the following result [2, Theorem B]: Let R be a reduced ring. Then $R[x]$ is a Baer ring if and only if R is a Baer ring. Recall a ring or a nearring is said to be reduced if it has no nonzero nilpotent element. A generalization of Armendariz's result for several types of polynomial extensions over Baer rings, are obtained by various authors, [9-10]. According to Krempa [14], an endomorphism α of a ring R is called to be rigid if $a \alpha(a)=0$ implies $a=0$ for $a \in R$. Note that any rigid endomorphisms of a ring is a monomorphism and α-rigid rings are reduced, by Hong et al. [9]. Properties of α-rigid rings had been studied in Krempa [14], Hong et al. [9] and Matczuk [16]. In [9] Hong et al. studied Ore extensions of Baer rings over α-rigid rings. Birkenmeier and Huang in [4], had defined the Baer-type annihilator conditions in the class of nearrings as follows (for a nonempty $\underline{\left.S \subseteq N, \text { let } r_{N}(S)=\{a \in N \mid S a=0\} \text { and } \ell_{N}(S)=\{a \in N \mid a S=0\}\right): ~}$

[^0](1) $N \in \mathcal{B}_{r 1}$ if $r_{N}(S)=e N$ for some idempotent $e \in N$;
(2) $N \in \mathcal{B}_{r 2}$ if $r_{N}(S)=r_{N}(e)$ for some idempotent $e \in N$;
(3) $N \in \mathcal{B}_{\ell 1}$ if $\ell_{N}(S)=N e$ for some idempotent $e \in N$;
(4) $N \in \mathcal{B}_{\ell 2}$ if $\ell_{N}(S)=\ell_{N}(e)$
for some idempotent $e \in N$.
If N is a ring with unity then $N \in \mathcal{B}_{r 1} \cup \mathcal{B}_{r 2} \cup \mathcal{B}_{\ell 1} \cup \mathcal{B}_{\ell 2}$ is equivalent to N being a Baer ring. When S is a singleton, the Rickart-type annihilator conditions on nearrings are also defined similarly except replacing \mathcal{B} by \mathcal{R}. In [3, p. 28], the $\mathcal{R}_{r 2}$ condition is considered for rings with involution. In [5-6] Birkenmeier and Huang, studied Baer-type annihilator conditions in the class of nearrings. In particular they studied Baer-type conditions on the nearring of polynomials $R[x]$ (with the operations of addition and substitution) and formal power series by obtaining the following results: Let R be a reduced ring. (1) If R is Baer, then $R_{0}[x]$ (resp. $R_{0}[[x]]$) satisfies all the Baer-type conditions. (2) If $R_{0}[x]$ (resp. $R_{0}[[x]]$) satisfies any one of the Baer-type conditions, then R is Baer.

Let α be an endomorphism of R and δ is an α-derivation of R, that is, δ is an additive map such that $\delta(a b)=\delta(a) b+\alpha(a) \delta(b)$, for all $a, b \in R$. Since $R[x ; \alpha, \delta]$ is an abelian nearring under addition and substitution, it is natural to investigate the nearring of skew polynomials ($R[x ; \alpha, \delta],+, \circ$) when R is Baer. We use $R[x ; \alpha, \delta]$ to denote the left nearring of skew polynomials ($R[x ; \alpha, \delta],+, \circ$) with coefficients from R and $R_{0}[x ; \alpha, \delta]=\{f \in R[x ; \alpha, \delta] \mid f$ has zero constant term $\}$ the 0 -symmetric subnearring of $R[x ; \alpha, \delta]$. Let $(x) f=a_{0}+a_{1} x$ and $(x) g=$ $b_{0}+b_{1} x+b_{2} x^{2} \in R[x ; \alpha, \delta]$. Through a simple calculation, we have $(x) f \circ(x) g=$ $((x) f) g=b_{0}+b_{1}((x) f)+b_{2}((x) f)^{2}=\left(b_{0}+b_{1} a_{0}+b_{2} a_{0}^{2}+b_{2} a_{1} \delta\left(a_{0}\right)\right)+\left(b_{1} a_{1}+\right.$ $\left.b_{2} a_{0} a_{1}+b_{2} a_{1} \alpha\left(a_{0}\right)+b_{2} a_{1} \delta\left(a_{1}\right)\right) x+b_{2} a_{1} \alpha\left(a_{1}\right) x^{2}$.

In this paper we show that R is α-rigid if and only if α is an injective endomorphism, R is reduced and if for polynomials $(x) f=a_{0}+a_{1} x+\cdots+a_{n} x^{n}$, $(x) g=b_{0}+b_{1} x+\cdots+b_{m} x^{m} \in R[x ; \alpha, \delta],(x) f \circ(x) g=0$ implies $b_{j} a_{i}=0$ for each $1 \leq i \leq n, 1 \leq j \leq m$. Moreover if R is an α-rigid ring, then the nearring $R[x ; \alpha, \delta]$ is reduced. Also, for an α-rigid ring R we show that: (1) If R is Baer, then $R_{0}[x ; \alpha, \delta]$ satisfies all the Baer-type annihilator conditions. (2) If $R_{0}[x ; \alpha, \delta]$ satisfies any one of the Baer-type annihilator conditions, then R is Baer. An example has presented to show that " α-rigid condition on R " is not superfluous.

Note that these results extend Hong et al.' results [9] on the skew polynomial rings over an α-rigid Baer ring to the Baer-type annihilator conditions in a nearring of skew polynomials.

3. Nearrings of Skew Polynomials

Definition 1.1. (Krempa [14]). Let α be an endomorphism of R. α is called a
rigid endomorphism if $a \alpha(a)=0$ implies $a=0$ for $a \in R$. A ring R is called to be α-rigid if there exists a rigid endomorphism α of R.

Clearly, any rigid endomorphism is a monomorphism. Note that α-rigid rings are reduced rings. In fact, if R is an α-rigid ring and $a^{2}=0$ for $a \in R$, then $a \alpha(a) \alpha(a \alpha(a))=0$. Thus $a \alpha(a)=0$ and so $a=0$. Therefore R is reduced.

Lemma 1.2. (Hong et al. [9]). Let R be an α-rigid ring and $a, b \in R$. Then we have the following:
(i) If $a b=0$ then $a \alpha^{n}(b)=\alpha^{n}(a) b=0$ for each positive integer n.
(ii) If $a \alpha^{k}(b)=0$ or $\alpha^{k}(a) b=0$ for some positive integer k, then $a b=0$.
(iii) If $a b=0$, then $\alpha^{n}(a) \delta^{m}(b)=0=\delta^{m}(a) \alpha^{n}(b)$ for any positive integers m, n.
(iv) If $e^{2}=e \in R$, then $\alpha(e)=e$ and $\delta(e)=0$.

A nearring N is said to have the insertion of factors property (IFP) if for all $a, b, n \in N, a b=0$ implies $a n b=0$.

The following is a characterization of α-rigid rings:
Proposition 1.3. Let δ be an α-derivation of a ring R. Then the following are equivalent:
(1) α is an injective endomorphism, R is reduced and if for each polynomials $(x) f=a_{0}+a_{1} x+\cdots+a_{n} x^{n},(x) g=b_{0}+b_{1} x+\cdots+b_{m} x^{m} \in R[x ; \alpha, \delta]$,
$(x) f \circ(x) g=0$ implies $b_{j} a_{i}=0$ for each $1 \leq i \leq n, 1 \leq j \leq m ;$
(2) α is an injective endomorphism, R is reduced and if for each polynomials $(x) f=a_{1} x+\cdots+a_{n} x^{n},(x) g=b_{1} x+\cdots+b_{m} x^{m} \in R_{0}[x ; \alpha, \delta],(x) f \circ$ $(x) g=0$ implies $b_{j} a_{i}=0$ for each $1 \leq i \leq n, 1 \leq j \leq m$;
(3) R is α-rigid.

Proof. (1) $\Rightarrow(2)$ is clear.
$(2) \Rightarrow(3)$ Let $a \in R$ with $a \alpha(a)=0$. Then $\delta(a \alpha(a))=\delta(a) \alpha(a)+\alpha(a) \delta(\alpha(a))$ $=0$. Let $(x) f=\alpha(a) x$ and $g(x)=\delta(a) x+x^{2} \in R_{0}[x ; \alpha, \delta]$. Then $(x) f \circ(x) g=$ $(\delta(a) \alpha(a)+\alpha(a) \delta(\alpha(a))) x+\alpha(a) \alpha^{2}(a) x^{2}=0$. Hence $\delta(a) \alpha(a)=\alpha(a)=0$, by (2). Therefore $a=0$, since α is an injective. Consequently R is α-rigid.
$(3) \Rightarrow(1)$ Clearly, R is reduced and α is an injective endomorphism. Let $(x) f$, $(x) g \in R[x ; \alpha, \delta]$ such that $(x) f \circ(x) g=0$. We proceed by induction on $\operatorname{deg}(f)$ $+\operatorname{deg}(g)$. It is clear for $\operatorname{deg}(f)+\operatorname{deg}(g)=2$. Now suppose that our claim is true for each $(x) f,(x) g \in R[x ; \alpha, \delta]$, with $\operatorname{deg}(f), \operatorname{deg}(g) \geq 1, \operatorname{deg}(f)+\operatorname{deg}(g)$ $<k$. Let $(x) f=a_{0}+a_{1} x \cdots+a_{n} x^{n},(x) g=b_{0}+b_{1} x+\cdots+b_{m} x^{m} \in$ $R[x ; \alpha, \delta]$ such that $n, m \geq 1$ and $m+n=k$. Then $\sum_{j=0}^{m} b_{j}((x) f)^{j}=0$ and that
$b_{m} a_{n} \alpha^{n}\left(a_{n}\right) \cdots \alpha^{(m-1) n}\left(a_{n}\right)=0$. Hence $b_{m} a_{n}=a_{n} b_{m}=0$, by Lemma 1.2(ii). Thus $\sum_{j=0}^{m-1} a_{n} b_{j}((x) f)^{j}=0$ and that $(x) f \circ\left(a_{n} b_{0}+a_{n} b_{1} x+\cdots+a_{n} b_{m-1} x^{m-1}\right)=$ 0 . By induction hypothesis, we have $a_{n} b_{j} a_{n}=0$ for $1 \leq j \leq m-1$. Hence $a_{n} b_{j}=0$ for $1 \leq j \leq m$, since R is reduced. Therefore, as R satisfies IFP property and by using Lemma 1.2, $(x) f \circ(x) g=\left(a_{0}+a_{1} x \cdots+a_{n-1} x^{n-1}\right) \circ\left(b_{0}+b_{1} x+\right.$ $\left.\cdots+b_{m} x^{m}\right)=0$. Our assertion then follows from induction hypothesis.

The following example shows that there exists a non α-rigid ring R such that if $(x) f=a_{1} x+\cdots+a_{n} x^{n},(x) g=b_{1} x+\cdots+b_{m} x^{m} \in R_{0}[x ; \alpha, \delta]$ with $(x) f \circ(x) g=$ 0 , then $b_{j}\left(a_{i} x^{i}\right)^{j}=0$ for each $1 \leq i \leq n, 1 \leq j \leq m$.

Example 1.4.

Let F be a filed and $R=\left\{\left.\left(\begin{array}{cc}a & r \\ 0 & a\end{array}\right) \right\rvert\, a, r \in F\right\}$. Then R is a commutative ring. Let u be a non-zero element of F. Let $\alpha: R \rightarrow R$ be an automorphism defiend by $\alpha\left(\left(\begin{array}{cc}a & r \\ 0 & a\end{array}\right)\right)=\left(\begin{array}{cc}a & r u \\ 0 & a\end{array}\right)$.
(I) R is not α-rigid:

Since R is not reduced, hence it is not α-rigid.
(II) Let $(x) f=A_{1} x+\cdots+A_{n} x^{n}$ and $(x) g=B_{1} x+\cdots+B_{m} x^{m} \in$ $R_{0}[x ; \alpha]$, where $A_{i}=\left(\begin{array}{cc}a_{i} & r_{i} \\ 0 & a_{i}\end{array}\right)$ and $B_{j}=\left(\begin{array}{cc}b_{j} & s_{j} \\ 0 & b_{j}\end{array}\right)$ for $1 \leq i \leq n, 1 \leq$ $j \leq m$. Assume that $(x) f \circ(x) g=0$ such that $A_{n} \neq 0, B_{m} \neq 0$. We claim that $B_{j}\left(A_{i} x^{i}\right)^{j}=0$ for each $1 \leq i \leq n, 1 \leq j \leq m$. Since
$(\dagger) 0=(x) f \circ(x) g=B_{1}\left(A_{1} x+\cdots+A_{n} x^{n}\right)+\cdots+B_{m}\left(A_{1} x+\cdots+A_{n} x^{n}\right)^{m}$
we have $B_{m}\left(A_{n} x^{n}\right)^{m}=0$ and that $B_{m} A_{n} \alpha^{n}\left(A_{n}\right) \cdots \alpha^{n(m-1)}\left(A_{n}\right)=0$. Hence $b_{m} a_{n}^{m}=0$ and that $b_{m}=0$ or $a_{n}=0$.
(1) Suppose $b_{m} \neq 0$ and $a_{n}=0$. Since $A_{n} \neq 0$ so $r_{n} \neq 0$. Multiplying A_{n} to Eq. (\dagger) from the left-hand side, we have $A_{n} B_{1}\left(A_{1} x+\cdots+A_{n-1} x^{n-1}\right)+\cdots+$ $A_{n} B_{m}\left(A_{1} x+\cdots+A_{n-1} x^{n-1}\right)^{m}=0$, since $A_{n} \alpha^{k}\left(A_{n}\right)=0$ for each $i \geq 0$ and R is commutative. Then $A_{n} B_{m}\left(A_{n-1} x^{n-1}\right)^{m}=0$. Thus $r_{n} b_{m} a_{n-1}^{m}=$ 0 and that $a_{n-1}=0$. Therefore $A_{n} B_{1}\left(A_{1} x+\cdots+A_{n-2} x^{n-2}\right)+\cdots+$ $A_{n} B_{m}\left(A_{1} x+\cdots+A_{n-2} x^{n-2}\right)^{m}=0$, since $A_{n} \alpha^{k}\left(A_{n-1}\right)=0$ for each $i \geq 0$ and R is commutative. Continuing this process, we have $a_{1}=\cdots=a_{n}=0$. Thus $B_{j}\left(A_{i} x^{i}\right)^{j}=0$ for each $2 \leq j \leq m$ and $1 \leq i \leq n$, since $A_{i} \alpha^{i}\left(A_{i}\right)=0$ for each $i \geq 1$. Hence $0=(x) f \circ(x) g=B_{1}\left(A_{1} x+\cdots+A_{n} x^{n}\right)$ and that $B_{1}\left(A_{i} x^{i}\right)=0$ for each $1 \leq i \leq n$. Consequently in this case, $B_{j}\left(A_{i} x^{i}\right)^{j}=0$ for $1 \leq i \leq n, 1 \leq j \leq m$.
(2) Suppose that $b_{m}=0$ and $a_{n} \neq 0$. Since $B_{m} A_{n} \alpha^{n}\left(A_{n}\right) \cdots \alpha^{n(m-1)}\left(A_{n}\right)=0$, we have $s_{m} a_{n}^{m}=0$ and that $s_{m}=0$. Hence $B_{m}=0$, a contradiction.
(3) Suppose that $b_{m}=0$ and $a_{n}=0$. We claim that $a_{1}=\cdots=a_{n}=0$ or $b_{1}=\cdots=b_{m}=0$. Assume, to the contrary, that there exists n_{1}, m_{1} such that $a_{n_{1}+1}=\cdots=a_{n}=0, b_{m_{1}+1}=\cdots=b_{m}=0, a_{n_{1}} \neq 0$ and $b_{m_{1}} \neq 0$. Then $A_{n} B_{1}\left(A_{1} x+\cdots+A_{n_{1}} x^{n_{1}}\right)+\cdots+A_{n} B_{m_{1}}\left(A_{1} x+\cdots+A_{n_{1}} x^{n_{1}}\right)^{m_{1}}=0$. Thus $A_{n} B_{m_{1}}\left(A_{n_{1}} x^{n_{1}}\right)^{m_{1}}=0$ and that $r_{n} b_{m_{1}} a_{n_{1}}^{m_{1}}=0$. Hence $r_{n}=0$, a contradiction. If $a_{1}=\cdots=a_{n}=0$, then by using the case (i), $B_{j}\left(A_{i} x^{i}\right)^{j}=$ 0 for each $1 \leq i \leq n, 1 \leq j \leq m$. If $b_{1}=\cdots=b_{m}=0$, then $0=$ $(x) f \circ(x) g=B_{1}\left(A_{1} x+\cdots+A_{n-1} x^{n-1}\right)+\cdots+B_{m}\left(A_{1} x+\cdots+A_{n-1} x^{n-1}\right)^{m}$ and that $B_{m}\left(A_{n-1} x^{n-1}\right)^{m}=0$. Hence $a_{n-1}=0$. Continuing this process, we can prove $a_{1}=\cdots=a_{n-1}=0$. Hence $B_{j}\left(A_{i} x^{i}\right)^{j}=0$ for each $1 \leq i \leq n, 1 \leq j \leq m$.

Lemma 1.5. Let δ be an α-derivation of ring R and $R[x ; \alpha, \delta]$ the nearring of skew polynomials over R. Let R be an α-rigid ring. Then:
(1) If $(x) E \in R[x ; \alpha, \delta]$ is an idempotent, then $(x) E=e_{1} x+e_{0}$, where e_{1} is an idempotent in R with $e_{1} e_{0}=0$.
(2) $R[x ; \alpha, \delta]$ is reduced.

Proof.

(1) Let $(x) E=e_{0}+\cdots+e_{n} x^{n}$ be an idempotent. Since $(x) E \circ(x) E=(x) E$, we have $(x) E \circ((x) E-x)=0$, and that $\left(e_{0}+\cdots+e_{n} x^{n}\right) \circ\left(\left(e_{0}+\left(e_{1}-1\right) x+\right.\right.$ $\left.\cdots+e_{n} x^{n}\right)=0$. Then $e_{i}^{2}=0$ for all $i \geq 2$, by Proposition 1.3. Hence $e_{i}=0$ for all $i \geq 2$, since R is reduced. Thus we have $e_{0}+e_{1}\left(e_{0}+e_{1} x\right)=e_{0}+e_{1} x$ and that $e_{1} e_{0}=0, e_{1}^{2}=e_{1}$.
(2) Let $(x) f=a_{0}+a_{1} x+\cdots+a_{n} x^{n} \in R[x ; \alpha, \delta]$ such that $(x) f \circ(x) f=0$. Then $a_{i}^{2}=0$ for each $1 \leq i \leq n$, by Proposition 1.3. Hence $a_{i}=0$ for each $1 \leq i \leq n$, since R is reduced. Therefore $(x) f=0$.

Proposition 1.6. Let R be an α-rigid ring. If $R[x ; \alpha, \delta] \in \mathcal{B}_{r 2}$, then R is a Baer ring.

Proof. Let S be a nonempty subset of R and $S_{x}=\{s x \mid s \in S\} \subseteq R[x ; \alpha, \delta]$. Since $R[x ; \alpha, \delta] \in \mathcal{B}_{r 2}$ and R is α-rigid, there exists an idempotent $(x) E=e_{1} x+$ $e_{0} \in R[x ; \alpha, \delta]$ such that $r\left(S_{x}\right)=r((x) E)$, by Lemma 1.5. We claim that $\ell_{R}(S)=$ $\ell_{R}\left(e_{1}\right)$. Let $a \in \ell_{R}\left(e_{1}\right)$. Then $\left(e_{1} x+e_{0}\right) \circ\left(a x-a e_{0}\right)=a\left(e_{1} x+e_{0}\right)-a e_{0}=0$. Hence $a x-a e_{0} \in r((x) E)=r\left(S_{x}\right)$. Therefore $s x \circ\left(a x-a e_{0}\right)=0$ and so as $=a e_{0}=0$, for each $s \in S$. Hence $a \in \ell_{R}(S)$ and $\ell_{R}\left(e_{1}\right) \subseteq \ell_{R}(S)$. Now let
$a \in \ell_{R}(S)$. Then $s x \circ a x=a s x=0$. Thus $a x \in r\left(S_{x}\right)=r((x) E)$. Therefore $0=(x) E \circ a x=a\left(e_{1} x+e_{0}\right)$ and thus $a e_{1}=a e_{0}=0$. Hence $a \in \ell_{R}\left(e_{1}\right)$ and $\ell_{R}(S) \subseteq \ell_{R}\left(e_{1}\right)$. Therefore $\ell_{R}(S)=\ell_{R}\left(e_{1}\right)$ and $R \in \mathcal{B}_{\ell 2}$. By [4, Lemma 2.3], we have $R \in \mathcal{B}_{r 2}$. From [4, Proposition 1.4(1)], R has a unity. Therefore R is a Baer ring.

Converse of Proposition 1.6 is not true in general. The following example [4, Example 3.5], shows that there exists a finite reduced commutative Baer ring R such that $R[x] \notin \mathcal{B}_{r 2}$.

Example 1.7. Let $R=\mathbb{Z}_{6}$ and $S=\{2 x+2,2 x+5\}$. From Lemma 1.5, all idempotents in $\mathbb{Z}_{6}[x]$ are $\{0,1,2,3,4,5, x, 3 x, 3 x+2,3 x+4,4 x, 4 x+3\}$. Note that $x-c \in r(c)$ and $x-c \notin r(S)$ for all constant idempotents $c \in \mathbb{Z}_{6}[x]$. Also, by Proposition 1.3, the possible idempotents $(x) E \in \mathbb{Z}_{6}[x]$ such that $r(S)=r((x) E)$ are either $4 x$ or $4 x+3$. Observe that $3 x \in r(4 x)$ but $3 x \notin r(S)$, and also $3 x^{3}+3 \in r(4 x+3)$ but $3 x^{3}+3 \notin r(S)$. Therefore, there is no idempotent $(x) E \in \mathbb{Z}_{6}[x]$ such that $r(S)=r((x) E)$. Consequently, $\mathbb{Z}_{6}[x] \notin \mathcal{B}_{r 2}$.

In the following result we show a weak form of the $\mathcal{B}_{r 2}$ condition when considering a converse to Proposition 1.6.

$$
\text { If }(x) f=\sum_{i=0}^{n} a_{i} x^{i} \in R[x ; \alpha, \delta] \text {, let } S_{f}^{*}=\left\{a_{1}, a_{2}, \cdots, a_{n}\right\} .
$$

Theorem 1.8. Let R be an α-rigid ring. If $R \in \mathcal{B}_{\ell 2} \cup \mathcal{B}_{r 2}$, then $R[x ; \alpha, \delta] \in$ $\mathcal{R}_{r 2}$.

Proof. By [4, Lemma 2.3(3)] it is suffices to assume $R \in \mathcal{B}_{\ell 2}$. Let $(x) f=$ $\sum_{i=0}^{m} a_{i} x^{i} \in R[x ; \alpha, \delta]$. Then $\ell_{R}\left(S_{f}^{*}\right)=\ell_{R}\left(e_{1}\right)$ for some idempotent $e_{1} \in R$, since $R \in \mathcal{B}_{\ell 2}$. Let $(x) E=e_{1} x+e_{0}$ where $e_{0}=-e_{1} a_{0}+a_{0}$. Clearly, $(x) E$ is an idempotent in $R[x ; \alpha, \delta]$. We show that $r((x) f)=r((x) E)$. Let $(x) g=$ $\sum_{j=0}^{n} b_{j} x^{j} \in r((x) f)$. Then $b_{j} \in \ell_{R}\left(S_{f}^{*}\right)=\ell_{R}\left(e_{1}\right)$, for all $1 \leq j \leq n$ and $b_{0}+b_{1} a_{0}+\cdots+b_{n} a_{0}^{n}=0$, by Proposition 1.3. By Lemma 1.2, $\alpha\left(e_{1}\right)=e_{1}$ and $\delta\left(e_{1}\right)=0$, hence by a simple calculation one can show that $((x) E)^{k}=e_{1} x^{k}+e_{0}^{k}$. Thus $(x) E \circ(x) g=\sum_{j=0}^{n} b_{j}((x) E)^{j}=\sum_{j=1}^{n} b_{j}\left(e_{1} x^{j}+e_{0}^{j}\right)+b_{0}=\sum_{j=1}^{n} b_{j} e_{1} x^{j}+$ $\sum_{j=1}^{n} b_{j} e_{0}^{j}+b_{0}=0+b_{n} a_{0}^{n}+\cdots+b_{1} a_{0}+b_{0}=0$. Therefore $(x) g \in r((x) E)$ and $r((x) f) \subseteq r((x) E)$. Now, let $(x) g=\sum_{j=0}^{n} b_{j} \in r((x) E)$. Then $b_{j} \in \ell_{R}\left(e_{1}\right)=$ $\ell_{R}\left(S_{f}^{*}\right)$ for all $1 \leq j \leq n$ and $b_{0}+b_{1} e_{0}+\cdots+b_{n} e_{0}^{n}=0$, by Proposition 1.3. This implies $b_{0}+b_{1} a_{0}+\cdots+b_{n} a_{0}^{n}=0$ and thus $(x) g \in r((x) f)$, since $e_{0}^{t}=-e_{1} a_{0}^{t}+a_{0}^{t}$ for all $t \geq 1$. Therefore $r((x) f)=r((x) E)$. Consequently, $R[x ; \alpha, \delta] \in \mathcal{R}_{r 2}$.

We now turn to the problem of extending Baer-type annihilator conditions from R to $R_{0}[x ; \alpha, \delta]$.

Proposition 1.9. Let R be an α-rigid ring. Then:
(1) $R \in \mathcal{B}_{r 1}$ if and only if $R_{0}[x ; \alpha, \delta] \in \mathcal{B}_{\ell 1}$.
(2) $R \in \mathcal{B}_{r 2}$ if and only if $R_{0}[x ; \alpha, \delta] \in \mathcal{B}_{\ell 2}$.

Proof.

(1) Assume $R \in \mathcal{B}_{r 1}$. Let S be a nonempty subset of $R_{0}[x ; \alpha, \delta]$. Then $T=$ $\cup_{f \in S} S_{f}^{*}$ is a nonempty subset of R. Hence $r_{R}(T)=e R$ for some idempotent $e \in R$, since $R \in \mathcal{B}_{r 1}$. We show that $\ell(S)=R_{0}[x ; \alpha, \delta] \circ(e x)=e$. $R_{0}[x ; \alpha, \delta]$. Let $(x) f=\sum_{i=1}^{m} a_{i} x^{i} \in S$. Since $\alpha(e)=e$ and $\delta(e)=0$, we have $(e x) \circ(x) f=\sum_{i=1}^{m} a_{i}(e x)^{i}=\sum_{i=1}^{m} a_{i} e x^{i}=0$. Thus $e x \in \ell(S)$ and hence $e \cdot R_{0}[x ; \alpha, \delta] \subseteq \ell(S)$. Now, let $(x) h=\sum_{k=1}^{n} c_{k} x^{k} \in \ell(S)$. Then $c_{k} \in r_{R}(T)$ for all $1 \leq k \leq n$, by Proposition 1.3. Therefore $c_{k}=e c_{k}$ for all $1 \leq k \leq n$. Hence $(x) h=e \sum_{k=1}^{n} c_{k} x^{k} \in e R_{0}[x ; \alpha, \delta]$ and so $\ell(S)=R_{0}[x ; \alpha, \delta] \circ(e x)$. Thus $R_{0}[x ; \alpha, \delta] \in \mathcal{B}_{\ell 1}$.
Now, assume $R_{0}[x ; \alpha, \delta] \in \mathcal{B}_{\ell 1}$. Let S be a nonempty subset of R, and define $S_{x}=\{s x \mid s \in S\}$ a subset of $R_{0}[x ; \alpha, \delta]$. Then $\ell\left(S_{x}\right)=R_{0}[x ; \alpha, \delta] \circ(e x)$ for some idempotent $e \in R$, by Lemma 1.5. For each $s x \in S_{x}, 0=(e x) \circ(s x)=$ sex. Therefore $e \in r_{R}(S)$. Now, let $a \in r_{R}(S)$. Then $(a x) \circ(s x)=s a x=0$ for each $s x \in S_{x}$. Thus $a x \in \ell\left(S_{x}\right)=R_{0}[x ; \alpha, \delta] \circ(e x)=e \cdot R_{0}[x ; \alpha, \delta]$. Hence $a=e a \in e R$. Thus $r_{R}(S)=e R$. Therefore $R \in \mathcal{B}_{r 1}$.
(2) Assume $R \in \mathcal{B}_{r 2}$. Let S be a nonempty subset of $R_{0}[x ; \alpha, \delta]$. By a similar construction to that used in (1), we have $r_{R}(T)=r_{R}(e)$ for some idempotent $e \in R$. We claim $\ell(S)=\ell(e x)$. Let $(x) g=\sum_{j=1}^{n} b_{j} x^{j} \in \ell(e x)$. Then $0=(x) g \circ e x=e \cdot(x) g$. Hence $e b_{j}=0$ for all $1 \leq j \leq n$. Consequently, $b_{j} \in r_{R}(e)=r_{R}(T)$, for all $1 \leq j \leq n$. Let $(x) f=\sum_{i=1}^{m} a_{i} x^{i} \in S$. Then by using Lemma 1.2, $(x) g \circ(x) f=\sum_{i=1}^{m} a_{i}\left(\sum_{j=1}^{n} b_{j} x^{j}\right)^{i}=0$. Therefore $\ell(e x) \subseteq \ell(S)$. Now, let $(x) g=\sum_{j=1}^{n} b_{j} x^{j} \in \ell(S)$. Then $b_{j} \in r_{R}(T)=$ $r_{R}(e)$ for all $1 \leq j \leq n$, by Proposition 1.3. Thus $(x) g \circ(e x)=e \cdot(x) g=0$. Therefore $\ell(S)=\ell(e x)$ and so $R_{0}[x ; \alpha, \delta] \in \mathcal{B}_{\ell 2}$.
Assume $R_{0}[x ; \alpha, \delta] \in \mathcal{B}_{\ell 2}$. Let S be a nonempty subset of R and let $S_{x}=$ $\{s x \mid s \in S\}$. Then $\ell\left(S_{x}\right)=\ell((x) E)$ for some idempotent $(x) E=e x \in$ $R_{0}[x ; \alpha, \delta]$, by Lemma 1.5. We show that $r_{R}(S)=r_{R}(e)$. Let $a \in r_{R}(S)$. Then $a x \circ s x=s a x=0$ for all $s x \in S_{x}$. Hence $a x \in \ell\left(S_{x}\right)=\ell((x) E)$. Thus $a x \circ e x=e a x=0$ and that $a \in r_{R}(e)$. Therefore $r_{R}(S) \subseteq r_{R}(e)$. Now, let $b \in r_{R}(e)$. Then $b x \circ e x=e b x=0$ and that $b x \in \ell\left(S_{x}\right)$. Thus $b x \circ s x=s b x=0$ for all $s \in S$. Hence $b \in r_{R}(S)$. Therefore $R \in \mathcal{B}_{r 2}$.
The following example shows that there exists a Baer ring R but $R_{0}[x ; \alpha] \notin$ $\mathcal{B}_{\ell 1} \cup \mathcal{B}_{\ell 2}$. So " α-rigid condition on R " in Proposition 1.9 is not superfluous.

Example 1.10. Let F be a filed and consider the polynomial ring $R=$
$(F[y],+, \cdot)$ over F. Then R is a commutative domain and so R is Baer. Let $\alpha: R \rightarrow R$ be an endomorphism defined by $\alpha(f(y))=f(0)$. Then
(I) R is not α-rigid;

Since $y \alpha(y)=0$ but $y \neq 0$.
(II) $R_{0}[x ; \alpha] \notin \mathcal{B}_{\ell 1} \cup \mathcal{B}_{\ell 2}$;

First we show that the only idempotents of nearing $R_{0}[x ; \alpha]$ are 0 and x. Let $(x) e=f_{1}(y) x+\cdots+f_{n}(y) x^{n}$ be a nonzero idempotent of $R_{0}[x ; \alpha]$. Then $(x) e \circ$ $(x) e=(x) e$ and that $f_{1}(y)\left(f_{1}(y) x+\cdots+f_{n}(y) x^{n}\right)+\cdots+f_{n}(y)\left(f_{1}(y) x+\cdots+\right.$ $\left.f_{n}(y) x^{n}\right)^{n}=f_{1}(y) x+\cdots+f_{n}(y) x^{n}$. Then $f_{1}(y)^{2}=f_{1}(y)$ and that $f_{1}(y)=0$ or $f_{1}(y)=1$, since R is domain. If $f_{1}(y)=0$, then by a simple calculation we can show that $(x) e=0$, which is a contradiction. Hence $f_{1}(y)=1$. Since $f_{1}(y) f_{2}(y)+$ $f_{2}(y) f_{1}(y) \alpha\left(f_{1}(y)\right)=f_{2}(y)$ and $\alpha\left(f_{1}(y)\right)=1$, so $f_{2}(y)=0$. Continuing this process, we have $(x) e=1$. Now we show that $R_{0}[x ; \alpha] \notin \mathcal{B}_{\ell 1}$. Let $S=\left\{x^{2}\right\}$. Since $y x \circ x^{2}=0$ so $\ell_{R_{0}[x ; \alpha]}(S) \neq 0=R_{0}[x ; \alpha] \circ 0$. Since $x \circ x^{2}=x^{2}$ so $\ell_{R_{0}[x ; \alpha]}(S) \neq R_{0}[x ; \alpha]=R_{0}[x ; \alpha] \circ x$. Therefore $R_{0}[x ; \alpha] \notin \mathcal{B}_{\ell 1}$. By a similar argument one can show that $R_{0}[x ; \alpha] \notin \mathcal{B}_{\ell 2}$.

Theorem 1.11. Let R be an α-rigid ring. Then:
(1) If R is Baer, then $R_{0}[x ; \alpha, \delta] \in \mathcal{B}_{r 1} \cap \mathcal{B}_{r 2} \cap \mathcal{B}_{\ell 1} \cap \mathcal{B}_{\ell 2}$.
(2) If $R_{0}[x ; \alpha, \delta] \in \mathcal{B}_{r 1} \cup \mathcal{B}_{r 2} \cup \mathcal{B}_{\ell 1} \cup \mathcal{B}_{\ell 2}$, then R is Baer.

Proof. Assume that R is Baer. From Proposition 1.3, Lemmas 2.2 and 2.3 in [4], we need only show that $R_{0}[x ; \alpha, \delta] \in \mathcal{B}_{\ell 1}$. Let S be a nonempty subset of $R_{0}[x ; \alpha, \delta]$ and let $T=\cup_{f \in S} S_{f}^{*}$. Then $r_{R}(T)=r_{R}(e)$ for some idempotent $e \in R$, since R is Baer. We show that $\ell(S)=(1-e) R_{0}[x ; \alpha, \delta]=R_{0}[x ; \alpha, \delta] \circ(1-e) x$. Let $(x) f=\sum_{i=1}^{m} a_{i} x^{i} \in S$ and $(x) g=\sum_{j=1}^{n} b_{j} x^{j} \in \ell(S)$. Then $a_{i} b_{j}=0$ for all $1 \leq i \leq m, 1 \leq j \leq n$, by Proposition 1.3. Thus $e b_{j}=0$ and that $b_{j}=(1-e) b_{j}$ for all $1 \leq j \leq n$. Hence $(x) g=(1-e) \sum_{j=1}^{n} b_{j} x^{j} \in(1-e) R_{0}[x ; \alpha, \delta]$ and that $\ell(S) \subseteq(1-e) R_{0}[x ; \alpha, \delta]$. Now, let $(x) g=(1-e) \sum_{j=1}^{n} b_{j} x^{j} \in(1-e) R_{0}[x ; \alpha, \delta]$. Since $(1-e)$ is an idempotent of R and R is α-rigid, so $\alpha(1-e)=(1-e)$, $\delta(1-e)=0$ and $(1-e)$ is a central element of R. Hence for all $(x) f=$ $\sum_{i=1}^{m} a_{i} x^{i} \in S$, we have $(x) g \circ(x) f=\left(\sum_{j=1}^{n} b_{j} x^{j}\right) \circ\left(\sum_{i=1}^{m} a_{i}(1-e) x^{i}\right)=0$. Thus $\ell(S)=(1-e) R_{0}[x ; \alpha, \delta]$. Therefore $R_{0}[x ; \alpha, \delta] \in \mathcal{B}_{\ell 1}$.

Assume $R_{0}[x ; \alpha, \delta] \in \mathcal{B}_{r 1} \cup \mathcal{B}_{r 2} \cup \mathcal{B}_{\ell 1} \cup \mathcal{B}_{\ell 2}$. By Lemmas 2.2 and 2.3 in [4], $R_{0}[x ; \alpha, \delta] \in \mathcal{B}_{\ell 2}$. From Proposition 1.9(2), $R \in \mathcal{B}_{r 2}$. Proposition 1.4(1) in [5] and Proposition 1.3 yield that R has a unity. Therefore R is a Baer ring.

Example 1.10 also shows that " α-rigid condition on R " in Theorem 1.11 is not superfluous.

Corollary 1.12. Let R be an α-rigid ring. Then the following are equivalent:
(1) R is Baer;
(2) $(R[x ; \alpha, \delta],+, \cdot)$ is Baer;
(3) $\left(R_{0}[x ; \alpha, \delta],+, \circ\right) \in \mathcal{B}_{r 1} \cup \mathcal{B}_{r 2} \cup \mathcal{B}_{\ell 1} \cup \mathcal{B}_{\ell 2}$.

Proof. This follows from [9, Theorem 11] and Theorem 1.11.
Proposition 1.13. Let R be an α-rigid ring. Let S be the subnearring of $R[x ; \alpha, \delta]$ generated by the set $\left\{e x \mid e^{2}=e \in R\right\}$, and T a subnearring of $R[x ; \alpha, \delta]$. If $S \subseteq T$ and $R[x ; \alpha, \delta] \in \mathcal{B}_{i j}$, where $i \in\{r, \ell\}$ and $j \in\{1,2\}$, then $T \in \mathcal{B}_{i j}$.

Proof. This follows from Proposition 1.5 in [4] and Lemma 1.5.
Example 1.14. Using Proposition 1.9, the following nearrings satisfy all the Baer-type annihilator conditions discussed in this paper when R is α-rigid Baer ring: (i) $\{a x \mid a \in R\}$; (ii) $\left\{(x) f=\sum_{i=1}^{n} a_{2 i-1} x^{2 i-1} \in R_{0}[x ; \alpha] \mid a_{2 i-1} \in R, n \in \mathbb{N}\right\}$; (iii) $E_{0}[x ; \alpha, \delta]$, where E is a subring containig all idempotents of R.

Acknowledgment

The author thank the referee for his/her helpful suggestions. This research is supported by the Shahrood University of Technology of Iran.

References

1. D. D. Anderson and V. Camillo, Armendariz rings and Gaussian rings. Comm. Algebra, 26(7) (1998), 2265-2275.
2. E. P. Armendariz, A note on extensions of Baer and p.p.-rings, J. Austral. Math. Soc., 18 (1974), 470-473.
3. S. K. Berberian, Baer *-rings, Springer-Verlag, Berlin, 1968.
4. G. F. Birkenmeier and F. K. Huang, Annihilator conditions on polynomials, Comm. Algebra, 29(5) (2001), 2097-2112.
5. G. F. Birkenmeier and F. K. Huang, Annihilator conditions on formal power series, Algebra Colloq., 9(1) (2002), 29-37.
6. E. Hashemi and A. Moussavi, Polynomial extensions of quasi-Baer rings, Acta Math. Hungar., 107(3) (2005), 207-224.
7. E. Hashemi and A. Moussavi, Skew power series extensions of α-rigid p.p.-rings, Bull. Korean Math. Soc., 41(4) (2004), 657-665.
8. E. Hashemi and A. Moussavi, On (α, δ)-skew Armendariz Rings, J. Korean Math. Soc., 42(2) (2005), 353-363.
9. C. Y. Hong, Nam Kyun Kim, Tai Keun Kwak, Ore extensions of Baer and p.p.-rings, J. Pure Appl. Algebra, 151 (2000), 215-226.
10. C. Y. Hong, Nam Kyun Kim, Tai Keun Kwak, On skew Armendariz rings, Comm. Algebra, 31(1) (2003), 103-122.
11. Chan Huh et al. Armendariz rings and semicommutative rings, Comm. Algebra, 30(2) (2002), 751-761.
12. I. Kaplansky, Rings of Operators, Benjamin, New York, 1965.
13. N.K. Kim and Y. Lee, Armendariz rings and reduced rings, J. Algebra, 223 (2000), 477-488.
14. J. Krempa, Some examples of reduced rings, Algebra Colloq., 3(4) (1996), 289-300.
15. Tsiu-Kwen Lee and Tsai-Lien Wong, On Armendariz rings, Houston J. Math., 29(3) (2003), 583-593.
16. J. Matczuk, A characterization of α-rigid rings, Comm. Algebra 32(1) (2004) 43334337.
17. M. B. Rege and S. Chhawchharia, Armendariz rings, Proc. Japan Acad. Ser. A Math. Sci., 73 (1997), 14-17.
E. Hashemi

Department of Mathematics,
Shahrood University of Thechnology,
P. O. Box 316-3619995161

Shahrood, Iran
E-mail: eb_hashemi@shahroodut.ac.ir eb_hashemi@yahoo.com

[^0]: Received October 12, 2005, accepted January 26, 2006. Communicated by Wen-Fong Ke. 2000 Mathematics Subject Classification: 16Y30; 16S36.
 Key words and phrases: Annihilator conditions, Nearrings, Skew polynomial rings, Baer rings, α-rigid rings, Armendariz rings.

