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ANNIHILATOR CONDITIONS ON NEARRING
OF SKEW POLYNOMIALS OVER A RING

E. Hashemi

Abstract. Let R be a ring with unity. For a ring endomorphism α and an
α-derivation δ, the system R[x; α, δ] forms an abelian nearring under addition
and substitution operations. In this paper we extend the study of annihilator
conditions on nearring of polynomials to skew nearring (R[x; α, δ], +, ◦),
when R is an α-rigid ring. Also, we give a characterization of α-rigid rings.
An example to show that “α-rigid condition on R” is not superfluous is given.

1. INTRODUCTION

Throughout this paper all rings are associative and all nearrings are left nearrings.
We use R and N to denote a ring and a nearring respectively. Recall from [12] that
a ring R is Baer if R has a unity and the right annihilator of every nonempty subset
of R is generated, as a right ideal, by an idempotent. Kaplansky [12] shows that the
definition of a Baer ring is left-right symmetric. For example, the class of Baer rings
includes all right Notherian PP rings and all von Neumann regular rings. In 1974,
Armendariz obtained the following result [2, Theorem B]: Let R be a reduced ring.
Then R[x] is a Baer ring if and only if R is a Baer ring. Recall a ring or a nearring
is said to be reduced if it has no nonzero nilpotent element. A generalization of
Armendariz’s result for several types of polynomial extensions over Baer rings, are
obtained by various authors, [9-10]. According to Krempa [14], an endomorphism
α of a ring R is called to be rigid if aα(a) = 0 implies a = 0 for a ∈ R. Note
that any rigid endomorphisms of a ring is a monomorphism and α-rigid rings are
reduced, by Hong et al. [9]. Properties of α-rigid rings had been studied in Krempa
[14], Hong et al. [9] and Matczuk [16]. In [9] Hong et al. studied Ore extensions
of Baer rings over α-rigid rings. Birkenmeier and Huang in [4], had defined the
Baer-type annihilator conditions in the class of nearrings as follows (for a nonempty
S ⊆ N , let rN (S) = {a ∈ N | Sa = 0} and �N (S) = {a ∈ N | aS = 0}):
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(1) N ∈ Br1 if rN(S) = eN for some idempotent e ∈ N ;
(2) N ∈ Br2 if rN(S) = rN(e) for some idempotent e ∈ N ;
(3) N ∈ B�1 if �N(S) = Ne for some idempotent e ∈ N ;
(4) N ∈ B�2 if �N(S) = �N(e)

for some idempotent e ∈ N .
If N is a ring with unity then N ∈ Br1 ∪ Br2 ∪ B�1 ∪ B�2 is equivalent to N

being a Baer ring. When S is a singleton, the Rickart-type annihilator conditions on
nearrings are also defined similarly except replacing B by R. In [3, p. 28], the Rr2

condition is considered for rings with involution. In [5-6] Birkenmeier and Huang,
studied Baer-type annihilator conditions in the class of nearrings. In particular
they studied Baer-type conditions on the nearring of polynomials R[x] (with the
operations of addition and substitution) and formal power series by obtaining the
following results: Let R be a reduced ring. (1) If R is Baer, then R0[x] (resp.
R0[[x]]) satisfies all the Baer-type conditions. (2) If R0[x] (resp. R0[[x]]) satisfies
any one of the Baer-type conditions, then R is Baer.

Let α be an endomorphism of R and δ is an α-derivation of R, that is, δ is
an additive map such that δ(ab) = δ(a)b + α(a)δ(b), for all a, b ∈ R. Since
R[x; α, δ] is an abelian nearring under addition and substitution, it is natural to
investigate the nearring of skew polynomials (R[x; α, δ],+,◦) when R is Baer. We
use R[x; α, δ] to denote the left nearring of skew polynomials (R[x; α, δ],+,◦) with
coefficients from R and R0[x; α, δ] = {f ∈ R[x; α, δ] | f has zero constant term}
the 0-symmetric subnearring of R[x; α, δ]. Let (x)f = a0 + a1x and (x)g =
b0 + b1x+ b2x

2 ∈ R[x; α, δ]. Through a simple calculation, we have (x)f ◦ (x)g =
((x)f)g = b0 + b1((x)f) + b2((x)f)2 = (b0 + b1a0 + b2a

2
0 + b2a1δ(a0))+ (b1a1 +

b2a0a1 + b2a1α(a0) + b2a1δ(a1))x + b2a1α(a1)x2.
In this paper we show that R is α-rigid if and only if α is an injective endo-

morphism, R is reduced and if for polynomials (x)f = a0 + a1x + · · · + anxn,
(x)g = b0 + b1x + · · · + bmxm ∈ R[x; α, δ], (x)f ◦ (x)g = 0 implies bjai = 0
for each 1 ≤ i ≤ n, 1 ≤ j ≤ m. Moreover if R is an α-rigid ring, then the
nearring R[x; α, δ] is reduced. Also, for an α-rigid ring R we show that: (1) If
R is Baer, then R0[x; α, δ] satisfies all the Baer-type annihilator conditions. (2) If
R0[x; α, δ] satisfies any one of the Baer-type annihilator conditions, then R is Baer.
An example has presented to show that “α-rigid condition on R” is not superfluous.

Note that these results extend Hong et al.’ results [9] on the skew polynomial
rings over an α-rigid Baer ring to the Baer-type annihilator conditions in a nearring
of skew polynomials.

3. NEARRINGS OF SKEW POLYNOMIALS

Definition 1.1. (Krempa [14]). Let α be an endomorphism of R. α is called a
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rigid endomorphism if aα(a) = 0 implies a = 0 for a ∈ R. A ring R is called to
be α-rigid if there exists a rigid endomorphism α of R.

Clearly, any rigid endomorphism is a monomorphism. Note that α-rigid rings
are reduced rings. In fact, if R is an α-rigid ring and a2 = 0 for a ∈ R, then
aα(a)α(aα(a)) = 0. Thus aα(a) = 0 and so a = 0. Therefore R is reduced.

Lemma 1.2. (Hong et al. [9]). Let R be an α-rigid ring and a, b ∈ R. Then
we have the following:

(i) If ab = 0 then aαn(b) = αn(a)b = 0 for each positive integer n.
(ii) If aαk(b) = 0 or αk(a)b = 0 for some positive integer k, then ab = 0.
(iii) If ab = 0, then αn(a)δm(b) = 0 = δm(a)αn(b) for any positive integers

m, n.
(iv) If e2 = e ∈ R, then α(e) = e and δ(e) = 0.

A nearring N is said to have the insertion of factors property (IFP) if for all
a, b, n ∈ N , ab = 0 implies anb = 0.

The following is a characterization of α-rigid rings:

Proposition 1.3. Let δ be an α-derivation of a ring R. Then the following are
equivalent:

(1) α is an injective endomorphism, R is reduced and if for each polynomials
(x)f = a0 + a1x + · · ·+ anxn, (x)g = b0 + b1x + · · ·+ bmxm ∈ R[x; α, δ],
(x)f ◦ (x)g = 0 implies bjai = 0 for each 1 ≤ i ≤ n, 1 ≤ j ≤ m;

(2) α is an injective endomorphism, R is reduced and if for each polynomials
(x)f = a1x + · · ·+ anxn, (x)g = b1x + · · ·+ bmxm ∈ R0[x; α, δ], (x)f ◦
(x)g = 0 implies bjai = 0 for each 1 ≤ i ≤ n, 1 ≤ j ≤ m.;

(3) R is α-rigid.

Proof. (1)⇒(2) is clear.
(2)⇒(3) Let a ∈ R with aα(a) = 0. Then δ(aα(a)) = δ(a)α(a)+α(a)δ(α(a))

= 0. Let (x)f = α(a)x and g(x) = δ(a)x + x2 ∈ R0[x; α, δ]. Then (x)f ◦ (x)g =
(δ(a)α(a) + α(a)δ(α(a)))x + α(a)α2(a)x2 = 0. Hence δ(a)α(a) = α(a) = 0, by
(2). Therefore a = 0, since α is an injective. Consequently R is α-rigid.

(3)⇒(1) Clearly, R is reduced and α is an injective endomorphism. Let (x)f,
(x)g ∈ R[x; α, δ] such that (x)f ◦ (x)g = 0. We proceed by induction on deg(f )
+ deg(g). It is clear for deg(f ) + deg(g) =2. Now suppose that our claim is
true for each (x)f, (x)g ∈ R[x; α, δ], with deg(f ), deg(g) ≥ 1, deg(f ) + deg(g)
< k. Let (x)f = a0 + a1x · · · + anxn, (x)g = b0 + b1x + · · · + bmxm ∈
R[x; α, δ] such that n, m≥ 1 and m+n = k. Then

∑m
j=0 bj((x)f)j = 0 and that
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bmanαn(an) · · ·α(m−1)n(an) = 0. Hence bman = anbm = 0, by Lemma 1.2(ii).
Thus

∑m−1
j=0 anbj((x)f)j = 0 and that (x)f◦(anb0+anb1x+· · ·+anbm−1x

m−1) =
0. By induction hypothesis, we have anbjan = 0 for 1 ≤ j ≤ m − 1. Hence
anbj = 0 for 1 ≤ j ≤ m, since R is reduced. Therefore, as R satisfies IFP property
and by using Lemma 1.2, (x)f ◦ (x)g = (a0 + a1x · · ·+ an−1x

n−1) ◦ (b0 + b1x +
· · ·+ bmxm) = 0. Our assertion then follows from induction hypothesis.

The following example shows that there exists a non α-rigid ring R such that if
(x)f = a1x+· · ·+anxn, (x)g = b1x+· · ·+bmxm ∈ R0[x; α, δ]with (x)f ◦(x)g =
0, then bj(aix

i)j = 0 for each 1 ≤ i ≤ n, 1 ≤ j ≤ m.

Example 1.4.

Let F be a filed and R =
{(

a r
0 a

)
| a, r ∈ F

}
. Then R is a commutative

ring. Let u be a non-zero element of F . Let α : R → R be an automorphism

defiend by α

((
a r
0 a

))
=

(
a ru
0 a

)
.

(I) R is not α-rigid:
Since R is not reduced, hence it is not α-rigid.

(II) Let (x)f = A1x + · · · + Anxn and (x)g = B1x + · · · + Bmxm ∈
R0[x; α], where Ai =

(
ai ri

0 ai

)
and Bj =

(
bj sj

0 bj

)
for 1 ≤ i ≤ n, 1 ≤

j ≤ m. Assume that (x)f ◦ (x)g = 0 such that An 	= 0, Bm 	= 0. We claim that
Bj(Aix

i)j = 0 for each 1 ≤ i ≤ n, 1 ≤ j ≤ m. Since

(†) 0 = (x)f ◦ (x)g = B1(A1x + · · ·+ Anxn) + · · ·+ Bm(A1x + · · ·+ Anxn)m

we have Bm(Anxn)m = 0 and that BmAnαn(An) · · ·αn(m−1)(An) = 0. Hence
bmam

n = 0 and that bm = 0 or an = 0.

(1) Suppose bm 	= 0 and an = 0. SinceAn 	= 0 so rn 	= 0. MultiplyingAn to Eq.
(†) from the left-hand side, we have AnB1(A1x + · · ·+ An−1x

n−1) + · · ·+
AnBm(A1x + · · ·+ An−1x

n−1)m = 0, since Anαk(An) = 0 for each i ≥ 0
and R is commutative. Then AnBm(An−1x

n−1)m = 0. Thus rnbmam
n−1 =

0 and that an−1 = 0. Therefore AnB1(A1x + · · · + An−2x
n−2) + · · · +

AnBm(A1x+· · ·+An−2x
n−2)m = 0, since Anαk(An−1) = 0 for each i ≥ 0

and R is commutative. Continuing this process, we have a1 = · · · = an = 0.
Thus Bj(Aix

i)j = 0 for each 2 ≤ j ≤ m and 1 ≤ i ≤ n, since Aiα
i(Ai) = 0

for each i ≥ 1. Hence 0 = (x)f ◦ (x)g = B1(A1x + · · ·+ Anxn) and that
B1(Aix

i) = 0 for each 1 ≤ i ≤ n. Consequently in this case, Bj(Aix
i)j = 0

for 1 ≤ i ≤ n, 1 ≤ j ≤ m.
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(2) Suppose that bm = 0 and an 	= 0. Since BmAnαn(An) · · ·αn(m−1)(An) = 0,
we have smam

n = 0 and that sm = 0. Hence Bm = 0, a contradiction.
(3) Suppose that bm = 0 and an = 0. We claim that a1 = · · · = an = 0 or

b1 = · · · = bm = 0. Assume, to the contrary, that there exists n1, m1 such that
an1+1 = · · · = an = 0, bm1+1 = · · · = bm = 0, an1 	= 0 and bm1 	= 0. Then
AnB1(A1x + · · ·+ An1x

n1) + · · ·+ AnBm1(A1x + · · ·+ An1x
n1)m1 = 0.

Thus AnBm1(An1x
n1)m1 = 0 and that rnbm1a

m1
n1

= 0. Hence rn = 0, a
contradiction. If a1 = · · · = an = 0, then by using the case (i), Bj(Aix

i)j =
0 for each 1 ≤ i ≤ n, 1 ≤ j ≤ m. If b1 = · · · = bm = 0, then 0 =
(x)f◦(x)g = B1(A1x+· · ·+An−1x

n−1)+· · ·+Bm(A1x+· · ·+An−1x
n−1)m

and that Bm(An−1x
n−1)m = 0. Hence an−1 = 0. Continuing this process,

we can prove a1 = · · · = an−1 = 0. Hence Bj(Aix
i)j = 0 for each

1 ≤ i ≤ n, 1 ≤ j ≤ m.

Lemma 1.5. Let δ be an α-derivation of ring R and R[x; α, δ] the nearring
of skew polynomials over R. Let R be an α-rigid ring. Then:

(1) If (x)E ∈ R[x; α, δ] is an idempotent, then (x)E = e1x + e0, where e1 is an
idempotent in R with e1e0 = 0.

(2) R[x; α, δ] is reduced.

Proof.

(1) Let (x)E = e0 + · · ·+ enxn be an idempotent. Since (x)E ◦ (x)E = (x)E ,
we have (x)E◦((x)E−x) = 0, and that (e0+· · ·+enxn)◦((e0+(e1−1)x+
· · ·+enxn) = 0. Then e2

i = 0 for all i ≥ 2, by Proposition 1.3. Hence ei = 0
for all i ≥ 2, since R is reduced. Thus we have e0 +e1(e0 +e1x) = e0 +e1x
and that e1e0 = 0, e2

1 = e1.
(2) Let (x)f = a0 + a1x + · · ·+ anxn ∈ R[x; α, δ] such that (x)f ◦ (x)f = 0.

Then a2
i = 0 for each 1 ≤ i ≤ n, by Proposition 1.3. Hence ai = 0 for each

1 ≤ i ≤ n, since R is reduced. Therefore (x)f = 0.

Proposition 1.6. Let R be an α-rigid ring. If R[x; α, δ] ∈ Br2, then R is a
Baer ring.

Proof. Let S be a nonempty subset of R and Sx = {sx|s ∈ S} ⊆ R[x; α, δ].
Since R[x; α, δ] ∈ Br2 and R is α-rigid, there exists an idempotent (x)E = e1x +
e0 ∈ R[x; α, δ] such that r(Sx) = r((x)E), by Lemma 1.5. We claim that �R(S) =
�R(e1). Let a ∈ �R(e1). Then (e1x + e0) ◦ (ax − ae0) = a(e1x + e0) − ae0 = 0.
Hence ax − ae0 ∈ r((x)E) = r(Sx). Therefore sx ◦ (ax − ae0) = 0 and so
as = ae0 = 0, for each s ∈ S. Hence a ∈ �R(S) and �R(e1) ⊆ �R(S). Now let
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a ∈ �R(S). Then sx ◦ ax = asx = 0. Thus ax ∈ r(Sx) = r((x)E). Therefore
0 = (x)E ◦ ax = a(e1x + e0) and thus ae1 = ae0 = 0. Hence a ∈ �R(e1) and
�R(S) ⊆ �R(e1). Therefore �R(S) = �R(e1) and R ∈ B�2. By [4, Lemma 2.3], we
have R ∈ Br2. From [4, Proposition 1.4(1)], R has a unity. Therefore R is a Baer
ring.

Converse of Proposition 1.6 is not true in general. The following example [4,
Example 3.5], shows that there exists a finite reduced commutative Baer ring R

such that R[x] /∈ Br2.

Example 1.7. Let R = Z6 and S = {2x + 2, 2x + 5}. From Lemma 1.5, all
idempotents in Z6[x] are {0, 1, 2, 3, 4, 5, x, 3x, 3x + 2, 3x + 4, 4x, 4x + 3}. Note
that x− c ∈ r(c) and x− c /∈ r(S) for all constant idempotents c ∈ Z6[x]. Also, by
Proposition 1.3, the possible idempotents (x)E ∈ Z6[x] such that r(S) = r((x)E)
are either 4x or 4x + 3. Observe that 3x ∈ r(4x) but 3x /∈ r(S), and also
3x3 + 3 ∈ r(4x + 3) but 3x3 + 3 /∈ r(S). Therefore, there is no idempotent
(x)E ∈ Z6[x] such that r(S) = r((x)E). Consequently, Z6[x] /∈ Br2.

In the following result we show a weak form of the Br2 condition when con-
sidering a converse to Proposition 1.6.

If (x)f =
∑n

i=0 aix
i ∈ R[x; α, δ], let S∗

f = {a1, a2, · · · , an}.
Theorem 1.8. Let R be an α-rigid ring. If R ∈ B�2 ∪ Br2, then R[x; α, δ] ∈

Rr2.

Proof. By [4, Lemma 2.3(3)] it is suffices to assume R ∈ B�2. Let (x)f =∑m
i=0 aix

i ∈ R[x; α, δ]. Then �R(S∗
f) = �R(e1) for some idempotent e1 ∈ R,

since R ∈ B�2. Let (x)E = e1x + e0 where e0 = −e1a0 + a0. Clearly, (x)E
is an idempotent in R[x; α, δ]. We show that r((x)f) = r((x)E). Let (x)g =∑n

j=0 bjx
j ∈ r((x)f). Then bj ∈ �R(S∗

f) = �R(e1), for all 1 ≤ j ≤ n and
b0 + b1a0 + · · ·+ bnan

0 = 0, by Proposition 1.3. By Lemma 1.2, α(e1) = e1 and
δ(e1) = 0, hence by a simple calculation one can show that ((x)E)k = e1x

k + ek
0.

Thus (x)E ◦(x)g =
∑n

j=0 bj((x)E)j =
∑n

j=1 bj(e1x
j +ej

0)+b0 =
∑n

j=1 bje1x
j +∑n

j=1 bje
j
0 + b0 = 0 + bnan

0 + · · ·+ b1a0 + b0 = 0. Therefore (x)g ∈ r((x)E) and
r((x)f) ⊆ r((x)E). Now, let (x)g =

∑n
j=0 bj ∈ r((x)E). Then bj ∈ �R(e1) =

�R(S∗
f) for all 1 ≤ j ≤ n and b0 + b1e0 + · · ·+ bnen

0 = 0, by Proposition 1.3. This
implies b0 +b1a0 + · · ·+bnan

0 = 0 and thus (x)g ∈ r((x)f), since et
0 = −e1a

t
0+at

0

for all t ≥ 1. Therefore r((x)f) = r((x)E). Consequently, R[x; α, δ] ∈ Rr2.

We now turn to the problem of extending Baer-type annihilator conditions from
R to R0[x; α, δ].

Proposition 1.9. Let R be an α-rigid ring. Then:
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(1) R ∈ Br1 if and only if R0[x; α, δ] ∈ B�1.
(2) R ∈ Br2 if and only if R0[x; α, δ] ∈ B�2.

Proof.

(1) Assume R ∈ Br1. Let S be a nonempty subset of R0[x; α, δ]. Then T =
∪f∈SS∗

f is a nonempty subset of R. Hence rR(T ) = eR for some idempotent
e ∈ R, since R ∈ Br1. We show that �(S) = R0[x; α, δ] ◦ (ex) = e ·
R0[x; α, δ]. Let (x)f =

∑m
i=1 aix

i ∈ S. Since α(e) = e and δ(e) = 0, we
have (ex) ◦ (x)f =

∑m
i=1 ai(ex)i =

∑m
i=1 aiex

i = 0. Thus ex ∈ �(S) and
hence e · R0[x; α, δ] ⊆ �(S). Now, let (x)h =

∑n
k=1 ckx

k ∈ �(S). Then
ck ∈ rR(T ) for all 1 ≤ k ≤ n, by Proposition 1.3. Therefore ck = eck

for all 1 ≤ k ≤ n. Hence (x)h = e
∑n

k=1 ckx
k ∈ eR0[x; α, δ] and so

�(S) = R0[x; α, δ] ◦ (ex). Thus R0[x; α, δ] ∈ B�1.

Now, assume R0[x; α, δ] ∈ B�1. Let S be a nonempty subset of R, and define
Sx = {sx|s ∈ S} a subset of R0[x; α, δ]. Then �(Sx) = R0[x; α, δ]◦(ex) for
some idempotent e ∈ R, by Lemma 1.5. For each sx ∈ Sx, 0 = (ex)◦(sx) =
sex. Therefore e ∈ rR(S). Now, let a ∈ rR(S). Then (ax)◦(sx) = sax = 0
for each sx ∈ Sx. Thus ax ∈ �(Sx) = R0[x; α, δ] ◦ (ex) = e · R0[x; α, δ].
Hence a = ea ∈ eR. Thus rR(S) = eR. Therefore R ∈ Br1.

(2) Assume R ∈ Br2. Let S be a nonempty subset of R0[x; α, δ]. By a similar
construction to that used in (1), we have rR(T ) = rR(e) for some idempotent
e ∈ R. We claim �(S) = �(ex). Let (x)g =

∑n
j=1 bjx

j ∈ �(ex). Then
0 = (x)g ◦ ex = e · (x)g. Hence ebj = 0 for all 1 ≤ j ≤ n. Consequently,
bj ∈ rR(e) = rR(T ), for all 1 ≤ j ≤ n. Let (x)f =

∑m
i=1 aix

i ∈ S. Then
by using Lemma 1.2, (x)g ◦ (x)f =

∑m
i=1 ai(

∑n
j=1 bjx

j)i = 0. Therefore
�(ex) ⊆ �(S). Now, let (x)g =

∑n
j=1 bjx

j ∈ �(S). Then bj ∈ rR(T ) =
rR(e) for all 1 ≤ j ≤ n, by Proposition 1.3. Thus (x)g ◦ (ex) = e · (x)g = 0.
Therefore �(S) = �(ex) and so R0[x; α, δ] ∈ B�2.

Assume R0[x; α, δ] ∈ B�2. Let S be a nonempty subset of R and let Sx =
{sx|s ∈ S}. Then �(Sx) = �((x)E) for some idempotent (x)E = ex ∈
R0[x; α, δ], by Lemma 1.5. We show that rR(S) = rR(e). Let a ∈ rR(S).
Then ax ◦ sx = sax = 0 for all sx ∈ Sx. Hence ax ∈ �(Sx) = �((x)E).
Thus ax ◦ ex = eax = 0 and that a ∈ rR(e). Therefore rR(S) ⊆ rR(e).
Now, let b ∈ rR(e). Then bx ◦ ex = ebx = 0 and that bx ∈ �(Sx). Thus
bx ◦ sx = sbx = 0 for all s ∈ S. Hence b ∈ rR(S). Therefore R ∈ Br2.

The following example shows that there exists a Baer ring R but R0[x; α] /∈
B�1 ∪B�2. So “α-rigid condition on R” in Proposition 1.9 is not superfluous.

Example 1.10. Let F be a filed and consider the polynomial ring R =
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(F [y], +, ·) over F . Then R is a commutative domain and so R is Baer. Let
α : R → R be an endomorphism defined by α(f(y)) = f(0). Then

(I) R is not α-rigid;
Since yα(y) = 0 but y 	= 0.

(II) R0[x; α] /∈ B�1 ∪ B�2;
First we show that the only idempotents of nearing R0[x; α] are 0 and x. Let

(x)e = f1(y)x + · · ·+ fn(y)xn be a nonzero idempotent of R0[x; α]. Then (x)e ◦
(x)e = (x)e and that f1(y)(f1(y)x + · · ·+ fn(y)xn) + · · ·+ fn(y)(f1(y)x + · · ·+
fn(y)xn)n = f1(y)x + · · ·+ fn(y)xn. Then f1(y)2 = f1(y) and that f1(y) = 0 or
f1(y) = 1, since R is domain. If f1(y) = 0, then by a simple calculation we can
show that (x)e = 0, which is a contradiction. Hence f1(y) = 1. Since f1(y)f2(y)+
f2(y)f1(y)α(f1(y)) = f2(y) and α(f1(y)) = 1, so f2(y) = 0. Continuing this
process, we have (x)e = 1. Now we show that R0[x; α] /∈ B�1. Let S = {x2}.
Since yx ◦ x2 = 0 so �R0[x;α](S) 	= 0 = R0[x; α] ◦ 0. Since x ◦ x2 = x2 so
�R0[x;α](S) 	= R0[x; α] = R0[x; α] ◦ x. Therefore R0[x; α] /∈ B�1. By a similar
argument one can show that R0[x; α] /∈ B�2.

Theorem 1.11. Let R be an α-rigid ring. Then:
(1) If R is Baer, then R0[x; α, δ] ∈ Br1 ∩ Br2 ∩ B�1 ∩ B�2.
(2) If R0[x; α, δ] ∈ Br1 ∪ Br2 ∪ B�1 ∪ B�2, then R is Baer.

Proof. Assume that R is Baer. From Proposition 1.3, Lemmas 2.2 and 2.3
in [4], we need only show that R0[x; α, δ] ∈ B�1. Let S be a nonempty subset of
R0[x; α, δ] and let T = ∪f∈SS∗

f . Then rR(T ) = rR(e) for some idempotent e ∈ R,
since R is Baer. We show that �(S) = (1− e)R0[x; α, δ] = R0[x; α, δ] ◦ (1 − e)x.
Let (x)f =

∑m
i=1 aix

i ∈ S and (x)g =
∑n

j=1 bjx
j ∈ �(S). Then aibj = 0 for all

1 ≤ i ≤ m, 1 ≤ j ≤ n, by Proposition 1.3. Thus ebj = 0 and that bj = (1 − e)bj

for all 1 ≤ j ≤ n. Hence (x)g = (1 − e)
∑n

j=1 bjx
j ∈ (1 − e)R0[x; α, δ] and that

�(S) ⊆ (1−e)R0[x; α, δ]. Now, let (x)g = (1−e)
∑n

j=1 bjx
j ∈ (1−e)R0[x; α, δ].

Since (1 − e) is an idempotent of R and R is α-rigid, so α(1 − e) = (1 − e),
δ(1 − e) = 0 and (1 − e) is a central element of R. Hence for all (x)f =∑m

i=1 aix
i ∈ S, we have (x)g ◦ (x)f = (

∑n
j=1 bjx

j) ◦ (
∑m

i=1 ai(1 − e)xi) = 0.
Thus �(S) = (1 − e)R0[x; α, δ]. Therefore R0[x; α, δ] ∈ B�1.

Assume R0[x; α, δ] ∈ Br1 ∪ Br2 ∪ B�1 ∪ B�2. By Lemmas 2.2 and 2.3 in [4],
R0[x; α, δ] ∈ B�2. From Proposition 1.9(2), R ∈ Br2. Proposition 1.4(1) in [5] and
Proposition 1.3 yield that R has a unity. Therefore R is a Baer ring.

Example 1.10 also shows that “α-rigid condition on R” in Theorem 1.11 is not
superfluous.

Corollary 1.12. LetR be anα-rigid ring. Then the following are equivalent:
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(1) R is Baer;
(2) (R[x; α, δ], +, ·) is Baer;
(3) (R0[x; α, δ],+,◦)∈ Br1 ∪ Br2 ∪ B�1 ∪ B�2.

Proof. This follows from [9, Theorem 11] and Theorem 1.11.

Proposition 1.13. Let R be an α-rigid ring. Let S be the subnearring of
R[x; α, δ] generated by the set {ex|e2 = e ∈ R}, and T a subnearring of R[x; α, δ].
If S ⊆ T and R[x; α, δ] ∈ Bij , where i ∈ {r, �} and j ∈ {1, 2}, then T ∈ Bij .

Proof. This follows from Proposition 1.5 in [4] and Lemma 1.5.

Example 1.14. Using Proposition 1.9, the following nearrings satisfy all the
Baer-type annihilator conditions discussed in this paper whenR is α-rigid Baer ring:
(i) {ax | a ∈ R}; (ii) {(x)f =

∑n
i=1 a2i−1x

2i−1 ∈ R0[x; α] | a2i−1 ∈ R, n ∈ N};
(iii) E0[x; α, δ], where E is a subring containig all idempotents of R.
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