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APOLLONIUS CIRCLES OF THE TRIANGLE IN AN ISOTROPIC PLANE

Ružica Kolar-Šuper, Zdenka Kolar-Begović and Vladimir Volenec

Abstract. The concept of Apollonius circle and Apollonius axes of an allow-
able triangle in an isotropic plane will be introduced. Some statements about
relationships between introduced concepts and some other previously studied
geometric concepts about triangle will be investigated in an isotropic plane
and some analogies with the Euclidean case will be also considered.

1. INTRODUCTION

Each allowable triangle in an isotropic plane can be set, by a suitable choice of
coordinates, into the so called standard position, i.e. that its circumscribed circle
has the equation y = x2, and its vertices are of the form A = (a, a2), B = (b, b2),
C = (c, c2) where a + b + c = 0. With the labels p = abc, q = bc + ca + ab
it can be shown that the equalities q = bc − a2, (c − a)(a − b) = 2q − 3bc,
(a − b)(b − c) = 2q − 3ca, (b − c)(c− a) = 2q − 3ab, (b − c)2 = −(q + 3bc) are
valid.

The standard triangle ABC has according to [5] the centroid G = (0,− 2q
3 ),

orthic axis with the equation y = − q
3 , the side BC has the midpoint Am with the

abscissa − a
2 and the equation y = −ax−bc, and owing to [4] it has the symmedian

AK with the equation

(1) y = −2q

3a
x + bc− q

3
,

then the Brocard’s diameter with the equation x = 3p
2q and the Lemoine line with

the equation

(2) y =
3p

q
x +

q

3
.
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Each circle in the isotropic plane has the equation of the form 2ρy = x2 + ux + w,
where ρ is its radius (see [6]). With ρ �= 0 it is a “proper” circle, and with ρ = 0 it
is “unproper” circle, which in case u2 > 4w falls into two isotropic lines. If these
two lines have the equations x = x1 and x = x2 then (x − x1)(x − x2) = 0 is
the equation of this circle. Any point with the abscissa x0 = 1

2 (x1 + x2) has the
property that, by implementing the sign, it is equally distant from all the points of
the circle. Therefore the isotropic line with the equation x = x0 is called the axis,
and the distance 1

2 (x2 − x1) is the radius of this “unproper” circle.
In the Euclidean geometry Apollonius circle Aa of the triangle ABC is the set

of points T such that |TB| : |TC| = |AB| : |AC|. It goes through the point A and
through the intersections of the line BC with the bisectors of the angle A, and its
center is at the intersection of the line BC with the Lemoine line of the triangle
ABC.

We will define the Apollonius circle Aa of an allowable triangle ABC in the
isotropic plane as the set of points T such that TB : TC = AB : AC or TB :
TC = −AB : AC. The first set of points is the isotropic line A through the point
A, and the second set of points is the isotropic line D with the equation x = d,
where in case of the standard triangle ABC we have the equation

(3) (b − d) : (c− d) = −(b − a) : (c − a),

i.e. (d − b)(a− c) + (d − c)(a − b) = 0, so therefore we get

d =
b(a − c) + c(a− b)

2a − b − c
=

q − 3bc

3a
= −2q + 3a2

3a
= −a − 2q

3a
.

With x = d from the equation y = −ax − bc of the line BC we get

y = −a · q − 3bc

3a
− bc = −q

3
,

and the achieved point BC ∩ D lies on the orthic axis of the triangle ABC. That
triangle has two more analogous Apollonius circles Ab and Ac. We have proved:

Theorem 1. Apollonius circles Aa, Ab, Ac of an allowable triangle ABC

consist of two by two isotropic lines A, D; B, E; C, F , while the lines A, B, C pass
through the points A, B, C, and the lines D, E , F pass through the intersection
of the lines BC, CA, AB with the orthic axis H of the triangle ABC. In case of
the standard triangle ABC the lines A, B, C, D, E , F have the equations x = a,
x = b, x = c, x = d, x = e, x = f , where

(4) d=−a− 2q

3a
=

q−3bc

3a
, e=−b− 2q

3b
=

q−3ca

3b
, f =−c− 2q

3c
=

q−3ab

3c
.
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The equality (3) means that the statement H(AD,BC) of harmonic relation
of the pairs of lines A, D and B, C is valid. We will also prove the statement
H(AD, EF ), i.e. the equality

(5) (a− e)(d− f) + (a − f)(d− e) = 0.

Because of (4) we get

a − e = a + b +
2q

3b
=

2q

3b
− c =

2q − 3bc

3b
, a − f =

2q − 3bc

3c
,

d− e = b − a +
2q

3ab
(a− b) =

a − b

3ab
(2q − 3ab) =

a − b

3ab
(b − c)(c− a),

d − f =
a − c

3ac
(2q − 3ac) = −c − a

3ac
(a − b)(b − c),

so the equality (5) is obviously valid. Therefore it is valid:

Theorem 2. For the lines A, B, C, D, E , F from Theorem 1 the following
statements

H(AD,BC), H(BE , CA), H(CF ,AB), H(AD, EF ), H(BE ,FD), H(CF ,DE)

are valid.
The circle Aa has the equation (x−a)(x−d) = 0, i.e. x2− (a+d)x+ad = 0.

Owing to (4) we get

a + d = −2q

3a
, ad =

1
3
(q − 3bc),

so that equation is the first out of three analogous equations

(6)

Aa ... x2 +
2q

3a
x +

1
3
(q − 3bc) = 0,

Ab ... x2 +
2q

3b
x +

1
3
(q − 3ca) = 0,

Ac ... x2 +
2q

3c
x +

1
3
(q − 3ab) = 0.

We have:

Theorem 3. Apollonius circles of the standard triangle have the equations
(6).

From the previous proof it follows

ao =
1
2
(a + d) = − q

3a
,



1242 Ružica Kolar-Šuper, Zdenka Kolar-Begovíc and Vladimir Volenec

and with x = ao from the equation y = −ax − bc of the line BC we get

y = a · q

3a
− bc =

q

3
− bc,

so the line Ao with the equation x = ao meets the line BC at the point

(9) Ao =
(
− q

3a
,
q

3
− bc

)
.

Because of
y − 3p

q
x − q

3
=

q

3
− bc− 3p

q

(
− q

3a

)
− q

3
= 0

that point lies on the Lemoine line (2). We have proved:

Theorem 4. The axes of the Apollonius circles Aa, Ab, Ac of the allowable
triangle ABC are the isotropic lines A o, Bo, Co through the intersections of the
lines BC, CA, AB with the Lemoine line of that triangle. In the standard triangle
ABC the lines Ao, Bo, Co have the equations x = ao, x = bo, x = co, where

(8) ao = − q

3a
, bo = − q

3b
, co = − q

3c
.

The lines Ao, Bo, Co from Theorem 4 will be called Apollonius axes of the
allowable triangle ABC.

HABERLAND [2, 3] has proved a number of results about radii of the Apollo-
nius circles in Euclidean geometry. Some of these results can be transferred in an
isotropic plane in the form of Theorems 6, 7, 8.

Theorem 5. Apollonius circles Aa, Ab, Ac of the standard triangle ABC

have the radii ρa, ρb, ρc given by formulae

(9) ρa =
1
3a

(c − a)(a − b), ρb =
1
3b

(a− b)(b− c), ρc =
1
3c

(b − c)(c− a).

Proof. Because of (4) we get for example

ρa =
1
2
(d−a) = −a− q

3a
= − 1

3a
[q +3(bc− q)] =

2q − 3bc

3a
=

1
3a

(c−a)(a− b).

From (9) it follows

1
ρa

+
1
ρb

+
1
ρc

=
3

(b − c)(c− a)(a− b)
[a(b − c) + b(c− a) + c(a − b)] = 0



Apollonius Circles of the Triangle in an Isotropic Plane 1243

and because of

CA2 − AB2 = (a − c)2 − (b − a)2 = (2a− b − c)(b− c) = 3a(b − c)

it is for example

ρa =
b − c

CA2 − AB2
· (c− a)(a − b) = −BC · CA · AB

CA2 − AB2
,

so we have:

Theorem 6. For the radii ρa, ρb, ρc of the Apollonius circles of the allowable
triangle the following equalities

ρa = −BC · CA ·AB

CA2 − AB2
, ρb = −BC · CA ·AB

AB2 − BC2
, ρc = −BC · CA · AB

BC2 − CA2
,

1
ρa

+
1
ρb

+
1
ρc

= 0

are valid.

Theorem 7. The distances of the Apollonius axes of the allowable triangle are
inverse proportional to the radii of their corresponding Apollonius circles.

Proof. Axes Bo and Co from Theorem 4 have the distance

(10) co − bo =
q

3b
− q

3c
= − q

3bc
(b − c),

so because of (9) we get for example

(co − bo)ρa = − q

9p
(b − c)(c− a)(a − b).

Therefore (co − bo)ρa = (ao − co)ρb = (bo − ao)ρc.

Theorem 8. The squares of the distances from Theorem 7 are, respectively,
equal to ρ2

b + ρbρc + ρ2
c , ρ2

c + ρcρa + ρ2
a, ρ2

a + ρaρb + ρ2
b , where ρa, ρb, ρc are the

radii of Apollonius circles of the considered triangle.

Proof. Because of (9) and (10) we get for example

ρ2
b + ρbρc + ρ2

c = (ρb + ρc)2 − ρbρc

=
(b − c)2

9b2c2
[c(a− b) + b(c− a)]2 − 1

9bc
(b − c)2(c − a)(a − b)

=
(b − c)2

9b2c2
[a2(b − c)2 − bc(c− a)(a − b)]
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=
(b − c)2

9b2c2
[(q − bc)(q + 3bc)− bc(2q − 3bc)]

=
(b − c)2

9b2c2
q2 = (co − bo)2.

Let us mention that in Euclidean geometry the analogous equality ρ2
b + ρbρc +

ρ2
c = SbS

2
c means that Apollonius circles (Sb, ρb) and (Sc, ρc) of the triangle ABC

intersect at the angle π
3 .

The following two theorems transfer in an isotropic plane some results of
COURT [1] from Euclidean geometry.

Theorem 9. The potential axes of the circumscribed circle of the allowable
triangle with its particular Apollonius circles are the symmedians of that triangle,
which are simultaneously the polar lines of the intersections of its sides with its
Lemoine line with respect to its circumscribed circle.

Proof. The circle Aa from (6) and circumscribed circle with equation y = x2

have the potential axis with the equation (1). The point (xo, yo) has with respect
to circumscribed circle the polar line with equation y + yo = 2xox. In case of the
point Ao from (7) this equation gets the form of

y +
q

3
− bc = −2q

3a
x,

and this is again the equation (1).

Theorem 9 implies that the other intersections of symmedians AK , BK, CK

of the triangle ABC with its circumscribed circle lie on the lines D, E , F , and then
these intersections are the points D = (d, d2), E = (e, e2), F = (f, f2), where the
abscissas d, e, f are given with (4).

The line BF , where B = (b, b2) and F = (f, f2), has obviously the equation
y = (b + f)x − bf , and the line CE has the equation y = (c + e)x − ce. For this
reason L = BF ∩ CE has the abscissa

l =
bf − ce

b + f − c − e
.

Since because of (4) we get

bf − ce =
2q

3bc
(c2 − b2) =

2q

3bc
a(b − c),

b + f − c− e = 2(b − c) − 2q

3bc
(b − c) =

2(b − c)
3bc

(3bc− q),
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it follows

(11) l = − aq

q − 3bc
.

For the point L and analogously for the points M and N the following theorem is
valid.

Theorem 10. If the pointsD, E , F are the second intersections of symmedians
AK , BK, CK of an allowable triangleABC with its circumscribed circle, then the
points L = BF ∩CE , M = CD∩AF , N = AE∩BD lie on the fourth harmonic
lines of Brocard’s diameter of the triangle with respect to pairs of isotropic lines
A, D; B, E; C, F , which present the Apollonius circles of that triangle.

Proof. With k = 3p
2q it is necessary to prove the following equality

l − a

l − d
:
k − a

k − d
= −1.

Owing to (11) and (4) we get

l − a = − aq

q − 3bc
− a = −a

2q − 3bc

q − 3bc
,

l − d = − aq

q − 3bc
− q − 3bc

3a
= −3q(bc− q) + (q − 3bc)2

3a(q − 3bc)

=
2q2 + 3bcq − 9b2c2

3a(q − 3bc)
=

(q + 3bc)(2q − 3bc)
3a(q − 3bc)

,

k − a =
3p

2q
− a = − a

2q
(2q − 3bc),

k − d =
3p

2q
− q − 3bc

3a
=

9bc(bc− q) − 2q2 + 6bcq

6aq

=
9b2c2 − 3bcq − 2q2

6aq
= −(q + 3bc)(2q − 3bc)

6aq
,

therefore
l − a

l − d
= − 3a2

q + 3bc
,

k − a

k − d
=

3a2

q + 3bc
,

which proves the required equality.

Corollary 1. If L, M, N are isotropic lines through the points L, M , N from
Theorem 10 and T Brocard’s diameter of the triangle ABC, then the following
statements H(AD,LT ), H(BE ,MT ), H(CF ,NT ) are valid.
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Theorem 11. The other intersections U and D ′ of the median AG of an
allowable triangle ABC with its circumscribed circle and its Apollonius circle A a

are symmetrical with respect to midpoint A m of its side BC .

Proof. The points A = (a, a2) and U = (u, u2) on circumscribed circle of the
standard triangle ABC have the joint line with the equation y = (a + u)x− au. If
u = 2q

3a , then −au = −2q
3 , and in this case the line AU passes through the centroid

G = (0,−2q
3 ) of the triangle ABC. The point D′ has abscissa d. Since, owing

to (4) we have equation d + u = −a then the midpoint of points U and D ′ has
abscissa − a

2 , and therefore it is the midpoint Am of the side BC , which lies on the
median AU of the triangle ABC.

Corollary 2. The median AG of the standard triangle ABC has equation

y =
(

a +
2q

3a

)
x − 2q

3
,

and its second intersection with circumscribed circle of that triangle is the point
U = (u, u2), where u = 2q

3a . Analogous statements are valid for medians BG and
CG.

Corollary 3. If U is isotropic line through the point U from Theorem 11 and
D the line from Theorem 1, then the lines D i U are symmetrical with respect to
bisector of the side BC

Let us prove one lemma (see [6]).

Lemma 1. If any line through the given point T = (x, y) meets the circle with
the equation

(12) 2ρy = x2 + ux + v

at the points T1 and T2, then the product T1T · T2T is constant and the equality

(13) T1T · T2T = x2 + ux + v − 2ρy

is valid.

Proof. Let Ti = (xi, yi) (i = 1, 2). Then the equalities

(14) 2ρyi = x2
i + uxi + v (i = 1, 2)

are valid. The line with the equation

(15) 2ρy = (x1 + x2 + u)x + v − x1x2
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passes through the points T1 and T2 because, for example, for the the point T1

according to (14) we get

(x1 + x2 + u)x1 + v − x1x2 = x2
1 + ux1 + v = 2ρy1.

The point T = (x, y) lies on the line T1T2, and so the equation (15) is valid for it.
Now we get

T1T · T2T = (x − x1)(x− x2)

= x2 − (x1 + x2)x + x1x2 = x2 + ux + v − 2ρy

because of (15) the following equality x1x2 − (x1 + x2)x = ux + v − 2ρy holds.

The constant product from lemma is called power of the point T with respect
to a considered circle.

Corollary 4. The power Π of the point T = (x, y) with respect to the circle
with the equation (12), is given by the equality

Π = x2 + ux + v − 2ρy.

We will say that circle (12) has radius ρ. Specially, the circumscribed circle of
the standard triangle ABC has radius R = 1

2 , and the power of the point T = (x, y)
with respect to that circle with the equation y = x2 is x2 − y.

Corollary 5. Let T be the intersection of the lines T 1T2 and T3T4. The points
T1, T2, T3, T4 lie on one circle if and only if the following equality TT 1 · TT2 =
TT3 · TT4 is valid.

Corollary 6. Let T1, T2, T be points on one line and let point T 3 does not lie
on that line. The circle through the points T 1, T2, T3 touches the line TT3 at the
point T3 if and only if the equality TT 1 · TT2 = TT 2

3 holds.
With the labels from Theorem 11 according to Corollary 5 the following equal-

ities hold
AAm · UAm = BAm ·CAm = −1

4
BC2,

and since UAm = −D′Am it follows

AAm · D′Am =
1
4
BC2 = BA2

m.

According to Corollary 6 it means that circle through the points A, B, D′ touches
the line BAm, i.e. the line BC, at the point B. Analogously, the circle through the
points A, C, D′ touches the line BC at the point C. Therefore, we have:
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Theorem 12. Circles through the point A, which touch the line BC at the
points B and C, have for the second intersection the point D ′ from Theorem 11.

In Euclidean case the statement of Theorem 12 can be found in SMEENK [7].

Corollary 7. The Apollonius circle Aa of the allowable triangle ABC and
two circles from Theorem 12 belong to one pencil of circles and potential axis of
that pencil is the median AG of the triangle ABC. The point D ′ from Theorem 11
has with respect to these three circles the same power which equals to 1

4BC2.

HABERLAND [3] has the statements of Theorem 12 and Corollary 7 for Euclidean
case.
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