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LIAOWISE REDUCED REORDERING AND SPECTRUM THEOREMS
FOR DIFFERENTIAL SYSTEMS ON COMPACT

MANIFOLDS AND APPLICATIONS

Xiongping Dai and Wenxiang Sun

Abstract. For any differential system �V of class C1 on an n-dimensional com-
pact, smooth, and boundaryless riemannian manifoldM , we consider the Liao
frame skew-product flow on the reduced orthonormal frame bundle C�(M, �V )
naturally induced by �V and, using some technical ideas due to S. Liao, we
prove a ‘reduced reordering’ theorem and a ‘reduced spectrum’ theorem. As
consequences, we also provide a reordering lemma for the natural skew-product
flow (F(k), {Vt}) on the flag bundles F(k) of the tangent bundle TM, and
give two characteristic spectra for parallelepiped. In addition, we obtain the
uniformity of some non-uniformly expanding (resp. contracting) sets.

1. INTRODUCTION

Let M be an n-dimensional compact, smooth, riemannian manifold without
boundary, n ≥ 2. Assume that a smooth Riemann structure 〈·, ·〉 on M and its
induced norm ‖ · ‖ on TM have been fixed.

Let �V be an arbitrarily given differential system of class C1; namely, a C1

vector field on M . Then, in a natural way, �V induces a C1-flow on M , written as

(1.1) {Vt}t∈R : M →M

where R denotes the real t-time axis. We identify (M, �V ) with (M, {Vt}). It further
induces another one-parameter group of transformations

(1.2) {Vt}t∈R : TM→ TM
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on the tangent bundle TM, where Vt = TVt : TM → TM is the spatial derivative
of the diffeomorphism Vt : M →M for each t ∈ R.

For any given integer �, 1 ≤ � ≤ n, as usual in Liao theory, let U�, F� and F �
� , re-

spectively, stand for the �-frame bundle, orthogonal �-frame bundle, and orthonormal
�-frame bundle of tangent space TM, see [12, 5, 6]. The well-known Gram-Schmidt
orthogonalizing process gives rise to an orthogonalizing map, written as

(1.3) Ort : U� → F�.

Put

(1.4) Pri : U� → TM; (x; �u1, . . . , �u�) �→ �ui

for each i = 1, . . . , �. Based on (M, �V ), Liao in [12] introduced the following
frame skew-product flows:

(1.5)

{Vt}t∈R : U� → U�

{Vt}t∈R : F� → F�

{V�
t}t∈R : F �

� → F �
�

defined, respectively, by

Vt(x;�γ) = (Vt(x);Vt ◦ Pr1(x;�γ), . . . ,Vt ◦ Pr�(x;�γ))

Vt(x;�γ ′) = Ort ◦ Vt(x;�γ ′)

V
�
t(x;�γ

′′) =
(
Vt(x);

Pr1 ◦ Vt(x;�γ ′′)
‖Pr1 ◦ Vt(x;�γ ′′)‖ , . . . ,

Pr� ◦ Vt(x;�γ ′′)
‖Pr� ◦ Vt(x;�γ ′′)‖

)
for all (x;�γ) ∈ U�, (x;�γ ′) ∈ F� and (x;�γ ′′) ∈ F �

� . These skew-product flows are all
well defined; see [12, 18, 5, 6] for the details. For the sake of simplicity, sometimes
we will write a frame (x;�γ) as �γx.

Since the vector field �V is of class C1, the so-called Liao qualitative functions

(1.6) ωk : F �
� → R, k = 1, . . . , �

given by

(1.6a) ωk(�γx) =
d

dt
|t=0‖Prk ◦ Vt(�γx)‖ ∀ (x;�γ) ∈ F �

� ,

all are well defined and continuous with respect to (x;�γ) ∈ F �
� ; see [12, 6]. The

importance of the functions {ω1, . . . , ω�} may be seen via Liao’s Reordering Lemma
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([14, Theorem 4.1]) and Liao’s Spectrum Theorem ([14, Theorem A] or [15, Propo-
sition 2.1] or see [6, Corollary 5.4]), restated in Section 2 below. We realize little by
little that Liao’s Spectrum Theorem is a powerful tool to the theory of skew-product
flows; see [6-8, 15, 16] for some applications.

In the study of ordinary differential equations, it is a very useful technique
reducing the order of systems. In this paper, we will give a Liaowise reduced
reordering theorem and a reduced spectrum theorem for �V (Theorem 1.1 below).

Set

(1.7) C�(M, �V ) =
⋃

x∈M

C�(x, �V ),

whose fiber over x is defined as follows:
(1.7a)

C�(x, �V ) =
{
(x;�γ) ∈ F �

n−1(x) | 〈�V (x),Prk(�γx)〉x = 0 for 1 ≤ k ≤ n − 1
}
.

It is clear that C�(M, �V ) is a compact subset of F �
n−1. By an abuse of symbols,

we denote all the bundle projections by π : (x;�γ) �→ x. Note that, unlike F �
n−1,

C�(M, �V ) is not a vector bundle when �V has singularities, but (C �(M, �V ), π,M)
is a topological subbundle of (F �

n−1, π,M). It is called the reduced orthonormal
(n − 1)-frame bundle of �V . C�(M, �V ) will be a useful space when dealing with
Liao theory; an example is to extend the concept of Liao reduced style number [11]
to the closed invariant set meeting singularities. In the present paper, we use this
bundle together with some technical ideas from [13, 14] to prove the reduced Liao
reordering and spectrum theorem. This theorem guarantees that the reduced system
will keep all the nontrivial Lyapunov exponents and one can rearrange them in a
good order (here by trivial exponent we mean what given by the vector field �V (x)
directions for a.e. x ∈M ).

For any (x;�γ) ∈ C�(M, �V ), we arbitrarily take a frame (x; γ̃) ∈ F�
n such that

(1.8) (x;�γ) = (x; Pr2(γ̃x), . . . ,Prn(γ̃x)).

If we put

(1.9)
Θt(x;�γ) = (Vt(x); Pr2 ◦Vt(γ̃x), . . . ,Prn ◦ Vt(γ̃x))

Θ�
t(x;�γ) = (Vt(x); Pr2 ◦V

�
t(γ̃x), . . . ,Prn ◦ V

�
t(γ̃x))

where Vt : Fn → Fn and V
�
t : F

�
n → F �

n as in (1.5), respectively, induced naturally
by �V in the case � = n, we then obtain another well-defined skew-product flow
based on (M, {Vt}):

(1.10) {Θ�
t}t∈R : C�(M, �V ) → C�(M, �V ),
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since Θ�
t(x;�γ) does not depend upon the explicit choice of γ̃x corresponding to �γx

as in (1.8). If we define

(1.11) ω∗
k : C�(M, �V ) → R (k = 1, . . . , n− 1)

in the way

(1.11a) ω∗
k(�γx) =

d

dt
|t=0‖Prk ◦ Θt(�γx)‖ ∀ (x;�γ) ∈ C�(M, �V ),

then each of ω∗
k, k = 1, . . . , n−1, makes sense and is continuous. Call ω∗

1 , . . . , ω
∗
n−1

the reduced qualitative functions of �V . It is easy to see that

(1.11b) ω∗
k(�γx) =

d

dt
|t=0‖Prk+1 ◦ Vt(γ̃x)‖ = ωk+1(γ̃x)

and

(1.11c)
1
T

log ‖Prk ◦ΘT (�γx)‖ =
1
T

∫ T

0
ω∗

k(Θ�
t(�γx)) dt.

For any given µ ∈ Merg(C�(M, �V ), {Θ�
t}), the set of all ergodic measures of

(C�(M, �V ), {Θ�
t}), write

(1.12) ϑ∗k(µ) =
∫
C�(M,�V )

ω∗
k(�γx) dµ(�γx) (k = 1, . . . , n− 1).

The following is our main theorem.

Theorem 1.1. For any given C1 differential system �V on M , the following
properties are satisfied.

(1) For any µ ∈ Merg(C�(M, �V ), {Θ�
t}) and for any permutation k �→ p(k) of

{1, . . . , n− 1}, there exists some µ′ ∈ Merg(C�(M, �V ), {Θ�
t}), such that

π∗(µ) = π∗(µ′) ∈ Merg(M, �V ), where π : C�(M, �V ) → M .

ϑ∗k(µ
′) = ϑ∗p(k)(µ) for k = 1, . . . , n− 1.

(2) If ν ∈ Merg(M, �V ) and µ ∈ Merg(C�(M, �V ), {Θ�
t}) satisfy π∗(µ) = ν, then

{ϑ∗k(µ) | 1 ≤ k ≤ n− 1} ⊂ Sp(�V ; ν)

where Sp(�V ; ν) denotes the Oseledec characteristic spectrum of ν counted
with multiplicity.
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(3) For any given non-atomic measure ν ∈ M erg(M, �V ), if µ1 and µ2 both
belong toMerg(C�(M, �V ), {Θ�

t}) with π∗(µ1) = π∗(µ2) = ν, then

Sp∗(�V ; ν) := {ϑ∗k(µ1) | 1 ≤ k ≤ n − 1} = {ϑ∗k(µ2) | 1 ≤ k ≤ n − 1}
counting with multiplicity and ignoring the order.

We call the statement (1) of Theorem 1.1 above the reduced reordering lemma,
(2) and (3) the reduced spectrum theorem of �V .

Corollary 1.2. If ν ∈ Merg(M, �V ), with ν({singularities of �V }) = 0, then ν
is non-uniformly hyperbolic if and only if Sp ∗(�V ; ν) contains no zero.

Liao in [14] proved the non-reduced reordering lemma, which is an important
tool to Liao theory as stated before. In his proof, one needs the natural linear one-
parameter group {Vt} : TM → TM. For the reduced case, however, one can not
construct such a corresponding global linear one-parameter group on the reduced
tangent bundle

(1.13) �V ⊥ = {�v ∈ TxM | x ∈M, 〈�V (x), �v〉x = 0}.
If one restricts oneself to the regular point set

(1.14) R(�V ) =
{
x ∈M | �V (x) �= �0x

}
,

although there exists a natural linear skew-product flow

(1.15) {V∗
t }t∈R : �V ⊥(R(�V )) → �V ⊥(R(�V )),

where

(1.15a) �V ⊥(R(�V )) =
{
(x;�v) ∈ �V ⊥ | x ∈ R(�V )

}
,

introduced by Liao in [12], �V ⊥(R(�V )) and further C�(R(�V ), �V ) both are not com-
pact when �V has singularities. This point is crucial because it causes that one
can not construct the “good” measure required by the given permutation in Theo-
rem 1.1 by the standard results and techniques of the classic ergodic theory [19,
Chap. 6], and the Liao Measure Lifting Lemma [14] is not valid as well. De-
spite there is no natural linear skew-product flow on the reduced tangent bundle
corresponding to the compact system (C�(M, �V ), {Θ�

t}), along every given orbit,
say Orbx = {Vt(x) | t ∈ R}, we can always construct a family of natural linear
isomorphisms

(1.16) V∗
x,t : H(�γx) → H(Θ�

t(�γx)) (∀ t ∈ R)
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corresponding to Θ�
t : C�(x, �V ) → C�(Vt(x), �V ) and a reduced (n− 1)-frame (x;�γ)

in C�(M, �V ), where H(�γx) means the linear subspace generated by the frame �γx in
TxM . That is the most key idea for the proof of our reduced reordering lemma in
Section 3.

In the case where ν satisfies that ν(R(�V ) = 1; i.e. ν is non-atomic, Liao,
in his survey [13], announced that Sp∗(�V ; ν) is independent of the choice of the
lifting measure µ in the statement (3) of Theorem 1.1 above. But no proof is
available, since he did not publish his proof. Under the condition of the statement
(3), one can regard ν as inMerg(R(�V ), {Vt}) if identifying ν with the conditional
measure ν|R(�V ), but we still have to consider the compact bundle C �(M, �V ) by
the same reason of non-compactness. On the other hand, despite we finally gain
µ1(C�(R(�V ), �V )) = µ2(C�(R(�V ), �V )) = 1 and then both µ1 and µ2 naturally
induce measures µ∗1 and µ∗2 lying in Merg(F

�
n, {V�

t}) respectively, covering ν, the
fact

∫
F �

n
ω1 dµ

∗
1 =

∫
F �

n
ω1 dµ

∗
2 is still not trivial.

We call Sp∗(�V ; ν), defined by Theorem 1.1, the reduced spectrum of �V w.r.t
ν, or simply, the reduced spectrum of ν. The reduced and non-reduced spectrum
theorems (Theorems 1.1 above and 2.1 below) provide convinced evidence for the
computation of Lyapunov exponents by continuous Gram-Schmidt orthonormaliza-
tion in mechanics, for example, Christiansen-Rugh [4].

In order to show the non-trivialness of Liaowise spectrum theorems, let’s con-
sider the following linear system on R

2:

Example 1.1. Let

(1.17) Vt =
[
et e2t

0 e−t

]
and A(t) =

dVt

dt
V−1

t ∀ t ∈ R.

Then, the differential equations

(1.18)
dy

dt
= A(t)y ((t, y) ∈ R × R

2)

has the fundamental matrix solution Vt. As usual, let HA be the hull of the real
2× 2-matrix-valued function A(t). Then, based on the translation flow (HA, {Tt})
there is a natural linear skew-product flow (HA × R

2, {T̂t}) by putting
T̂t(x; y) = (Ttx;Φx(t)y) ∀ t ∈ R, ∀ (x; y) ∈ HA × R

2.

Where, Φx(t) denotes the standard fundamental matrix solution of the equations

dy

dt
= x(t)y ((t, �v) ∈ R × R

2)

for any x ∈ HA.
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Now, in the situation of Example 1.1, we consider the case at the base point
x = A. Then, Φx(t) = VtV−1

0 . Clearly, for the standard basis frame �γx = (�e1, �e2),
where �e1 = (1, 0)T and �e2 = (0, 1)T in R

2, we have

(1.19) lim
t→∞

1
t

log ‖Φx(t)(�e1)‖ = 1

(1.20) lim
t→∞

1
t

log ‖Φx(t)(�e2)‖ = 2

and

(1.21) lim
t→∞

1
t

log ‖Pr2 ◦ Ort ◦ Φx(t)(�γx)‖ = −1 �∈ {1, 2}.

For any orthonormal frame �γ of R
2, by the action of Φx(t), we have

(1.22) lim
t→∞

1
t

log vol�γ(t) = 0.

As applications of the reordering and spectrum theorems, we will, in Section 2,
provide a reordering lemma (Theorem 2.3 below) for the natural skew-product flow
(F , {Vt}) on the flag bundlesF of the tangent bundle TM, which is not obvious from
the classical smooth ergodic theory. In addition, we shall consider the characteristic
spectra of parallelepiped in the tangent bundle, see Theorems 4.1 and 4.2 below
in Section 4. This kind of spectrum theorems are very different from the existent,
such as the one [1, §5.3.2] which says that, almost all k-dimensional parallelepiped
Π(�γx) spanned by frames (x;�γ) ∈ F �

k, 1 ≤ k ≤ n, have the Lyapunov exponent of
volume; that is to say,

(1.23) lim
t→±∞

1
t

log vol(Π(Vt(�γx))) = λ(k)

where λ(k) is some real number determined by the frames �γx. In fact, λ(k) is exactly
the sum of some k numbers in Sp(�V ; ν). Our Theorems 4.1 and 4.2 are, however,
devoted to the converse problem whether, for any given sum λ(k) of k exponents in
Sp(�V ; ν), there are many Π(�γx), (x;�γ) ∈ F �

k , exactly having the Lyapunov exponent
of volume λ(k).

As the end of this Introduction, let us state the main reason why we are interested
in the reduced reordering and spectrum theorem.

According to Pesin theory, if the vector field �V is of class C1+α, 0 < α ≤ 1
and ν ∈ Merg(M, �V ) is non-uniformly hyperbolic; i.e., the Lyapunov exponents
λk(ν) �= 0, then for ν-a.e. Oseledec regular points x ∈ M , there exist the C1

stable and unstable manifolds W s/u(x). In the case of class C1, Pugh’s counter-
example [19] shows that the stable and unstable manifolds are not necessarily exis-
tent at certain regular non-uniformly hyperbolic point. Liao [13] showed that Pugh’s
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“bad” point does not lie in his regular point set constructed for the multiplicative
ergodic theorem. He had suggested us to consider the existence of the stable and
unstable manifolds at the points contained in his regular set for the C 1 vector field
�V .
To attack this problem stated above, hopefully Liao’s reduced standard systems

of differential equations of �V will be helpful. Based on Liao’s theory, for any
(x;�γ) ∈ C�(M, �V ) there is an associated nonlinear standard system

(1.24)
dy

dt
= R̃�γx(t)y + ṼRem(�γx)(t, y),

see [18, Chap. 2] or [9]. Here R̃�γx(t) is a upper triangular n − 1 by n − 1 matrix
whose diagonal entries are just the reduced qualitative functions ω ∗

k(Θ�
t(�γx)), k =

1, . . . , n−1. Therefore, if the reduced spectrum Sp∗(�V ; ν) has no zero-value, then
the reduced Liao linearization equations along the orbit Orbx under the movable
frames {Θ�

t(�γx) | t ∈ R}

(1.25)
dy

dt
= R̃�γx(t)y ((t, y) ∈ R × R

n−1)

is non-uniformly hyperbolic. Using the Reduced Reordering Lemma proved in the
present paper, we can choose frames (x;�γ) so that the diagonal entries of R̃�γx(t)
have a “good” order for all t ∈ R.

On the other hand, in the study of the qualitative theory of �V , we often need
to consider the Poincaré cross sections SVt(x) along a regular orbit Orbx and the
naturally induced cross-section maps Pt : Sx → SVt(x). It turns out that (1.16) is
its linearization and under the moving reduced frame Θ�

t(�γx), (1.16) is represented
as (1.25). As mentioned above, any hyperbolicity of �V is reflected to (1.25) by
our reduced spectrum theorem. Moreover, its small perturbed equation (1.24) really
embodies the structure of orbits near Orbx from Liao’s theory of standard systems
of differential equations [18, 9]. Therefore, comparing with Liao’s non-reduced
version (Theorems 2.1 and 2.2 below), although the Liao’s is powerful for general
smooth linear skew-product flows over a compact system, the reduced one is more
convenience in the studying of the qualitative theory of vector fields. The following
is an explicit simple example.

Corollary 1.3. Let M0 be a �V -invariant closed subset in M , which contains
no singularities.

(1) If every ν ∈ Merg(M, �V ) supported on M0 is non-uniformly contracting in
the sense Sp∗(�V , ν) ⊂ (−∞, 0), then M0 is a uniformly contracting subset
of �V .
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(2) If every ν ∈ Merg(M, �V ) supported on M0 is non-uniformly expanding in
the sense Sp∗(�V , ν) ⊂ (0,+∞), then M0 is a uniformly expanding subset
of �V .

This result is a continuous-time version of the main Theorem A of [2, 3].
However, with the aids of the reduced qualitative functions ω∗

k and the reduced
spectrum Sp∗, we can give a very simple proof in Section 5.

2. ON LIAO’S REORDERING AND SPECTRUM THEOREM

To avoid using Oseledec’s theorem in proving his spectrum theorem below, Liao
first proved his reordering lemma (Theorem 2.2 below). We now will give a simple
proof of Liao’s spectrum theorem based on Oseledec’s theorem.

Theorem 2.1. (Liao’s spectrum theorem). For any given ν ∈ Merg(M, �V ), if
µ ∈ Merg(F

�
n, {V�

t}) covers ν via π; that is to say, π∗(µ) = ν, then

Sp(�V ; ν) =
{∫

F
�
n

ωk dµ | k = 1, . . . , n
}

where π : F �
n � (x;�γ) �→ x ∈M is the bundle projection, ωk as in (1.6) in the case

� = n.

Proof. Let µ ∈ Merg(F
�
n, {Vt}) is a lifting of ν ∈ Merg(M, �V ) via the bundle

projection π. From the Birkhoff ergodic theorem, we can take a {V�
t}-invariant set

Vµ of µ-full measure lying in F �
n such that for each (x;�γ) ∈ Vµ

(2.1) ϑk(µ) :=
∫

F
�
n

ωk dµ = lim
t→±∞

1
t

∫ t

0

ωk(V�
τ (�γx)) dτ k = 1, . . . , n.

Let Γ (ν) be the Oseledec regular subset of (�V ; ν) in M . Put

(2.2) L(µ) = Vµ

⋂
π−1(Γ (ν)).

Obviously, for every (x;�γ) ∈ L(µ), the Liao global linearization equations along
the orbit Orbx under the base (x;�γ)

(2.3)
dy

dt
= R�γx(t)y ((t, y) ∈ R × R

n)

defined in [12] (or see [6]), is Lyapunov-Perron regular. This implies

(2.4) Sp(�V ; ν) = {ϑk(µ) | k = 1, . . . , n}
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and the proof is thus complete.

Theorem 2.2. (Liao’s Reordering Lemma). If µ ∈ Merg(F
�
� , {V�

t}), 2 ≤ � ≤ n,
then, to any permutation p : {1, . . . , �} → {1, . . . , �}, there corresponds some µ̄ ∈
Merg(F

�
� , {V�

t}) such that π∗(µ) = π∗(µ̄) and ϑp(k)(µ) = ϑk(µ̄) for k = 1, . . . , �.
Here ϑk is defined as in (2.1).

We next present an equivalent formulation for Liao’s Reordering Lemma using
the terms of flag bundle. Let F be the flag bundle whose fiber Fx over x ∈ M is
the set of flags F1x ⊂ · · · ⊂ Fnx = TxM with dimFix = i. Then there is a natural
flow on F induced by (M, �V ), written simply as (F , {Vt}). We now define the
projection

(2.5) P : F �
n → F

by

(2.5a) P (x;�γ) = (x; H(Pr1�γx) ⊂ H(Pr1�γx,Pr2�γx) ⊂ · · · ⊂ H(�γx))

where H(x;�v1, . . . , �vi) means the linear subspace of TxM spanned by the frame
(x;�v1, . . . , �vi). Clearly P is surjective and continuous. In addition, we easily see
that

F �
n

V�
t−−−−→ F �

n�P P

�
F Vt−−−−→ F�π π

�
M

Vt−−−−→ M

∀ t ∈ R

is commutative and hence P is a semi-conjugacy from (F�
n, {V�

t}) to (F , {Vt}).
Using Liao’s measure lifting lemma [14] we have

(2.6) P∗(Merg(F �
n, {V�

t})) = Merg(F , {Vt}).

For given ν ∈ Merg(M, �V ), let Sp(�V ; ν) = {λ1 ≥ · · · ≥ λn} and µ ∈
Merg(F , {Vt}) covering ν. Then, by Theorems 2.1 and 2.2, there is a correspond-
ing permutation p : {1, . . . , n} → {1, . . . , n} such that for µ-a.e. flag (x; F1 ⊂
· · · ⊂ Fn), there exists a frame (x;�v1, . . . , �vn) in F �

n which generates the flag (i.e.,
{�v1, . . . , �vi} generates Fix for i = 1, . . . , n) corresponding to the exponents λp(i),
i.e., λ(�vi) = λp(i).

If a permutation p has been chosen in advance, then can we find some µ ∈
Merg(F , {Vt}) realizing it? The answer is positive.
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Theorem 2.3. Suppose ν lies inMerg(M, �V ). If Sp(�V ; ν) = {λ1 ≥ · · · ≥ λn}
and p : {1, . . . , n} → {1, . . . , n} is a permutation, there is µ∗ ∈ Merg(F , {Vt})
such that

(1) π∗(µ∗) = ν;
(2) for µ∗-a.e. flag (x; F1 ⊂ · · · ⊂ Fn) ∈ F , there exists a frame (x; �w1, . . . , �wn)

∈ F �
n which generates the flag and such that (�w 1, . . . , �wn) is a normal base

of TxM corresponding to the exponents λ p(i).

Proof. For the permutation p, we choose some µ ∈ Merg(F
�
n, {V�

t}) covering
ν realizing it, by using Theorems 2.1 and 2.2; that is to say,

(2.7) ϑi(µ) = λp(i) i = 1, . . . , n.

Take µ∗ = P∗(µ), where P : F �
n → F . Obviously π∗(µ∗) = ν. From Oseledec’s

theorem and the partial linearization equations along orbits under partial movable
frames [6], the statement (2) follows easily.

For the flag bundle F (�), 1 ≤ � < n, there is the reordering lemma similarly.

With (F , {Vt}) as a bridge, to Theorem 2.1 there is a more straightforward
proof using [1, Theorems 6.3.1 and 5.3.1]. In addition, this idea also works for the
reduced spectrum theorem. However, it is not enough to Theorem 2.3.

Indeed, we assume the situation described in Theorem 2.3. By [1, Theo-
rem 6.3.1], for λ(k) = λp(1) + · · ·+ λp(k) there exists a {ϕt

k}t∈R-invariant measure
µk which realizes λ(k), where {ϕt

k} : Gk(n) → Gk(n) is the natural flow on the
Grassmannian bundle Gk(n) induced by {Vt} as in Arnold [1]. But it is the point,
that it is not necessarily right that there exists some µ∗ ∈ Merg(F , {Vt}) which
just covers every µk chosen by the natural projection Pk : F → Gk(n); (x; F1 ⊂
· · · ⊂ Fn) �→ (x; Fk) for k = 1, . . . , n. Maybe the important [1, Theorem 1.6.13]
will have ones try to prove Theorem 2.3 as follows. Let ν be an ergodic measure
for the flow (M, �V ), and let λ1 ≥ · · · ≥ λn be the corresponding Lyapunov ex-
ponents. Consider the flow on Ω = M , with the invariant measure P = ν. Over
this dynamical system, we take the RDS (random dynamical system) (F , Vt) on the
flag bundle. Suppose a permutation p is given. For ν-a.e. x ∈M , let Kx ⊂ Fx be
the set of flags (x; F1 ⊂ · · · ⊂ Fn) which satisfies the assumptions of the statement
(2) of Theorem 2.3. This defines a random compact set K which satisfies the as-
sumptions of [1, Theorem 1.6.13]. Let I(Vt|K) be the set of probability measures
on F , supported on K (see [1, Definition 1.6.4]), which project to ν, and which
are invariant by the flow {Vt}. That theorem then says that I(Vt|K) is compact,
convex and non-empty. By the Krein-Milman theorem, I(Vt|K) contains an ergodic
measure. This completes the proof. However, there is in fact an essential gap in
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the discussion above. If the ergodic system (M, {Vt}; ν) has the simple Lyapunov
spectrum, K is obviously a random compact set. In general case, the assertion that
K is a random set is nontrivial! The key difficulty is that we do not know how to
show that the mapping M � x �→ Kx ⊂ Fx is measurable.

Conversely, Theorem 2.3 trivially implies Liao’s Reordering Lemma. However,
in the case of the reduced one stated in Theorem 1.1, it becomes very nontrivial.
We shall explain this as follows.

We now define the projection P̄ : C�(M, �V ) → F as follows: For any given
�γx = (x;�v1, . . . , �vn−1) ∈ C�(M, �V ), take some γ̃x = (x;�v0, �v1, . . . , �vn−1) ∈ F �

n;
Let P̄ (�γx) = P (γ̃x) as in (2.5). Then P̄ ◦ Θ�

t = Vt ◦ P̄ for all t ∈ R. But we
note that here P̄ is not surjective and hence the similar formula to (2.6) does not
exist. In view of this, for the permutation p : {1, . . . , n− 1} → {1, . . . , n − 1} in
Theorem 1.1, although there exists some µ̄∗ ∈ Merg(F , {Vt}) projecting on π∗(µ̄)
realizing it, it is not necessary to exist some µ̄′ ∈ Merg(C�(M, �V ), {Θ�

t}) projecting
on µ̄∗ via P̄ .

3. THE REDUCED REORDERING AND SPECTRUM THEOREM

This section is devoted to the proofs of the main results. Before starting with the
proof, we recall some notations for ergodicity. Suppose that X is a given compact
metrizable space and {ft} : X → X a given one-parameter group of transformations.
For each m ∈ Merg(X, {ft}), Qm(X, {ft}) denotes the set of all quasi-regular
points corresponding to m; i.e., x ∈ Qm(X, {ft}) if and only if for all ϕ ∈ C(X),
the set of all real continuous functions on X , there exist

(3.1) lim
T→±∞

1
T

∫ T

0

ϕ(ft(x)) dt =
∫

X

ϕ dm.

According to Birkhoff ergodic theorem [19], Qm(X, {ft}) is an {ft}-invariant Borel
subset of X with m(Qm(X, {ft})) = 1.

We first prove the reduced reordering theorem:

Theorem 3.1. (Reduced Reordering Lemma). For any µ̄ ∈ Merg(C�(M, �V ),
{Θ�

t}) and any permutation k �→ p(k) of {1, . . . , n−1}, there is µ̄ ′ inMerg(C�(M,
�V ), {Θ�

t}), such that
(a) π∗(µ̄) = π∗(µ̄′) ∈ Merg(M, �V ).

(b) ϑ∗k(µ̄
′) = ϑ∗p(k)(µ) for k = 1, . . . , n− 1.

Where ϑ∗k is defined as in (1.12).
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Proof. For any (x;�γ) ∈ C�(M, �V ), denote by H(�γx) the linear subspace of
TxM generated by the frame �γx. Write

(3.2) Gn−1 =
{

(x; H(�γx)) | (x;�γ) ∈ C�(M, �V )
}

the Grassmannian bundle whose fiber over x ∈M is

Gn−1(x) =
{

(x; H(�γx)) | (x;�γ) ∈ C�(x, �V )
}
,

where we regard (x; H(�γx)) as a point of Gn−1. Gn−1 is a compact metrizable
space. Else, for any (x; H) ∈ Gn−1, if H = H(�γx) for some (x;�γ) ∈ C�(M, �V ), we
then have (Vt(x); H(Θ�

t(�γx)) ∈ Gn−1(Vt(x)) for all t ∈ R. If (x;�γ′) ∈ C�(M, �V )
is another frame such that H(�γx) = H(�γ ′x), we then easily see that H(Θ�

t(�γx)) =
H(Θ�

t(�γ
′
x)). Setting

ϕt(x; H) = (Vt(x); H(Θ�
t(�γx))

we then obtain a well-defined skew-product flow based on (M, {Vt})

(3.3) {ϕt}t∈R : Gn−1 → Gn−1.

In order to prove Theorem 3.1, we first show the following special case.

Lemma 3.1. For any integer 1 ≤ � < n−1 and for µ ∈ M erg(C�(M, �V ), {Θ�
t}),

there exists µ̄ ∈ Merg(C�(M, �V ), {Θ�
t}), such that

(i) π∗(µ̄) = π∗(µ) ∈ Merg(M, �V ), where π : C�(M, �V ) →M .
(ii) ϑ∗k(µ̄) = ϑ∗r(k)(µ), where

r(k) =


k, k = 1, · · · , �− 1, �+ 2, · · · , n− 1
�+ 1, k = �
�, k = �+ 1

Note that one may although think of r : C�(M, �V ) → C�(M, �V ) as a homeomor-
phism defined by r(x;�v1, . . . , �vn−1) = (x;�vr(1), . . . , �vr(n−1)) for (x;�v1, . . . , �vn−1) ∈
C�(M, �V ), the difficulty is Θ�

t ◦ r �= r ◦ Θ�
t in general.

Proof of Lemma 3.1. Our proof here follows the frame of that of [14, Theo-
rem 4.1]. Since in the case n = 2 it is trivial, now let q = n − 3 ≥ 0.

Suppose first q > 0. Let

(3.4) Nn−1 =
{

(x; H(�u1, �u2);�v1, . . . , �vq) | (x; �u1, �u2, �v1, . . . , �vq) ∈ C�(M, �V )
}
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which is endowed with the relative topology. Obviously Nn−1 is a compact and
metrizable space. We define the mapping

(3.5) τ : C�(M, �V ) → Nn−1

by

(3.5a) τ(�γx) = (x; H(Pr�(�γx),Pr�+1(�γx)); �α)

where

(3.5b) �α = (Pr1(�γx), . . . ,Pr�−1(�γx),Pr�+2(�γx), . . . ,Prn−1(�γx))

for any (x;�γ) ∈ C�(M, �V ). It is easy to see that the mapping τ is surjective.
For any (x; H; �α) ∈ Nn−1, arbitrarily take some (x;�γ) ∈ C�(M, �V ) such that

τ(�γx) = (x; H; �α) and put

(3.6) χ̄t(x; H; �α) = τ(Θ�
t(�γx)) ∀ t ∈ R.

We can easily check that χ̄t(x; H; �α) is defined independently of the choice of �γx,
and further

(3.7) {χ̄t}t∈R : Nn−1 → Nn−1

is a skew-product flow based on (M, {Vt}) too. Since Nn−1 is compact and metriz-
able,Merg(Nn−1, {χ̄t}) is non-void. Let ρ : Nn−1 →M denote the natural bundle
projection; that is, it projects each (x; H; �α) onto its base point x in M .

If q = 0; i.e., n = 3, let N2 = Gn−1 = G2, χ̄t = ϕt, and let ρ = π the bundle
projection from G2 onto M . Then, no matter when q > 0 or q = 0, we see that for
all t ∈ R the commutativity holds in the following diagrams

Nn−1
χ̄t−−−−→ Nn−1

ρ

� �ρ

M
Vt−−−−→ M

C�(M, �V )
Θ�

t−−−−→ C�(M, �V )

π

� �π

M
Vt−−−−→ M

C�(M, �V )
Θ

�
t−−−−→ C�(M, �V )

τ

� �τ

Nn−1
χ̄t−−−−→ Nn−1

and hence the commutativity holds in the following diagram

(3.8)

Merg(M, �V ) Id−−−−→ Merg(M, �V )

π∗
� �ρ∗

Merg(C�(M, �V ), {Θ�
t}) τ∗−−−−→ Merg(Nn−1, {χ̄t})
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When q > 0, we define functions ω̄k(x; H; �α) on Nn−1 for k = 1, . . . , q as
follows: For (x; H; �α) ∈ Nn−1 take a frame �γx ∈ C�(M, �V ) such that τ(�γx) =
(x; H; �α), then put

(3.9) ω̄k(x; H; �α) =

{
ω∗

k(�γx), for 1 ≤ k ≤ �− 1

ω∗
k+2(�γx), for � ≤ k ≤ q

where ω∗
k is defined as in (1.11a). From the definitions of τ and ω

∗
k we easily see

that ω̄k is well defined and continuous on Nn−1.
For µ ∈ Merg(C�(M, �V ), {Θ�

t}), it is clear that

(3.10)
∫

Nn−1

ω̄k d(τ∗µ) =

{
ϑ∗k(µ), for 1 ≤ k ≤ �− 1

ϑ∗k+2(µ), for � ≤ k ≤ q

Combining this with the commutativity in (3.8), we see that it suffices to show the
existence of some µ̄ ∈ Merg(C�(M, �V ), {Θ�

t}), satisfying the following (3.11, 3.12
and 3.13):

(3.11) τ∗(µ̄) = τ∗(µ) ∈ Merg(Nn−1, {χ̄t}),

(3.12) ϑ∗� (µ̄) = ϑ∗�+1(µ),

(3.13) ϑ∗�+1(µ̄) = ϑ∗� (µ).

In fact, if ϑ∗� (µ) = ϑ∗�+1(µ), we then take µ̄ = µ which satisfies all the re-
quirements. In the following, we consider the case ϑ∗� (µ) < ϑ∗�+1(µ). Let us take
(x0; �β0) ∈ Qµ(C�(M, �V ), {Θ�

t}) and (x0;�γ0) ∈ τ−1(Qτ∗µ(Nn−1, {χ̄t})) such that

τ(�β0x0) = τ(�γ0x0) and Pr�+1
�β0x0 = Pr��γ0x0

where τ as in (3.5) and Pr� as in (1.4). Then, applying Liao’s Measure Lift-
ing Lemma ([14, Lemma 2.2]) to the semi-conjugate τ : C�(M, �V ) → Nn−1 and
ω∗

� : C�(M, �V ) → R, and using (1.11c), we take some µ̄ ∈ Merg(C�(M, �V ), {Θ�
t})

such that (3.11) and

ϑ∗� (µ̄) ≥ lim sup
T→∞

1
T

∫ T

0

ω∗
� (Θ

�
t(�γ0x0)) dt

= lim sup
T→∞

1
T

log ‖Pr�ΘT (�γ0x0)‖

≥ lim sup
T→∞

1
T

log ‖Pr�+1ΘT (�β0x0)‖

= ϑ∗�+1(µ)



1226 Xiongping Dai and Wenxiang Sun

where Θt(�γx) is defined as in (1.9). Therefore

(3.14) ϑ∗� (µ̄) ≥ ϑ∗�+1(µ) > ϑ∗�(µ).

From (3.11) we gain

τ∗µ
(
τ(Qµ(C�(M, �V ), {Θ�

t}))
⋂
τ(Qµ̄(C�(M, �V ), {Θ�

t}))
)

= 1

and hence we can take some

(3.15) (x′; �β′) ∈ Qµ(C�(M, �V ), {Θ�
t}) and (x′;�γ ′) ∈ Qµ̄(C�(M, �V ), {Θ�

t})

such that τ(�β′x′) = τ(�γ ′x′), which implies H(�β′x′) = H(�γ ′x′).
For such �β′x′ and �γ ′x′, since H(�β′x′) = H(�γ ′x′), we may take a unit vector say

�a ∈ Tx′M , such that 〈�a,Prk(�β′x′)〉 = 〈�a,Prk(�γ ′x′)〉 = 0 for k = 1, . . . , n− 1. For
the convenience, we write

(3.16) Hx′t = H(Θ�
t(�β

′
x′)).

We put

V∗
�a,t(�u) = Vt(�u) − 〈Vt(�u), Vt(�a)〉

‖Vt(�a)‖2
Vt(�a)

for all �u ∈ Hx′0 and t ∈ R. Then V∗
�a,t(�u) ∈ Hx′t and

(3.17) V∗
�a,t : Hx′0 → Hx′t ∀ t ∈ R

is a family of linear mappings.
Put

(3.18) λk = min
δ=±1

‖Pr�Θ
�
k(�β′x′) − δPr�Θ

�
k(�γ

′
x′)‖

for any k = 0, 1, . . .. We then consider the sequence {λk} and assert that

(3.19) lim sup
k→∞

λk > 0.

Otherwise, by continuity of the function ω∗
� we have

lim
k→∞

1
k

∫ k

0
[ω∗

� (Θ
�
t(�β

′
x′))− ω∗

� (Θ
�
t(�γ

′
x′))] dt = 0

which by the choice of �β′x′ and �γ ′x′ would lead to a contradiction to (3.14). It then
follows from the definition of the map τ that Pr�

�β′x′ �= ±Pr��γ
′
x′ and Pr�+1

�β′x′ �=
±Pr�+1�γ

′
x′.
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Denote by vk the projection of Pr�Θ
�
k(�γ ′x′) on the 1-dimensional linear space

generated by the vector Pr�+1Θ
�
k(�β′x′) for each k = 0, 1, . . .. Then, by the forgoing

assertion we can take some real number λ with 0 < λ ≤ 1 and a subsequence {vkj}
of {vk}, kj > 0, such that

(3.20) v0 = s0Pr�+1
�β′x′ with λ ≤ |s0| ≤ 1,

(3.21) vkj = sjPr�+1Θ
�
kj

(�β′x′) with λ ≤ |sj| ≤ 1, j = 1, 2, · · · .

The equality (3.20) implies that V ∗
�a,kj

(Pr��γ ′x′) = u(kj) + s0V∗
�a,kj

(Pr�+1(�β′x′)) and
hence

(3.22) Pr�Θkj (�γ
′
x′) = v(kj) + s0‖Pr�+1Θkj (�β

′
x′)‖Pr�+1Θ

�
kj

(�β′x′),

where u(kj) and v(kj) both in the linear space

H∗ := H(Pr1Θ
�
kj

(�β′x′), . . . ,Pr�Θ
�
kj

(�β′x′)).

From (3.21) we obtain Pr�Θ
�
kj

(�γ ′x′) = w(kj)+ vkj , where w(kj) ∈ H∗, and hence

(3.23) Pr�Θkj (�γ
′
x′) = ‖Pr�Θkj (�γ

′
x′)‖w(kj) + sj‖Pr�Θkj (�γ

′
x′)‖Pr�+1Θ

�
kj

(�β′x′).

From (3.22) and (3.23), it follows that

(3.24) ‖Pr�+1Θkj (�β
′
x′)‖ =

|sj|
|s0|Pr�Θkj (�γ

′
x′),

for each j = 1, 2, . . .. This implies that

ϑ∗�+1(µ) = lim
j→∞

1
kj

log ‖Pr�Θkj (�γ
′
x′)‖

= ϑ∗� (µ̄)

which proved (3.12). If we let vk be the projection of Pr�Θ
�
k(�β′x′) on the direction

determined by Pr�+1Θ
�
k(�γ

′
x′), for k = 0, 1, 2, . . ., then in a similar way, we can

prove (3.13). Therefore Lemma 3.1 is shown in the case ϑ∗� (µ) < ϑ∗�+1(µ).
In the other case ϑ∗�+1 < ϑ∗� (µ), we consider {V ′

t } = {V−t} : M → M . In the
same way, we can verify the statements (3.11, 3.12 and 3.13).

Thus, Lemma 3.1 is true.

By applying Lemma 3.1 repeatedly one completes the proof of Theorem 3.1.

We next prove the reduced spectrum theorem by a method different from that
mentioned in Section 2.

Theorem 3.2. (Reduced Spectrum Theorem). For any C1 differential system �V
on M , the following properties hold.
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(A) If ν ∈ Merg(M, �V ) and µ̄ ∈ Merg(C�(M, �V ), {Θ�
t}) satisfy π∗(µ̄) = ν, then

{ϑ∗k(µ̄) | 1 ≤ k ≤ n− 1} ⊂ Sp(�V ; ν),

where Sp(�V ; ν) denotes the Oseledec characteristic spectrum of ν counted
with the multiplicity.

(B) For any given non-atomic measure ν ∈ M erg(M, �V ), if µ̄1 and µ̄2 both
belong toMerg(C�(M, �V ), {Θ�

t}) with π∗(µ̄1) = π∗(µ̄2) = ν, then

Sp∗(�V ; ν) = {ϑ∗k(µ̄1) | 1 ≤ k ≤ n− 1} = {ϑ∗k(µ̄2) | 1 ≤ k ≤ n− 1}

counting with multiplicity.

Proof. In order to prove the statement (A), we divide it into two cases.
At first, we let µ̄(C �(S(�V ), �V )) = 1, where and in the sequel S(�V ) stands for

the set of singularities of �V . In this case, we define

Pr2,...,n : F �
n|S(�V )

→ C�(S(�V ), �V )

by
Pr2,...,n(x;�γ) = (x; Pr2(�γx), . . . ,Prn(�γx))

for each (x;�γ) ∈ F �
n|S(�V ). Clearly, Pr2,...,n is continuous and surjective, and such

that Pr2,...,n ◦V
�
t = Θ�

t ◦Pr2,...,n on F �
n|S(�V )

. Then, by the definition of ω∗
k and the

Measure Lifting Lemma which guarantees

(Pr2,...,n)∗Merg(F �
n|S(�V ), {V�

t}) = Merg(C�(S(�V ), �V ), {Θ�
t}),

the desired result is true under this hypothesis.
Secondly, we assume that µ̄(C�(S(�V ), �V ) = 0. Since C�(R(�V ), �V ) is an open

{Θ�
t}-invariant subset of C�(M, �V ), hence µ̄(C�(R(�V ), �V ) = 1. Moreover, we

can naturally imbed it into F �
n in the way: (x;�γ) �→ (x; �V (x)/‖�V (x)‖, �γ) for

(x;�γ) ∈ C�(R(�V ), �V ). From Liao’s Spectrum Theorem, it easily follows that
{ϑ∗k(µ̄) | k = 1, . . . , n− 1} is contained in Sp(�V ; ν).

We thus proved the statement (A).
In order to prove the statement (B), we need an ergodicity lemma.

Lemma 3.2. Let {ft}t∈R be a one-parameter group of transformations on
a compact metric space X . For given µ̄ ∈ Merg(X, {ft}), there exists x0 ∈
Qµ̄(X, {ft}) such that µ̄

(
{ft(x0) | t ∈ R}

)
= 1. In fact, µ̄-a.e. x0 ∈ Qµ̄(X, {ft})

is such that {ft(x0) | t ∈ R} = supp(µ̄).
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Proof. The argument is standard [19] and so we omit the details.

Corollary 3.3. For any given µ̄ ∈ Merg(X, {ft}), if µ̄(U) > 0 for every open
set U of X , then for µ̄-a.e. x0 ∈ X , we have X = {ft(x0)|t ∈ R}.

We now proceed the proof of the statement (B). Under the hypotheses of state-
ment (B), it is easy to choose two reduced (n− 1)-frames (p0;�γ1) and (p0;�γ2) in
C�(M, �V ) such that p0 ∈ Qν(M, {Vt}) is a regular point (i.e. �V (p0) �= �0p0) and the
requirements of Lemma 3.2 corresponding to µ̄1 and µ̄2 respectively are satisfied.
For the given (p0;�γi), i = 1, 2, we, respectively, take and then fix (p0; γ̃i) ∈ F �

n

such that

�γi = Pr2,...,n(γ̃ip0) and Pr1(γ̃ip0) =
�V (p0)

‖�V (p0)‖
.

Define
I : {Θ�

t(p0;�γi) | t ∈ R} → F �
n

by
I(Θ�

t(p0;�γi)) = V
�
t(p0; γ̃i) for s ∈ R.

Clearly, I is continuous under the natural relative topologies. In a natural way one
can define the mapping

(3.25) I : Orb�γip0
:= {Θ�

t(p0;�γi) | t ∈ R} → F �
n

such that V�
t ◦ I = I ◦Θ�

t for all t ∈ R.
Since

Xi := I
(
{Θ�

t(p0;�γi) | t ∈ R}
)

is a closed {V�
t}-invariant subset of F �

n, there exists µ̄∗i ∈ Merg(F
�
n, {V�

t}) such
that

• π∗(µ̄i) = π∗(µ̄∗i ) = ν, where the first π is defined on C �(M, �V ) and the
second on F �

n.

• µ̄∗i = I∗(µ̄i).

• µ̄∗i (Xi) = 1.

From the definition of the reduced qualitative function ω∗
k, it follows that

ϑ∗k(µ̄i) =
∫

F �
n

ωk+1dµ̄
∗
i , k = 1, 2, . . . , n− 1; i = 1, 2.
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Hence by the fact I(Qµ̄i(Orb�γip0
, {Θ�

t})) ⊆ Qµ̄∗
i
(Xi, {V�

t}), we have∫
F �

n
ω1dµ̄

∗
i =

∫
Xi

ω1dµ̄
∗
i

= lim
T→±∞

1
T

∫ T

0
ω1(V

�
t(p0; γ̃i))dt

= lim
T→±∞

1
T

∫ T

0

ω1(
�V (Vt(p0))

‖�V (Vt(p0))‖
)dt

for i = 1, 2. This implies

Sp∗(�V ; ν) = {ϑ∗k(µ̄1) | 1 ≤ k ≤ n− 1} = {ϑ∗k(µ̄2) | 1 ≤ k ≤ n− 1}.
Therefore, the statement (B) and hence Theorem 3.2 are shown.

Now, Theorem 1.1 comes immediately from Theorems 3.1 and 3.2.

4. THE SPECTRA OF PARALLELEPIPED

In this section, we will use the reordering and spectrum theorems to study the
characteristic spectra of parallelepiped in the tangent bundles. Using the projections
Pk : F �

k → Gk(n), 1 ≤ k ≤ n, defined by Pk(x;�γ) = (x; H(�γx)) for (x;�γ) ∈ F
�
k ,

the theorem 4.1 below is a direct corollary of Arnold [1, Theorems 6.3.1 and 5.3.1].
For the reduced case this approach, however, does not work. We will give a Liaowise
proof for Theorem 4.1 below, since it still works in the reduced one.

Let �V be a given vector field on M of class C1.

4.1 Non-reduced cases.

For given positive integer � with 1 ≤ � ≤ n, we define

(4.1) vol: F �
� × R → R

+

by

(4.1a) vol(�γx, t) = volume(Π(Vt(�γx)))

for all ((x;�γ), t) ∈ F
�
� × R, where volume(Π(�γx)) means the volume of the paral-

lelepipedΠ(�γx) determined by the �-frame (x;�γ) ∈ U� and, Vt : U� → U� is defined
by �V as in (1.5). For given (x;�γ) ∈ F�

� , we write simply

(4.1b) vol�γx(t) = vol(�γx, t).
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For any given ν ∈ Merg(M, �V ) and µ ∈ Merg(F
�
n, {V�

t}) with ν = π∗(µ), the
Oseledec spectrum Sp(�V ; ν) of ν coincides with

(4.2)
{∫

F
�
n

ωk(�γx)dµ(�γx) | k = 1, 2, . . . , n
}

from Liao’s Spectrum Theorem (Theorem 2.1).

Theorem 4.1. Let ν ∈ Merg(M, �V ) and Sp(�V ; ν) = {λ1 ≥ · · · ≥ λn}. Then,
for any given 1 ≤ i1 < · · · < ik ≤ n, there exists a µk ∈ Merg(F

�
k, {V�

t}), such
that

(1) π∗(µk) = ν;
(2) there exists a {V�

t}-invariant Borel subset P (ν; µk) of F �
k with µk-measure

one such that

lim
t→±∞

1
t

log vol�γx(t) =
k∑

j=1

λij

for all (x;�γ) ∈ P (ν; µk).

Proof. By Liao’s Reordering Lemma, we can choose an ergodic measure µ̄k in
Merg(F

�
n, {V�

t}) such that π∗(µ̄k) = ν and

λij =
∫

F
�
n

ωjdµ̄k j = 1, . . . , k.

Define

(4.3) Pr1,...,k : F �
n → F �

k

by

(4.3a) Pr1,...,k(x; �u1, . . . , �un) = (x; �u1, . . . , �uk).

Then V
�
t ◦ Pr1,...,k = Pr1,...,k ◦ V

�
t for all t ∈ R, where the first V

�
t is on F

�
k

and the second on F �
n. Furthermore, we may take µk ∈ Merg(F

�
k, {V�

t}) such that
ν = π∗(µk) and µk = (Pr1,··· ,k)∗(µ̄k). Moreover,

(4.4) λij =
∫

F �
k

ωj dµk j = 1, . . . , k.

Define
hj : F �

k × R → R
+
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by
hj(�γx, t) = ‖Prj ◦ Vt(�γx)‖

and write h�γ,j(t) = hj(�γ, t). It is clear that

(4.6) vol�γx(t) = h�γx,1(t) · · · · · h�γx,k(t)

for (�γx, t) ∈ F �
k × R. Then the function vol satisfies the following properties:

• vol is a continuous function on F �
k × R.

• for any (x;�γ) ∈ F�
k , for any s, t ∈ R, vol

V�
s(�γx)

(t) = vol�γx(s+t)

vol�γx(s)
.

• �γx �→ d
dt |t=0vol�γx(t) exists and is continuous with respect to (x;�γ) ∈ F �

k .

From the Birkhoff Ergodic Theorem, it follows that there exists a {V�
t}-invariant

subset P (ν; µk) of F �
k such that

• µk(P (ν; µk)) = 1.
• for all (x;�γ) ∈ P (ν; µk), the limit

lim
t→±∞

1
t log vol�γx(t) =

∫
F �

k

d

dt
|t=0vol�γx(t) dµk

=
∫

F
�
k

k∑
j=1

ωj dµk

exists.
By (4.4), we easily conclude the statement (2).

4.2 Reduced cases.

For the reduced case, by Theorem 1.1, there will be a similar consequence.
Recall that R(�V ) = {x ∈ M | �V (x) �= �0x} is the regular point set of the given
C1 vector field �V on the n-dimensional manifold M . For a positive integer k with
1 ≤ k ≤ n − 1, write

C�
k(R(�V )) =

{
(x;�γ) ∈ F �

k | x ∈ R(�V ), 〈�V (x),Pri(�γx)〉 = 0, i = 1, . . . , k
}
.

In a way similar to C�(M, �V ), we have a natural skew-product flow based on
(R(�V ), {Vt})
(4.7) {Θ�

t}t∈R : C�
k(R(�V )) → C�

k(R(�V )).

For any t ∈ R, define the mapping

ψt : C�
k(R(�V )) → Fk
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by
ψt(�γx) = Pr2,...,k+1(Vt(x; �V (x), �γ))

for (x;�γ) ∈ C�
k(R(�V )), where

Pr2,...,k+1 : (x;�v1, �v2, . . . , �vk+1) �→ (x;�v2, . . . , �vk+1)

and {Vt} : Fk+1 → Fk+1 as in (1.5). We then define

(4.8) vol∗ : C�
k(R(�V )) × R → R

+

by
vol∗(�γx, t) = volume(Π(ψt(�γx)))

for (�γx, t) ∈ C�
k(R(�V ))× R.

Then we have a similar theorem.

Theorem 4.2. Suppose ν ∈ Merg(M, �V ) satisfies ν(R(�V )) = 1. Then, to any
given k exponents {λ∗

1, . . . , λ
∗
k} ⊂ Sp∗(�V ; ν), there is µ∗k ∈ Merg(C�

k(R(�V )), {Θ�
t}),

such that

(1) π∗(µ∗k) = ν;
(2) there exists a {Θ�

t}-invariant Borel subset P ∗(ν; µ∗k) of C�
k(R(�V )) with µ∗k-

full measure such that

lim
t→±∞

1
t

log vol∗�γx
(t) =

k∑
i=1

λ∗i

for all (x;�γ) ∈ P ∗(ν; µ∗k).

Proof. Under the condition ν(R(�V )) = 1, we have the reordering lemma for
the skew-product flow (C�(R(�V )), {Θ�

t}). Then, the remaining procedure of the
proof is parallel to that of Theorem 4.1.

4.3 Comparison results.

For given l with 2 ≤ l ≤ n. Define

(4.9) voli : F
�
l × R → R

+ i = 1, . . . , l

by
voli(�γx, t) = vol(Pr1,...,i(�γx), t)

for (�γx, t) ∈ F �
l × R, where Pr1,...,i as in (4.3). For any given (x;�γ) ∈ F�

l , we
simply write

vol�γx,i(t) = voli(�γx, t).
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Then, as a direct application of Liao’s Comparison Theorem ([12, Theorem 6.1] or
[18, Theorem 1.6.1]), we can obtain the following

Theorem 4.3. Let µ ∈ Merg(F
�
l , {V�

t}), n ≥ l ≥ 2. Then there exists some
permutation i �→ p(i) of {1, . . . , l} such that the set of points (x;�γ) ∈ F �

l with the
following properties:

lim
T→+∞

1
T

∫ T

0

min{vol�γx,p(1)(t), . . . , vol�γx,p(k−1)(t)}
max{vol�γx,p(k)(t), . . . , vol�γx,p(l)(t)}

dt > 0

lim
T→−∞

1
T

∫ T

0

min{vol�γx,p(k)(t), . . . , vol�γx,p(l)(t)}
max{vol�γx,p(1)(t), . . . , vol�γx,p(k−1)(t)}

dt > 0

for k = 2, . . . , l, is a {V�
t}-invariant Borel subset of F �

l , which has µ-measure
one.

For the reduced case, there is a similar result, but we omit the discussion.

5. PROOF OF COROLLARY 1.3

In order to prove the statement, we need a semi-uniform ergodic theorem which
is a special case of [7, Lemma 3.1].

Theorem 5.1. Suppose that {Υt}t∈R : Y → Y is a C0-flow on a compact
metrizable space Y and ϕ : Y → R a continuous function.

(1) If ϕ is such that there exists a constant a ∈ R with∫
Y
ϕ dµ < a ∀µ ∈ Merg(Y, {Υt}),

then there exists some δ > 0 such that∫
Y
ϕ dµ ≤ a− δ ∀µ ∈ Merg(Y, {Υt})

and given ε > 0, there is a T0 > 0 such that for all T ≥ T0 we have

1
T

∫ T

0
ϕ(Υt(y)) dt < a− δ + ε

for all y ∈ Y .



Reduced Reordering and Spectrum Theorems 1235

(2) If ϕ is such that there exists a constant b ∈ R with∫
Y
ϕ dµ > b ∀µ ∈ Merg(Y, {Υt}),

then, there exists some δ > 0 such that∫
Y
ϕ dµ ≥ b+ δ ∀µ ∈ Merg(Y, {Υt})

and given ε > 0, there is a T0 > 0 such that for all T ≥ T0 we have

1
T

∫ T

0

ϕ(Υt(y)) dt > b+ δ − ε

for all y ∈ Y .

Let M0 be given as in Corollary 1.3. Now, let

(5.1) Y = C�(M0, �V ) :=
{

(x, �γ) ∈ C�(M, �V ) | x ∈M0

}
and

(5.2) Υt = Θ�
t|Y ∀ t ∈ R.

The corollary will be proved under the guise of Theorems 5.2 and 5.3 below.

Theorem 5.2. Let M0 be a �V -invariant closed subset in M , which contains
no singularities. If every ν ∈ Merg(M, �V ) supported on M0 is non-uniformly
contracting in the sense Sp∗(�V , ν) ⊂ (−∞, 0), thenM0 is a uniformly contracting
subset of �V .

Proof. Given any µ ∈ Merg(Y, {Υt}). By the assumptions of Theorem 5.2 and
Theorem 1.1(3) we get that

(5.3)
∫

Y
ω∗

k dµ = ϑ∗k(µ) < 0 k = 1, . . . , n− 1.

It follows from Theorem 5.1(1) and (1.11c) that there exist λ < 0 and T0 > 0 such
that for k = 1, . . . , n− 1

(5.4) ‖Prk(Θt(�γx))‖ ≤ eλt ∀ t ≥ T0 and ∀ (x, �γ) ∈ Y.

Since Y is compact and Θt is continuous, (5.4) implies that there is some constant
C > 0 so that for k = 1, . . . , n− 1

(5.5) ‖Prk(Θt(�γx))‖ ≤ Ceλt ∀ t ≥ 0 and ∀ (x, �γ) ∈ Y.
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Particulary, consider the case k = 1. By the linearity of V∗
t : �V ⊥(M0) → �V ⊥(M0)

as in (1.15), we obtain

(5.6) ‖V∗
t (�v)‖ ≤ Ceλt‖v‖ ∀�v ∈ �V ⊥(M0) and ∀ t ≥ 0,

which implies that Theorem 5.2 is true.

Theorem 5.3. Let M0 be a �V -invariant closed subset in M , which contains
no singularities. If every ν ∈ Merg(M, �V ) supported on M0 is non-uniformly
expanding in the sense Sp∗(�V , ν) ⊂ (0,+∞), then M0 is a uniformly expanding
subset of �V .

Proof. There are two lines to prove this statement. One is considering −�V
instead of �V . The other is using Theorem 5.1(2). We omit the details.

Note that in the situations of Theorems 5.2 and 5.3, there are finite number
of contracting and expanding periodic orbits nearby M0 respectively. Furthermore,
we guess that in such situations, M0 consists of finite contracting and expanding
periodic orbits, respectively.
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