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APPROXIMATION PROPERTIES OF POISSON INTEGRALS
FOR ORTHOGONAL EXPANSIONS

Mehmet Ali Özarslan and Oktay Duman

Abstract. In the present paper we introduce Poisson type integrals for orthog-
onal expansions. We first give some direct computations for the moments and
compute the rates of convergence by means of the modulus of continuity and
the Lipschitz functionals; and also we prove that our results are stronger and
more general than the results obtained by Toczek and Wachnicki [J. Approx.
Theory 116 (2002), 113-125]. We obtain a statistical approximation theorem
by using the concept of T−statistical convergence which is a (non-matrix)
summability transformation. Furthermore, we give a general Voronovskaya
type theorem for these operators. Finally, introducing a higher order general-
ization of Poisson integrals we discuss their approximation properties.

1. INTRODUCTION

In this study we introduce a sequence of positive linear Poisson type integrals
for a system of orthogonal polynomials defined on any interval (bounded or un-
bounded) of the real line with respect to a positive measure. Then, we first show
that these operators include many Poisson integrals for orthogonal expansions, espe-
cially the operators introduced by Muckenhoupt [18] and also considered by Toczek
and Wachnicki [22]. The second section of this paper gives some direct computa-
tions for the moments while in the third section we study the rates of convergence of
our operators by means of modulus of continuity and the elements of Lipschitz class
functionals; and also we prove that our results are stronger and more general than
the results obtained in [18] and [22]. However, in the forth section considering the
concept of T−statistical convergence (see, for details, [9, 13, 17]), where T = (tjn)
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is non-negative regular summability matrix, we obtain a statistical approximation
result. We should remark that using this type of convergence method in approxi-
mation theory settings provides us more powerful results than the classical aspects
(see, e.g., [6, 7]). The fifth section addresses a general Voronovskaya type theorem.
In the last section we give a higher order generalization of our operators and discuss
their approximation properties.

Before proceeding further we recall some notation used throughout paper.
Let I be an arbitrary interval (bounded or unbounded) of the real line, and let

{Pk}k∈N0 be a sequence of real-valued orthogonal polynomials Pk (with P0(y) = 1)
of degree k defined on I with respect to a finite measure µ, i.e.,∫

I

Pk(y)Pm(y)dµ(y) = 0 for k �= m.

We should refer that the classical orthogonal polynomials and their generaliza-
tions may be found in Srivastava and Manocha [19].

Now, for each k ∈ N0, by ‖Pk‖ we mean that

‖Pk‖ :=
(∫

I
P 2

k (y)dµ(y)
)1

2

.

By Lp(I ; µ), (p ≥ 1), we denote the following space

Lp(I ; µ) :=
{

f : I → R :
∫

I

|f(y)|p dµ(y) < ∞
}

.

With this terminology we now introduce the following operators:

(1.1) Ln(f ; x) := Ln(f ; rn; x) =
∫

I

J(x; y; rn)f(y)dµ(y),

where 0 < rn < 1, f ∈ Lp(I, µ) and J(x; y; rn) is non-negative for all x, y ∈ I ,
n ∈ N and defined by

(1.2) J(x; y; rn) :=
∞∑

k=0

Pk(x)Pk(y)
‖Pk‖2 rk

n.

Then it is clear that the operators Ln given by (1.1) are positive and linear. Also
taking into consideration that P0(x) = 1, it follows from (1.1) and (1.2) that

Ln(1; x) = 1 for all x ∈ I and n ∈ N.

Applications
(1) Let I = [0,∞). Choose rn = r for all n ∈ N, (0 < r < 1), and Pk(x) =
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L
(α)
k (x) (α > −1) where L

(α)
k (x) is the Laguerre polynomials of degree k (see

[19, p. 74]). Now consider the cumulative function F given by

F (y) =
∫ y

0
tαe−tdt, 0 ≤ y < ∞.

Then the function F is monotone increasing and continuous on the right. So, it is
well-known that there exists a unique Borel measure µ corresponding to F, which
satisfies the following Lebesgue-Steiltjes integral equality

(1.3)
∫
I

g(y)dF (y) =
∫
I

g(y)dµ(y) for all g ∈ Lp(I ; µ).

(see, for instance, [16]). Observe that

(1.4) dF (y) = yαe−ydy.

Now, for each x ∈ [0,∞), taking g(y) =: J(x; y; rn)f(y) and using (1.3) and (1.4),
our operators Ln(f ; x) given by (1.1) turn out to be the linear positive operators

(1.5)

A(f ; r; x)

=

∞∫
0

( ∞∑
k=0

n!L(α)
k (x)L(α)

k (y)rk

Γ(α + n + 1)

)
f(y)yαe−ydy

=

∞∫
0

(rxy)−
α
2

1 − r
exp

(−r(x + y)
1 − r

)
Iα

(
2(rxy)

1
2

1 − r

)
f(y)yαe−ydy,

where Iα is the modified Bessel function of the first kind (see, for instance, [19,
p. 39]). Notice that the operators A(f ; r; x) were introduced by Muckenhoupt [18]
and also considered by Toczek and Wachnicki [22].

(2) Let I = (−∞,∞). If we choose rn = r for all n ∈ N, (0 < r < 1), and
Pk(x) = Hk(x) where Hk(x) is the Hermite polynomials of degree k (see [19, p.
73]); and, as in the above technique, define an appropriate positive measure µ such
that dµ(y) = e−y2

dy, then our operators immediately reduce to the operators

(1.6)

B(f ; r; x)

=

∞∫
−∞

( ∞∑
k=0

Hk(x)Hk(y)rk

√
π2nn!

)
f(y)e−y2

dy,

=

∞∫
−∞

1√
π(1− r2)

exp
(−r2x2 + 2rxy − r2y2

1 − r2

)
f(y)e−y2

dy,
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which were considered in [8] and also studied in [22].

2. DIRECT COMPUTATIONS FOR THE MOMENTS

In this section we compute the values Ln(fm; x) where fm is them−th moment
function given by fm(y) = ym for each m ∈ N0. We should remark that each
function fm can be written as a linear combination of the orthogonal polynomials
Pj (j = 0, 1, 2, ...,m), i.e.,

fm(y) = ym =
m∑

j=0

am,jPj(y).

In this case observe that

(2.1) am,j =

∫
I fm(y)Pj(y)dµ(y)

‖Pj‖2 , (j = 0, 1, 2, ...,m and m ∈ N0)

and also since P0(y) = 1, we get

a0,0 = 1.

Lemma 2.1. For each m ∈ N0, we have

Ln(fm; x) = am,0 + am,1rnP1(x) + ... + am,mrm
n Pm(x),

where the coefficients am,j (j = 0, 1, ...,m) are given as (2.1).

Proof. Let m ∈ N0 be fixed. Then using linearity of Ln we get

Ln(fm; x) =
∫

I

∞∑
k=0

Pk(x)Pk(y)
‖Pk‖2 rk

n ymdµ(y)

=
∞∑

k=0

Pk(x)rk
n

‖Pk‖2

∫
I
ymPk(y)dµ(y),

and also considering (2.1) and using orthogonality of Pk’s we may write that

Ln(fm; x) =
∞∑

k=0

Pk(x)rk
n

‖Pk‖2

m∑
j=0

am,j

∫
I
Pk(y)Pj(y)dµ(y)

=
m∑

j=0

am,jPj(x)rj
n

‖Pj‖2

∫
I
P 2

j (y)dµ(y)

=
m∑

j=0

am,j rj
nPj(x)

= am,0 + am,1rnP1(x) + ... + am,mrm
n Pm(x)
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whence the result.

Lemma 2.2. For each m ∈ N0, we have

Ln(ϕm; x) =
m∑

j=0

j∑
s=0

(−1)m−j

(
m

j

)
xm−jas rs

nPs(x),

where ϕm(y) = (y − x)m.

Proof. By the definition of Ln and using the well-known binomial expansion

Ln(ϕm; x) =
∫

I
J(x; y; rn)(y − x)mdµ(y)

=
∫

I
J(x; y; rn)




m∑
j=0

(−1)m−j

(
m

j

)
yjxm−j


 dµ(y)

=
m∑

j=0

(−1)m−j

(
m

j

)
xm−j

∫
I
J(x; y; rn) yjdµ(y)

=
m∑

j=0

(−1)m−j

(
m

j

)
xm−jLn(fj; x).

Now by Lemma 2.1 we conclude that

Ln(ϕm; x) =
m∑

j=0

j∑
s=0

(−1)m−j

(
m

j

)
xm−jaj,s rs

nPs(x),

which completes the proof.

We notice that, in particular, if we take m = 1 in Lemma 2.2, we have

Ln(ϕ1; x) = Ln ((y − x); x)

= −x + a1,0 + a1,1rnP1(x)

= − (a1,0 + a1,1P1(x)) + a1,0 + a1,1rnP1(x),

which yields that

(2.2) Ln(ϕ1; x) = −a1,1(1 − rn)P1(x).

Also, if m = 2 in Lemma 2.2, then we get

Ln(ϕ2; x) = Ln

(
(y − x)2; x)

)
= Ln(f2; x)− 2xLn(f1; x) + x2

= Ln(f2; x)− 2x (x + Ln(ϕ1; x)) + x2

= Ln(f2; x)− x2 − 2xLn(ϕ1; x)
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and hence, by (2.2) and Lemma 2.1

Ln(ϕ2; x) = a2,0 + a2,1rnP1(x) + a2,2r
2
nP2(x)

−a2,0 − a2,1P1(x)− a2,2P2(x)

+2a1,1x(1− rn)P1(x).

= −(1− rn)a2,1P1(x)− (1− r2
n)a2,2P2(x)

+2a1,1x(1− rn)P1(x).

Therefore it follows that

(2.3)
Ln(ϕ2; x) = (1 − rn){2a1,1xP1(x)

−a2,1P1(x) − (1 + rn)a2,2P2(x)}.
Notice that if we choose rn = r and Pk(x) = Hk(x), the Hermite polynomials,

as in Application 2, then our operators turn out to be the operators B(f ; r; x) defined
by (1.6). In this case observe that H0(x) = 1, H1(x) = 2x and H2(x) = 4x2 − 2.
Furthermore, since x = 1

2H1(x) and x2 = 1
4H2(x) + 1

2H0(x), we can determine
the coefficients aij (i, j = 0, 1, 2) as

a1,0 = 0, a1,1 =
1
2
,

a2,0 =
1
2
, a2,1 = 0, a2,2 =

1
4
.

So equalities (2.2) and (2.3) give the results obtain in [22] as follows:

B(ϕ1; r; x) = −(1− r)x

and

(2.4)
B(ϕ2; r; x) = (1− r)

{
2x2 − 1

4
(1 + r)(4x2 − 2)

}

= (1− r)
{

x2(1− r) +
1
2
(1 + r)

}
.

On the other hand, setting rn = r and Pk(x) = L
(α)
k (x), (α > −1), the Laguerre

polynomials, and considering Application 1 we conclude from (2.3) and (2.3) that

A(ϕ1; r; x) = (1− r)(1 + α − x)

and

(2.5)
A(ϕ2; r; x) = (1 − r)((x2 + α2 + 3α + 2)(1− r)

+2x((α + 2)r − α − 1))),

which are also proved in [22].



Poisson Integrals for Orthogonal Expansions 1153

3. RATES OF CONVERGENCE

In this section we compute the rates of the approximation of Ln(f ; x) defined by
(1.1) to f(y) by means of the modulus of continuity and the elements of Lipschitz
class functionals.

Let f ∈ Lp(I ; µ) ∩ C(I), where I is any interval of the real line and p ≥ 1.
The modulus of continuity of f, denoted by w(f, δ), is defined to be

w(f, δ) = sup
x,y∈I , |x−y|< δ

|f(x)− f(y)| , (δ > 0).

It is known that for any constants c > 0, δ > 0,

w(f, cδ) ≤ (1 + c)w(f, δ).

(see [1], [5] and [14], for details). Hence, for the modulus of continuity, we may
write that

(3.1) |f(y) − f(x)| ≤ w(f, δ)
{

1 +
|y − x|

δ

}
,

where δ is any positive number and f ∈ Lp(I ; µ)∩ C(I); and also x, y ∈ I.

Theorem 3.1. For all f ∈ Lp(I ; µ)∩ C(I), (p ≥ 1), we have

|Ln(f ; x)− f(x)| ≤ 2w(f ; δn),

where

(3.2) δn := δn(x) =
√

Ln(ϕ2; x)

Proof. By (3.1) and monotonicity of Ln, we can write, for any δ > 0, that

|Ln(f ; x)− f(x)| ≤ Ln (|f(y)− f(x)| ; x)

=
∫

I
J(x; y; rn) |f(y)− f(x)|dµ(y)

≤ w(f, δ)
∫

I
J(x; y; rn)

{
1 +

|y − x|
δ

}
dµ(y)

= w(f, δ)
{

1 +
1
δ

∫
I
J(x; y; rn) |y − x| dµ(y)

}
.

Hence, applying the Cauchy-Schwarz-Bunyakowsky inequality we conclude that

|Ln(f ; x)− f(x)| ≤ w(f, δ)

{
1 +

1
δ

(∫
I
J(x; y; rn)(y − x)2dµ(y)

)1
2

}

= w(f, δ)
{

1 +
1
δ

√
Ln(ϕ2; x)

}
.
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Now choosing δ = δn given as in (3.2) the proof follows.

Remarks. According to Theorem 3.1, by (2.3) we have, for all f ∈ Lp(I ; µ)∩
C(I), (p ≥ 1),

(3.3) |Ln(f ; x)− f(x)| ≤ 2w(f, δn),

where

(3.4) δn =
√

(1− rn) {2a1,1xP1(x) − a2,1P1(x) − (1 + rn)a2,2P2(x)}.

Actually, in (3.4) if we take rn = r ∈ (0, 1) for all n ∈ N and replace Ln(f ; x)
by B(f ; r; x) (i.e., choose Pk(x) = Hk(x); see Application 2), then using (3.3) we
conclude that, for all f ∈ Lp(I ; µ) ∩ C(I) (here I = (−∞,∞) and µ is the Borel
measure such that dµ(y) = e−y2

dy as considered in Application 2),

(3.5) |B(f ; r; x)− f(x)| ≤ 2w(f, δ(1)),

where

(3.6) δ(1) =

√
(1− r)

{
x2(1 − r) +

1
2
(r + 1)

}
.

Notice that Toczek and Wachnicki obtained estimation (3.5) but they found the
constant 3 instead of 2 (see Theorem 3.8 of [22]). In a similar manner it follows
from (2.5), Theorem 3.1 and Application 1 that, for the A(f ; r; x) operators, we
have

(3.7) |A(f ; r; x)− f(x)| ≤ 2w(f, δ(2)),

where

(3.8) δ(2) =
√

(1− r)((x2 + α2 + 3α + 2)(1− r) + 2x((α + 2)r − α − 1))).

Again we may see that estimation (3.7) is better than Theorem 3.7 of [22].
We will now study the rate of convergence of the positive linear operators

Ln(f ; x) with the help of the elements of the Lipschitz class LipM(β), where
M > 0 and 0 < β ≤ 1.

We recall that a function f ∈ Lp(I ; µ) ∩ C(I) belongs to LipM(β) if the
inequality

(3.9) |f(y) − f(x)| ≤ M |y − x|β , (y, x ∈ I, 0 < β ≤ 1)

holds. Then we have the following result.
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Theorem 3.2. Let x ∈ I be fixed. For all f ∈ LipM(β), 0 < β ≤ 1, we have

|Ln(f ; x)− f(x)| ≤ Mδβ
n ,

where δn is the same as in (3.4).

Proof. Let f ∈ LipM(β) and x ∈ I be fixed, and let 0 < β ≤ 1. By linearity
and monotonicity of Ln and using (3.9) we have

|Ln(f ; x)− f(x)| ≤ Ln(|(f(y)− f(x)| ; x)

=
∫

I
J(x; y; rn) |f(y) − f(x)| dµ(y)

≤ M

∫
I

J(x; y; rn) |y − x|β dµ(y).

Applying the Hölder inequality with u = 2
β , v = 2

2−β we get

|Ln(f ; x)− f(x)| ≤ M



∫
I

J(x; y; rn)(y − x)2dµn,k(y)




β
2

and therefore

(3.10) |Ln(f ; x)− f(x)| ≤ M {Ln (ϕ2; x)} β
2 .

Setting δn :=
√

Ln (ϕ2; x) in (3.10) the proof is completed.

Now taking into consideration the above remarks and Applications 1 and 2,
from Theorem 3.2 we easily get the next two results.

Corollary 3.3. Let x ∈ I = (−∞,∞) be fixed. For all f ∈ LipM(β),
0 < β ≤ 1, we have

|B(f ; r; x)− f(x)| ≤ M (δ(1))β , (0 < r < 1),

where δ(1) is given by (3.6).

Corollary 3.4. Let x ∈ I = [0,∞) be fixed. For all f ∈ LipM(β), 0 < β ≤ 1,

we have
|A(f ; r; x)− f(x)| ≤ M (δ(2))β , (0 < r < 1),

where δ(2) is given by (3.8).
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4. STATISTICAL APPROXIMATION

Most of the classical approximation operators tend to converge to the value of
the function being approximated. However, at points of discontinuity, they often
converge to the average of the left and right limits of the function. There are,
however, some sharp exceptions such as the interpolation operator of Hermite-Fejer
(see [2]). These operators do not converge at points of simple discontinuity. For such
a misbehavior, the matrix summability methods of Cesáro type are strong enough
to correct the lack of convergence (see [3]). The Cesáro summability method also
corrects Gibbs phenomenon of some non-positive approximation operators such as
the partial sums of Fourier series (see [15, 20, 21]). In recent years another form
of regular (non-matrix) summability transformation has shown to be quite effective
in “summing” non-convergent sequences which may have unbounded subsequences
[9, 10]. The aim of this section is to investigate their use in approximation of our
operators Ln(f ; x) to f(x).

Now we recall the concept of T−statistical convergence.
Let T := (tjn), j, n ∈ N, be a non-negative regular summability, i.e. limTx =

L whenever limx = L, where Tx := ((Tx)j) is called T−transform of x := (xn)
and is given by (Tx)j :=

∑∞
n=1 tjnxn provided that the series convergence for each

j ∈ N (see [4]). Then a sequence x := (xn), is called T−statistical convergent to
a number L if, for every ε > 0,

lim
j

∑
n:|xn−L|≥ε

tjn = 0.

We denote this limit by stT − limx = L [9] (see also [13, 17]). If we take T =
C1, the Cesáro matrix of order one, then C1−statistical convergence is equivalent
to statistical convergence [8, 10]. Also replacing the matrix T by the identity
matrix, T−statistical convergence coincides with the ordinary convergence. Kolk
[13] proved that T−statistical convergence is stronger than ordinary convergence
in the case of which limj maxn |tjn| = 0. We should note that the concept of
T−statistical convergence may also be given in normed spaces [12].

Then we first need the following lemma.

Lemma 4.1. Let T = (tjn) be a non-negative regular summability matrix. If
stT − limn rn = 1, then we have for every x ∈ I

stT − lim
n

Ln(ϕi; x) = 0, (i = 1, 2).
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Proof. Let ε > 0 be given. By (2.2), one can write, for every x ∈ I, that

U := {n ∈ N : |Ln(ϕ1; x)| ≥ ε} =
{

n ∈ N : (1− rn) ≥ ε

|P1(x)a1,1|
}

=: V.

Then we get, for every j ∈ N,

(4.1)
∑
n∈U

tjn =
∑
n∈V

tjn.

Now letting j → ∞ in (4.1) and using the hypothesis we obtain that limj
∑

n∈U tjn =
0. This means stT − limn Ln(ϕ1; x) = 0. In a similar way, it follows from (2.3)
that stT − limn Ln(ϕ2; x) = 0.

Theorem 4.1. Let T = (tjn) be a non-negative regular summability matrix. If
stT − limn rn = 1, then for all f ∈ Lp(I ; µ)∩C(I), (p ≥ 1), and for every x ∈ I

we have
stT − lim

n
|Ln(f ; x)− f(x)| = 0.

Proof. Since stT − limn rn = 1, by Lemma 4.1 we have

stT − lim
n

Ln(ϕ2; x) = 0,

which implies that, for all f ∈ Lp(I ; µ)∩ C(I), (p ≥ 1),

(4.2) stT − lim
n

w(f ; δn) = 0

with δn =
√

Ln(ϕ2; x). Now given ε > 0 define the following sets:

D1 : = {n ∈ N : |Ln(f ; x)− f(x)| ≥ ε} ,

D2 : =
{

n ∈ N : w(f ; δn) ≥ ε

2

}
.

Then, by Theorem 3.1, it is obvious that D1 ⊆ D2. Thus we have

(4.3)
∑

n∈D1

tjn ≤
∑

n∈D2

tjn.

Taking limit as j → ∞ in (4.3) and using (4.2), we get

lim
j

∑
n∈D1

tjn = 0,

which gives the result.
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If we replace the matrix T = (tjn) in Theorem 4.2 by the identity matrix we
immediately obtain the following result.

Corollary 4.2. If limn rn = 1, then for all f ∈ Lp(I ; µ)∩C(I), (p ≥ 1), and
for every x ∈ I we have

lim
n

|Ln(f ; x)− f(x)| = 0.

We remark that since T−statistical convergence method is stronger than the
ordinary convergence method in case of limj supn{tjn} = 0, our T−statistical
approximation in Theorem 4.1 is more general result than Corollary 4.2.

5. A VORONOVSKAYA TYPE THEOREM

In this section we obtain a Voronovskaya type theorem for the operators Ln(f ; x)
defined by (1.1).

Theorem 5.1. Let T = (tjn) be a non-negative regular summability matrix
and let stT − limn rn = 1. Suppose that x ∈ I and f ∈ Lp(I ; µ) ∩ C(I), (p ≥ 1).
Assume further that f is of the class C 1 in a certain neighborhood of x and that
f ′′ exists. If for each x ∈ I

(5.1) stT − lim
n

1
(1 − rn)2

Ln(ϕ4; x) = α(x),

where α is a function defined on I , then we have

stT − lim
n

1
1− rn

{Ln(f ; x)− f(x)} = −a1,1P1(x)f ′(x)

+{a1,1xP1(x) − a2,1

2
P1(x)

−a2,2P2(x)}f ′′(x).

Proof. By Taylor’s theorem

f(y) = f(x) + (y − x)f ′(x) +
(y − x)2

2
f ′′(x) + (y − x)2R(y, x),

where

(5.2) R(x, x) = 0.
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Then we have

(5.3)
Ln(f ; x)− f(x) = Ln(ϕ1; x)f ′(x) +

1
2
Ln(ϕ2; x)f ′′(x)

+Ln((y − x)2R(y, x); x).

Using the Cauchy-Schwarz-Bunyakowsky inequality we obtain

∣∣Ln((y − x)2R(y, x); x)
∣∣≤ {Ln(ϕ4; x)}1

2
{
Ln(R2(y, x); x)

}1
2 ,

which yields that

1
1 − rn

∣∣Ln((y − x)2R(y, x); x)
∣∣ ≤ {

1
(1 − rn)2

Ln(ϕ4; x)
}1

2

×{Ln(R2(y, x); x)
}1

2 .

Hence it follows from (5.1) and (5.2) that

stT − lim
n

1
1 − rn

Ln((y − x)2R(y, x); x) = 0.

Now considering (5.3), the desired result is obtained from (2.2) and (2.3).

Observe that specializing the operators Ln(f ; x) as in Applications 1 and 2, and
choosing the identity maxtrix, our Theorem 4.1 reduces to Theorems 4.9 and 4.10
in [22].

6. HIGHER ORDER GENERALIZATION

Let u ∈ N0 and p ≥ 1. Then we consider the space

Lp,u(I ; µ) =
{

f : f (u) ∈ Lp(I ; µ)
}

.

If u = 0, then Lp,0(I ; µ) = Lp(I ; µ). We now introduce u−th order generalization
of the operators Ln(f ; x) as follows:

(6.1) Ln,u(f ; x) =
∫
I

u∑
i=0

J(x; y; rn)f (i)(y)
(x− y)i

i!
dµ(y)

where f ∈ Lp,u(I ; µ), (u = 0, 1, 2, ...), n ∈ N. This kind of generalization was
also be considered in [11]. Note that taking u = 0 since f (0)(y) = f(y), we have
Ln,0(f ; x) = Ln(f ; x).



1160 Mehmet Ali Özarslan and Oktay Duman

We now obtain the following approximation theorem for the operators Ln,u(f ; x)
given by (6.1)

Theorem 6.1. Let I be an arbitrary interval of the real line. Then for all
f ∈ Lp,u(I ; µ) such that f (u) ∈ LipM(β), 0 < β ≤ 1, and for each x ∈ I, we
have

|Ln,u(f ; x)− f(x)| ≤ CLn(|x − y|β+u ; x)

where

(6.2) C =
Mβ

(β + u)
B(β, u)
(u − 1)!

,

and B(α, u) is the beta function; r ∈ N.

Proof. By (6.1) we get

(6.3) f(x) − Ln,u(f ; x) =
∫
I

J(x; y; rn)

{
f(x) −

u∑
i=0

f (i)(y)
(x− y)i

i!

}
dµ(y).

From the Taylor’s formula (see [11])

(6.4)
f(x)−

u∑
i=0

f (i)(y)
(x− y)i

i!
=

(x− y)u

(u− 1)!

1∫
0

(1 − t)u−1

×{f (u)(y + t(x − y))− f (u)(y)
}

dt.

Since f (u) ∈ LipM(β), we have

(6.5)
∣∣∣f (u)(y + t(x − y)) − f (u)(y)

∣∣∣ ≤ Mtβ |x − y|β .

Considering (6.5) in (6.4), and using the beta integral, we conclude

(6.6) f(x) −
u∑

i=0

f (i)(y)
(x− y)i

i!
≤ |x − y|β+u Mβ

β + u

B(β, u)
(u− 1)!

.

By using (6.6) in (6.3), we get

|f(x)− Ln,r(f ; x)| ≤ Mβ

β + u

B(β, u)
(u − 1)!

∫
I

J(x; y; rn) |x − y|β+u dµ(y)

=
Mβ

β + u

B(β, u)
(u − 1)!

Ln

(
|x − y|β+u ; x

)
,

which gives the desired result.
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Remarks. Let T = (tjn) be a non-negative regular summability matrix. Then,
setting g(y) = |x − y|β+u , under the light of Theorem 4.2 if stT − limn rn = 1,
then one can get, for each x ∈ I, that

(6.7) stT − lim
n

Ln(g; x) = 0.

Hence, by (6.7) and Theorem 6.1 we obtain that if stT − limn rn = 1, then for all
f ∈ Lp,u(I ; µ) ∩ C(I),

(6.8) stT − lim
n

|Ln,u(f ; x)− f(x)| = 0 for every u ∈ N0.

Of course, if we replace T = (tjn) in (6.8) by the identity matrix, then the condition
limn rn = 1 implies

lim
n

|Ln,u(f ; x)− f(x)| = 0 for every r ∈ N0.

On the other hand, it follows from the definition of Ln,u(f ; x) given by (6.1), for
sufficiently large n, Ln,u(f ; x) tends to f(x) as u → ∞.

Finally, the following results are natural consequences of Theorems 3.1, 3.2 and
6.1. So we omit their proofs.

Corollary 6.2. Let I be an arbitrary interval of the real line, and let δ n be
the same as in (6.8). Then, for all f ∈ Lp,u(I ; µ) such that f (u) ∈ LipM(β),
0 < β ≤ 1, and for each x ∈ I, we have

|Ln,u(f ; x)− f(x)| ≤ 2Cw(|x − y|β+u , δn),

where C and δn are given by (6.2) and (3.4), respectively.

Corollary 6.3. Under the conditions in Corollary 6.2, we have

|Ln,u(f ; x)− f(x)| ≤ CM δβ
n,

where C and δn are the same as above.
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Sögütözü TR-06530,
Ankara, Turkey
E-mail: oduman@etu.edu.tr


