λ PROPERTY FOR BOCHNER-ORLICZ SEQUENCE SPACES WITH ORLICZ NORM

Zhongrui Shi and Linsen Xie

Abstract

We give the sufficient and necessary conditions of Bochner-Orlicz sequence spaces equipped with Orlicz norm that have the λ property and uniform λ property, respectively. The results show that the λ property can not be lifted from X to $l_{M}(X)$.

1. Introduction

Let X be a Banach space and let $S(X)$ and $B(X)$ be the unit sphere and the unit ball of X, and let $\operatorname{ExtB}(X)$ be the set of all extreme points of $B(X)$. For $x \in B(X)$, we associate the number $\lambda(x)=\sup \{\lambda \in[0,1]: x=\lambda e+(1-\lambda) y, y \in$ $B(X), e \in \operatorname{ExtB}(X)\}$. We call x a λ point if $\lambda(x)>0$; we say that X has λ property if $\lambda(x)>0$ for all $x \in B(X)$; we say that X has uniform λ property if $\lambda(X)>0$ where $\lambda(X)=\inf \{\lambda(x): x \in B(X)\}$. Banach spaces with these types of λ property were studied in [1], and ones of Orlicz spaces were studied in [2-4]. For Bochner-Orlicz sequence space with Luxemburg norm, the criterion of uniform λ property was given in [10]. But until now, it has not seen for the λ property and uniform λ property of Bochner-Orlicz sequence space with Orlicz norm. In this paper, we investigate them and give their criteria. The results says that it is not as usual as X need only have the corresponding one, which shows that λ property can not be lifted from X to $l_{M}(X)$.

In the sequel, let \Re be the set of all real numbers. A function $M: \Re \rightarrow \Re_{+}$is called a N -function if M is convex and even, $M(u)>0$ as $u>0, \lim _{u \rightarrow 0} \frac{M(u)}{u}=0$ and $\lim _{u \rightarrow \infty} \frac{M(u)}{u}=\infty$. And its complementary function is defined in Young's sense

$$
N(v)=\max \{u|v|-M(u): u \in \Re\}
$$

Received June 29, 2006, accepted November 7, 2006.
Communicated by Bor-Luh Lin.
2000 Mathematics Subject Classification: 46B20, 46E30.
Key words and phrases: λ property, Uniform λ property, Bochner-Orlicz sequence space, Orlicz norm. Partly supported by NSF of China (Grant No. 10671118).
which is also a N -function $[8,5]$. We use p and q stand for the right derivatives of M and N, respectively. An interval $[a, b]$ is called a structural affine interval (SAI) of M provided that M is affine on $[a, b]$ and it is not affine on $[a-\epsilon, b]$ or $[a, b+\epsilon]$, for all $\epsilon>0$. Let $\left\{\left[a_{i^{\prime}}, b_{i^{\prime}}\right]\right\}_{i^{\prime}=1}^{\infty}$ be all SAI of M and denote $S_{M}=R \backslash\left[\bigcup_{i^{\prime}=1}^{\infty}\left(a_{i^{\prime}}, b_{i^{\prime}}\right)\right]$.

For $x=(x(1), x(2), \ldots), x(i) \in X$, its modular is defined by $\rho_{M}(x)=$ $\sum_{i=1}^{\infty} M(\|x(i)\|)$. The Orlicz sequence space $l_{M}(X)$ is generated as follows

$$
l_{M}(X)=\left\{x: \exists \lambda>0, \rho_{M}(\lambda x)<\infty\right\},
$$

endowed with the Orlicz norm

$$
\|x\|_{M}=\inf _{k>0} \frac{1}{k}\left\{1+\rho_{M}(k x)\right\}
$$

$l_{M}(X)$ is a Banach space if X is a Banach space and we assume that $\operatorname{Ext} B(X) \neq \emptyset$ in this paper.

2. Main Results

Lemma 1. ([10]) There exist $e \in \operatorname{Ext} B(X)$ such that for all $\lambda<\lambda(x)$ we have $y \in B(X)$ such that $x=\lambda e+(1-\lambda) y$.

Proof. Please refer the proof of [10].
Lemma 2. ([5]) Let $\operatorname{Ext} B(X) \neq \emptyset$. If $x=\alpha y+(1-\alpha) z$ for $y, z \in$ $B(X), \alpha \in(0,1)$, then $\lambda(x) \geq \alpha \lambda(y)$. Consequently, $\lambda(\theta)=\frac{1}{2}$ and $\lambda(x) \geq$ $\max \left\{\frac{1-\|x\|}{2}, \lambda\left(\frac{x}{\|x\|}\right)\|x\|\right\}$.

Lemma 3. ([10]) Either X or l_{M} is isometric to a subspace of $l_{M}(X)$.
Lemma 4. ([6]) In $l_{M}(X)$, for $x=(x(1), x(2) \ldots)$, we have

$$
\begin{aligned}
\|x\|_{M} & =\frac{1}{k}\left\{1+\rho_{M}(k x)\right\}, \forall k \in k(x)=\left[k^{\star}, k^{\star \star}\right] \\
& =\sup \left\{\sum_{i=1}^{\infty} x(i) y(i): \rho_{N}(y) \leq 1, y(i) \in X^{\star}\right\} \\
& =\sup \left\{\sum_{i=1}^{\infty}\|x(i)\|\|y(i)\|: \rho_{N}(y) \leq 1, y(i) \in X^{\star}\right\}
\end{aligned}
$$

where $k^{\star}=\inf \left\{k>0: \rho_{N}(p(k x)) \geq 1\right\}, k^{\star \star}=\sup \left\{k>0: \rho_{N}(p(k x)) \leq 1\right\}$.

Proof. Please refer [4].

Lemma 5. ([6]) For $x \in l_{M}, y \in l_{N}$, where $x=(x(1), x(2) \ldots), x(i) \in \Re$ and $y=(y(1), y(2) \ldots), y(i) \in \Re$, we have that $\|x\|_{M}=\sum_{i=1}^{\infty} x(i) y(i)$ if and only if for all i, $p_{-}(|x(i)|) \leq|y(i)| \leq p(|x(i)|), x(i) y(i) \geq 0$, where p_{-}is the left hand derivative of M.

Lemma 6. ([9]) In $l_{M}(X)$, for $x=(x(1), x(2) \ldots),\|x\|_{M}=1 . x \in E x t B\left(l_{M}\right.$ $(X))$ if and only if (1) (i) $\mu\left\{i:\|x(i)\|_{X} \neq 0\right\} \leq 1$ or (ii) $k\|x(i)\|_{X} \in S_{M}, \forall i \in N$ and $\forall k \in K(x),(2) \frac{x(i)}{\|x(i)\|_{X}} \in \operatorname{ExtB}(X) \quad\left(\forall\|x(i)\|_{X} \neq 0\right)$.

Lemma 7. $l_{M}(X)$ has λ property if X has uniform λ property.
Proof. For $x \in S\left(l_{M}(X)\right)$. If $x \in \operatorname{Ext} B\left(l_{M}(X)\right)$, then $\lambda(x)=1$. For $x \in B\left(l_{M}(X)\right) \backslash \operatorname{Ext} B\left(l_{M}(X)\right)$, and $k \in k(x)$, set
$\left.I\left(i^{\prime}\right)=\left\{i: a_{i^{\prime}}<k\|x(i)\| \leq \frac{a_{i^{\prime}}+b_{i^{\prime}}}{2}\right\} \quad J\left(i^{\prime}\right)=\left\{i: \frac{a_{i^{\prime}}+b_{i^{\prime}}}{2}\right\}<k\|x(i)\|<b_{i^{\prime}}\right\}$.
Split the set of all positive integers into parts:

$$
I(x, k)=\bigcup_{i^{\prime}=1}^{\infty} I\left(i^{\prime}\right), \quad J(x, k)=\bigcup_{i^{\prime}=1}^{\infty} J\left(i^{\prime}\right), \quad \tilde{S}(x, k)=\left\{i: k\|x(i)\| \in S_{M}\right\},
$$

we discuss in several steps.
A. $\mu\left\{i: \frac{x(i)}{\|x(i)\|} \notin \operatorname{Ext} B(X)\right\}=0$.

A-1. $\mu\left\{i: k\|x(i)\| \in S_{M}\right\}>0$, for some $k \in k(x)=\left[k^{\star}, k^{\star \star}\right]$.
Define
(1)

$$
k y(i)= \begin{cases}a_{i^{\prime}} \frac{x(i)}{\|x(i)\|} & i \in I \\ b_{i^{\prime}} \frac{x(i)}{\|x(i)\|} & i \in J \\ k x(i) & i \in \tilde{S}_{M}\end{cases}
$$

then $k(y)=\{k\}$. In fact for all $\varepsilon>0$, we have

$$
\begin{aligned}
\rho_{N}(p((1+\varepsilon) k y))= & \sum_{i \in I} N\left(p\left((1+\varepsilon) a_{i^{\prime}}\right)\right)+\sum_{i \in J} N\left(p\left((1+\varepsilon) b_{i^{\prime}}\right)\right) \\
& +\sum_{i \in \tilde{S}} N(p((1+\varepsilon) k\|x(i)\|))
\end{aligned}
$$

$$
\begin{aligned}
\geq & \sum_{i \in I} N(p(k\|x(i)\|))+\sum_{i \in J} N(p(k\|x(i)\|)) \\
& +\sum_{i \in \tilde{S}} N(p((1+\varepsilon) k\|x(i)\|)) \\
= & \sum_{i \in I} N(p(k\|x(i)\|))+\sum_{i \in J} N(p(k\|x(i)\|))+\sum_{i \in \tilde{S}} N(p(k\|x(i)\|)) \\
& +\sum_{i \in \tilde{S}} N(p((1+\varepsilon) k\|x(i)\|))-\sum_{i \in \tilde{S}} N(p(k\|x(i)\|)) \\
> & \sum_{i \in I} N(p(k\|x(i)\|))+\sum_{i \in J} N(p(k\|x(i)\|))+\sum_{i \in \tilde{S}} N(p(k\|x(i)\|)) \\
= & 1
\end{aligned}
$$

and

$$
\begin{aligned}
\rho_{N}(p((1-\varepsilon) k y))= & \sum_{i \in I} N\left(p\left((1-\varepsilon) a_{i^{\prime}}\right)\right)+\sum_{i \in J} N\left(p\left((1-\varepsilon) b_{i^{\prime}}\right)\right) \\
& +\sum_{i \in \tilde{S}} N(p((1-\varepsilon) k\|x(i)\|)) \\
\leq & \sum_{i \in I} N\left(p_{-}(k\|x(i)\|)\right)+\sum_{i \in J} N\left(p_{\mathbf{-}}(k\|x(i)\|)\right) \\
& +\sum_{i \in \tilde{S}} N(p((1-\varepsilon) k\|x(i)\|)) \\
= & \sum_{i \in I} N\left(p_{\mathbf{-}}(k\|x(i)\|)\right)+\sum_{i \in J} N\left(p_{\mathbf{-}}(k\|x(i)\|)\right) \\
& +\sum_{i \in \tilde{S}} N\left(p_{-}(k\|x(i)\|)\right) \\
& +\sum_{i \in \tilde{S}} N(p((1-\varepsilon) k\|x(i)\|))-\sum_{i \in \tilde{S}} N\left(p_{-}(k\|x(i)\|)\right) \\
< & \sum_{i \in I} N\left(p_{\mathbf{-}}(k\|x(i)\|)\right)+\sum_{i \in J} N\left(p_{\mathbf{-}}(k\|x(i)\|)\right) \\
& +\sum_{i \in \tilde{S}} N\left(p_{-}(k\|x(i)\|)\right) \\
= & 1 .
\end{aligned}
$$

Hence, from $k\left(\frac{y}{\|y\|}\right)=\|y\| k(y)=\{k\|y\|\}$ and Lemma 6, we have $\frac{y}{\|y\|} \in \operatorname{Ext} B\left(l_{M}(X)\right)$.
Set

$$
z=2 x-y
$$

Then, if $i \in \tilde{S}$, we have $y(i)=x(i)$, moreover $z(i)=y(i)=x(i)$.
If if $i \in I$, we have $a_{i^{\prime}}<k\|x(i)\| \leq \frac{a_{i^{\prime}}+b_{i^{\prime}}}{2}$, moreover

$$
\begin{aligned}
a_{i^{\prime}}<k\|x(i)\|<k\|z(i)\| & =\|2 k x(i)-k y(i)\| \\
& =\left\|2 k x(i)-a_{i^{\prime}} \frac{x(i)}{\|x(i)\|}\right\| \\
& =\left|2 k\|x(i)\|-a_{i^{\prime}}\right| \\
& \leq 2 \frac{a_{i^{\prime}}+b_{i^{\prime}}}{2}-a_{i^{\prime}} \\
& =b_{i^{\prime}}
\end{aligned}
$$

If if $i \in J$, we have $k\|y(i)\|=b_{i^{\prime}} \frac{x(i)}{\|x(i)\|}$, so $\frac{a_{i^{\prime}}+b_{i^{\prime}}}{2}<k\|x(i)\|<b_{i^{\prime}}$. Moreover

$$
\begin{aligned}
k\|z(i)\| & =\|2 k x(i)-k y(i)\| \\
& =\left\|2 k x(i)-b_{i^{\prime}} \frac{x(i)}{\|x(i)\|}\right\| \\
& =\left|2 k\|x(i)\|-b_{i^{\prime}}\right| \\
& >2 \frac{a_{i^{\prime}}+b_{i^{\prime}}}{2}-b_{i^{\prime}} \\
& =a_{i^{\prime}},
\end{aligned}
$$

and $k\|z(i)\|=2 k\|x(i)\|-b_{i^{\prime}}<2 b_{i^{\prime}}-b_{i^{\prime}}=b_{i^{\prime}}$. Summarily, we know that $k\|x(i)\|, k\|y(i)\|$ and $k\|z(i)\|$ are in the same SAI of M.

On the other hand

$$
\begin{aligned}
1=\|x\|_{M} & =\frac{1}{k}\left\{1+\rho_{M}(k x)\right\} \\
& =\frac{1}{k}\left\{1+\rho_{M}\left(k \frac{y+z}{2}\right)\right\} \\
& =\frac{1}{k}\left\{1+\frac{1}{2} \rho_{M}(k y)+\frac{1}{2} \rho_{M}(k z)\right\} \\
& =\frac{1}{2}\left[\frac{1}{k}\left\{1+\rho_{M}(k y)\right\}\right]+\frac{1}{2}\left[\frac{1}{k}\left\{1+\rho_{M}(k z)\right\}\right] \\
& \geq \frac{1}{2}\left[\|y\|_{M}+\|z\|_{M}\right],
\end{aligned}
$$

so $\|y\|_{M}+\|z\|_{M} \leq 2$. Since $\left\|\frac{y+z}{2}\right\|_{M}\|=\| x \|_{M}=1$, we get $\|y\|_{M}+\|z\|_{M} \geq$ $\|y+z\|_{M}=2$, thus $\|y\|_{M}+\|z\|_{M}=\|y+z\|_{M}=2$. Noticing

$$
x=\frac{y+z}{2}=\frac{y+z}{\|y\|_{M}+\|z\|_{M}}=\frac{\|y\|_{M}}{\|y\|_{M}+\|z\|_{M}} \frac{y}{\|y\|_{M}}+\frac{\|z\|_{M}}{\|y\|_{M}+\|z\|_{M}} \frac{z}{\|z\|_{M}}
$$

by Lemma 2, we have

$$
\lambda(x) \geq \frac{\|y\|_{M}}{2} \lambda\left(\frac{y}{\|y\|_{M}}\right) \geq \frac{\|y\|_{M}}{\|y\|_{M}}=\frac{\|y\|_{M}}{2}>0 .
$$

A-2. $\mu\left\{i: k\|x(i)\| \in S_{M}\right\}=0$, for all $k \in k(x)=\left[k^{\star}, k^{\star \star}\right]$.
In this case, $\rho_{N}\left(p_{-}(k x)\right)=\rho_{N}(p(k x))=1$.
A-2-1. $\inf _{a_{i^{\prime}}<k\|x(i)\|<b_{i^{\prime}}} \frac{b_{i^{\prime}}}{a_{i^{\prime}}}=1$.
Without loss of generality, assume $\lim _{i^{\prime} \rightarrow \infty} \frac{b_{i^{\prime}}}{a_{i^{\prime}}}=1$. Let $I=\bigcup_{i^{\prime}=1}^{\infty} I\left(2 i^{\prime}-1\right)$, $J=\bigcup_{i^{\prime}=1}^{\infty} I\left(2 i^{\prime}\right)$, and define
(2)

$$
k y(i)= \begin{cases}a_{i^{\prime}} \frac{x(i)}{\|x(i)\|} & i \in I \\ b_{i^{\prime}} \frac{x(i)}{\|x(i)\|} & i \in J\end{cases}
$$

Then $k(y)=\{k\}$, so $\frac{y}{\|y\|} \in \operatorname{ExtB}\left(l_{M}(X)\right)$. In fact, for all $\varepsilon>0$, take i_{0} satisfying $\frac{b_{i^{\prime}}}{a_{i^{\prime}}} \leq \frac{2+2 \varepsilon}{2+\varepsilon}<\frac{2-\varepsilon}{2-2 \varepsilon}$, for $i \geq i_{0}$, thus we have

$$
\begin{aligned}
& \rho_{N}(p((1+\varepsilon) k y)) \\
= & \sum_{i \in I} N\left(p\left((1+\varepsilon) a_{i^{\prime}}\right)\right)+\sum_{i \in J} N\left(p\left((1+\varepsilon) b_{i^{\prime}}\right)\right) \\
\geq & \sum_{i \in I \backslash I\left(2 i_{0}^{\prime}-1\right)} N\left(p\left((1+\varepsilon) a_{i^{\prime}}\right)\right)+\sum_{i \in I\left(2 i_{0}^{\prime}-1\right)} N\left(p\left(\left(1+\frac{\varepsilon}{2}\right) b_{2 i_{0}^{\prime}-1}\right)\right) \\
& +\sum_{i \in J} N\left(p\left((1+\varepsilon) b_{i^{\prime}}\right)\right)
\end{aligned}
$$

$$
\geq \sum_{i \in I \backslash I\left(2 i_{0}^{\prime}-1\right)} N\left(p((k x(i)))+\sum_{i \in I\left(2 i_{0}^{\prime}-1\right)} N\left(p\left(\left(1+\frac{\varepsilon}{2}\right) b_{2 i_{0}^{\prime}-1}\right)\right)\right.
$$

$$
+\sum_{i \in J} N(p((k x(i)))
$$

$$
=\sum_{i \in I} N\left(p((k x(i)))+\sum_{i \in J} N(p((k x(i)))\right.
$$

$$
+\sum_{i \in I\left(2 i_{0}^{\prime}-1\right)}\left[N\left(p\left(\left(1+\frac{\varepsilon}{2}\right) b_{2 i_{0}^{\prime}-1}\right)\right)-N\left(p\left(k x\left(2 i_{0}^{\prime}-1\right)\right)\right)\right]
$$

$$
>\sum_{i \in I} N\left(p((k x(i)))+\sum_{i \in J} N(p((k x(i)))\right.
$$

$$
=1
$$

and

$$
\rho_{N}(p((1-\varepsilon) k y))
$$

$$
\begin{aligned}
= & \sum_{i \in I} N\left(p\left((1-\varepsilon) a_{i^{\prime}}\right)\right)+\sum_{i \in J} N\left(p\left((1-\varepsilon) b_{i^{\prime}}\right)\right) \\
\leq & \sum_{i \in I} N\left(p\left((1-\varepsilon) a_{i^{\prime}}\right)\right)+\sum_{i \in J \backslash J\left(2 i_{0}^{\prime}\right)} N\left(p\left((1-\varepsilon) b_{i^{\prime}}\right)\right) \\
& +\sum_{i \in J\left(2 i_{0}^{\prime}\right)} N\left(p\left(\left(1-\frac{\varepsilon}{2}\right) a_{2 i_{0}^{\prime}}\right)\right) \\
\leq & \sum_{i \in I} N\left(p_{-}((k x(i)))+\sum_{i \in J} N\left(p_{-}(k x(i))\right)+\sum_{i \in J\left(2 i_{0}^{\prime}\right)}\left[N\left(p\left(\left(1-\frac{\varepsilon}{2}\right) a_{2 i_{0}^{\prime}}\right)\right)\right.\right. \\
& \left.-N\left(p_{-}\left(k x\left(2 i_{0}^{\prime}\right)\right)\right)\right] \\
< & \sum_{i \in I} N\left(p_{-}((k x(i)))+\sum_{i \in J} N\left(p_{-}(k x(i))\right)\right. \\
= & 1 .
\end{aligned}
$$

Set

$$
z=2 x-y
$$

Similarly as A-1, we have $\|y\|_{M}+\|z\|_{M}=\|y+z\|_{M}=2$ and

$$
x=\frac{y+z}{2}=\frac{y+z}{\|y\|_{M}+\|z\|_{M}}=\frac{\|y\|_{M}}{\|y\|_{M}+\|z\|_{M}} \frac{y}{\|y\|_{M}}+\frac{\|z\|_{M}}{\|y\|_{M}+\|z\|_{M}} \frac{z}{\|z\|_{M}}
$$

and

$$
\lambda(x) \geq \frac{\|y\|_{M}}{2}>0 .
$$

A-2-2. $\inf _{a_{i^{\prime}}<k\|x(i)\|<b_{i^{\prime}}} \frac{b_{i^{\prime}}}{a_{i^{\prime}}}=\alpha>1+\delta$, for some $\delta>0$.
A-2-2-1. $k^{\star}=k^{\star \star}$
Claim. $\mu I \geq 1$ and $\mu J \geq 1$.
If suppose $\mu I=0$. Noticing

$$
\frac{a_{i^{\prime}}+b_{i^{\prime}}}{2}=\frac{a_{i^{\prime}}}{2}\left(1+\frac{b_{i^{\prime}}}{a_{i^{\prime}}}\right)>\frac{a_{i^{\prime}}}{2}(1+1+\delta)=\left(1+\frac{\delta}{2}\right) a_{i^{\prime}},
$$

so for all $i, k\|x(i)\|>\frac{a_{i^{\prime}}+b_{i^{\prime}}}{2}>\left(1+\frac{\delta}{2}\right) a_{i^{\prime}}$, thus

$$
1=\rho_{N}(p(k x))=\sum_{i=1}^{\infty} N\left(p\left(a_{i^{\prime}}\right)\right) \leq \sum_{i=1}^{\infty} N\left(p\left(\frac{1}{1+\frac{\delta}{2}} k x(i)\right)\right) \leq \rho_{N}(p(k x))=1,
$$

hence $\frac{1}{1+\frac{\delta}{2}} k \in k(x)$, a contradiction with that $k^{\star}=k^{\star \star}$.

If suppose $\mu J=0$. Noticing

$$
\frac{a_{i^{\prime}}+b_{i^{\prime}}}{2}=\frac{b_{i^{\prime}}}{2}\left(1+\frac{a_{i^{\prime}}}{b_{i^{\prime}}}\right)<\frac{b_{i^{\prime}}}{2}\left(1+\frac{1}{1+\delta}\right)=b_{i^{\prime}} \frac{2+\delta}{2(1+\delta)},
$$

so for all $i, a_{i^{\prime}}<k\|x(i)\| \leq \frac{a_{i^{\prime}}+b_{i^{\prime}}}{2}<b_{i^{\prime}} \frac{2+\delta}{2(1+\delta)}$, thus $a_{i^{\prime}}<k\|x(i)\|<\frac{2(1+\delta)}{2+\delta} k\|x(i)\|$ $<b_{i^{\prime}}$

$$
1=\rho_{N}(p(k x))=\sum_{i=1}^{\infty} N\left(p\left(a_{i^{\prime}}\right)\right) \leq \sum_{i=1}^{\infty} N\left(p\left(\frac{2(1+\delta)}{2+\delta} k x(i)\right)\right) \leq \rho_{N}(p(k x))=1,
$$

hence $\frac{2(1+\delta)}{2+\delta} k \in k(x)$, a contradiction with that $k^{\star}=k^{\star \star}$.

Define

$$
k y(i)= \begin{cases}a_{i^{\prime}} \frac{x(i)}{\|x(i)\|} & i \in I \tag{3}\\ b_{i^{\prime}} \frac{x(i)}{\|x(i)\|} & i \in J\end{cases}
$$

Then $k(y)=\{k\}$, so $\frac{y}{\|y\|} \in \operatorname{ExtB}\left(l_{M}(X)\right)$. In fact, for all $\varepsilon>0$, we have

$$
\begin{aligned}
& \rho_{N}(p((1+\varepsilon) k y)) \\
= & \sum_{i \in I} N\left(p\left((1+\varepsilon) a_{i^{\prime}}\right)\right)+\sum_{i \in J} N\left(p\left((1+\varepsilon) b_{i^{\prime}}\right)\right) \\
\geq & \sum_{i \in I} N(p(k x(i)))+\sum_{i \in J} N(p(k x(i)))+\sum_{i \in J} N\left(p\left((1+\varepsilon) b_{i^{\prime}}\right)\right)-\sum_{i \in J} N(p(k x(i))) \\
> & \sum_{i \in I} N(p(k x(i)))+\sum_{i \in J} N(p(k x(i))) \\
= & 1
\end{aligned}
$$

and

$$
\begin{aligned}
& \rho_{N}(p((1-\varepsilon) k y)) \\
= & \sum_{i \in I} N\left(p\left((1-\varepsilon) a_{i^{\prime}}\right)\right)+\sum_{i \in J} N\left(p\left((1-\varepsilon) b_{i^{\prime}}\right)\right) \\
\geq & \sum_{i \in I} N\left(p_{-}(k x(i))\right)+\sum_{i \in J} N\left(p_{-}(k x(i))\right)+\sum_{i \in I} N\left(p\left((1-\varepsilon) a_{i^{\prime}}\right)\right)-\sum_{i \in I} N\left(p_{-}(k x(i))\right) \\
< & \sum_{i \in I} N\left(p_{-}(k x(i))\right)+\sum_{i \in J} N\left(p_{-}(k x(i))\right) \\
= & 1
\end{aligned}
$$

Set

$$
z=2 x-y
$$

Similarly as A-1, we have $\|y\|_{M}+\|z\|_{M}=\|y+z\|_{M}=2$ and

$$
x=\frac{y+z}{2}=\frac{y+z}{\|y\|_{M}+\|z\|_{M}}=\frac{\|y\|_{M}}{\|y\|_{M}+\|z\|_{M}} \frac{y}{\|y\|_{M}}+\frac{\|z\|_{M}}{\|y\|_{M}+\|z\|_{M}} \frac{z}{\|z\|_{M}}
$$

and

$$
\lambda(x) \geq \frac{\|y\|_{M}}{2}>0
$$

A-2-2-2. $\quad k^{\star}<k^{\star \star}$
Denote
$k_{\star}=\sup \left\{k \in\left[k^{\star}, k^{\star \star}\right]: \mu I(x, k)=0\right\}, k_{\star \star}=\inf \left\{k \in\left[k^{\star}, k^{\star \star}\right]: \mu J(x, k)=0\right\}$
then $k_{\star} \leq k_{\star \star}$. Otherwise $k_{\star}>k_{\star \star}$, take $k_{\star}>k>k_{\star \star}$ From $k_{\star}>k$, we get $\mu I(x, k)=0$. From $k>k_{\star \star}$, we get $\mu J(x, k)=0$. By $\{i: x(i) \neq \theta\}=$ $I(x, k) \bigcup J(x, k)=\emptyset$, it follows a contradiction with that $\|x\|_{M}=1$.

A-2-2-2-1. $k_{\star}<k_{\star \star}$.

Take $k_{\star}<k<k_{\star \star}$. From $k_{\star}<k$, we see $\mu I \geq 1$. From $k<k_{\star \star}$, we see $\mu J \geq 1$. Define y as in (3), by making that same argument, we can have that $k(y)=\{k\}, \frac{y}{\|y\|} \in \operatorname{ExtB}\left(l_{M}(X)\right)$ and $\lambda(x) \geq \frac{\|y\|_{M}}{2}>0$.

A-2-2-2-2. $k_{\star}=k_{\star \star}$.
Take $k_{\star}=k=k_{\star \star \star}$, then for all $i \in \operatorname{suppx}, k\|x(i)\|=\frac{a_{i^{\prime}}+b_{i^{\prime}}}{2}$. In fact,it is enough to see that for such each i

$$
\begin{gathered}
\forall h<k_{\star}=k, h\|x(i)\|>\frac{a_{i^{\prime}}+b_{i^{\prime}}}{2} \text { so } \quad k\|x(i)\| \geq \frac{a_{i^{\prime}}+b_{i^{\prime}}}{2} \\
\forall h>k_{\star \star}=k, h\|x(i)\| \leq \frac{a_{i^{\prime}}+b_{i^{\prime}}}{2} \quad \text { so } \quad k\|x(i)\| \leq \frac{a_{i^{\prime}}+b_{i^{\prime}}}{2}
\end{gathered}
$$

Noticing $x \notin \operatorname{Ext} B\left(l_{M}(X)\right)$ and $\mu \tilde{S}=0$, by Lemma 6, we get that there exist h and j with $h \neq j$ and $h, j \notin \tilde{S}$. Let $J=\{h\}$ and $I=\{i \in \operatorname{suppx}: i \neq h\}$, and define

$$
k y(i)= \begin{cases}a_{i^{\prime}} \frac{x(i)}{\|x(i)\|} & i \in I \tag{4}\\ b_{i^{\prime}} \frac{x(i)}{\|x(i)\|} & i \in J\end{cases}
$$

then we have that $k(y)=\{k\}$, by Lemma $6, \frac{y}{\|y\|} \in \operatorname{ExtB}\left(l_{M}(X)\right)$. In fact

$$
\begin{aligned}
& \rho_{N}(p((1+\varepsilon) k y)) \\
= & N\left(p\left((1+\varepsilon) b_{h^{\prime}}\right)\right)+\sum_{i \neq h} N\left(p\left((1+\varepsilon) a_{i^{\prime}}\right)\right) \\
\geq & N\left(p\left((1+\varepsilon) b_{h^{\prime}}\right)\right)+\sum_{i \neq h} N(p(k x(i))) \\
= & N\left(p((k x(h)))+\sum_{i \neq h} N(p(k x(i)))+N\left(p\left((1+\varepsilon) b_{h^{\prime}}\right)\right)-N(p((k x(h)))\right. \\
> & N\left(p((k x(h)))+\sum_{i \neq h} N(p(k x(i)))\right. \\
= & 1
\end{aligned}
$$

and

$$
\begin{aligned}
& \rho_{N}(p((1-\varepsilon) k y)) \\
= & N\left(p\left((1-\varepsilon) b_{h^{\prime}}\right)\right)+\sum_{i \neq h} N\left(p\left((1-\varepsilon) a_{i^{\prime}}\right)\right) \\
\leq & N\left(p_{-}(k x(h))\right)+\sum_{i \neq h} N\left(p_{-}(k x(i))\right)+\sum_{i \neq h} N\left(p\left((1-\varepsilon) a_{i^{\prime}}\right)\right)-\sum_{i \neq h} N\left(p_{-}(k x(i))\right) \\
< & N\left(p_{-}(k x(h))\right)+\sum_{i \neq h} N\left(p_{-}(k x(i))\right) \\
= & 1 .
\end{aligned}
$$

Set

$$
z=2 x-y
$$

Then

$$
\begin{aligned}
k\|z(h)\| & =\|2 k x(h)-k y(h)\| \\
& =\left\|2 k x(h)-b_{h^{\prime}} \frac{x(h)}{\|x(h)\|}\right\| \\
& =\left|2 k\|x(h)\|-b_{h^{\prime}}\right| \\
& =2 \frac{a_{h^{\prime}}+b_{h^{\prime}}}{2}-b_{h^{\prime}} \\
& =a_{h^{\prime}}
\end{aligned}
$$

for $i \neq h$

$$
\begin{aligned}
k\|z(i)\| & =\|2 k x(i)-k y(i)\| \\
& =\left\|2 k x(i)-a_{i^{\prime}} \frac{x(i)}{\|x(i)\|}\right\| \\
& =\left|2 k\|x(i)\|-a_{i^{\prime}}\right| \\
& =2 \frac{a_{i^{\prime}}+b_{i^{\prime}}}{2}-a_{i^{\prime}} \\
& =b_{i^{\prime}}
\end{aligned}
$$

thus for all $i, k\|x(i)\|, k\|y(i)\|$ and $k\|z(i)\|$ are in the same SAI of M. Similarly as A-1, we have $\|y\|_{M}+\|z\|_{M}=\|y+z\|_{M}=2$ and

$$
x=\frac{y+z}{2}=\frac{y+z}{\|y\|_{M}+\|z\|_{M}}=\frac{\|y\|_{M}}{\|y\|_{M}+\|z\|_{M}} \frac{y}{\|y\|_{M}}+\frac{\|z\|_{M}}{\|y\|_{M}+\|z\|_{M}} \frac{z}{\|z\|_{M}}
$$

and

$$
\lambda(x) \geq \frac{\|y\|_{M}}{2}>0 .
$$

B $\mu\left\{i: \frac{x(i)}{\|x(i)\|} \notin \operatorname{ExtB}(X)\right\} \geq 1$.
From $\inf \left\{\lambda\left(\frac{x(i)}{\|x(i)\|}\right): x(i) \neq 0\right\} \geq \lambda(X)>0$, for all $0<\lambda<\inf \left\{\lambda\left(\frac{x(i)}{\|x(i)\|}\right)\right.$: $x(i) \neq 0\}$, by Lemma 1, take $e_{i} \in \operatorname{Ext} B(X), z_{i} \in B(X)$ with $\frac{x(i)}{\|x(i)\|}=\lambda e_{i}+(1-$ $\lambda) z_{i}$ for all $i \in \operatorname{supp} x$. Then

$$
x(i)=\|x(i)\| \frac{x(i)}{\|x(i)\|}=\|x(i)\|\left(\lambda e_{i}+(1-\lambda) z_{i}\right) \quad i=1,2, \cdots .
$$

Set

$$
y(i)=\|x(i)\| e_{i} \quad z(i)=\|x(i)\| z_{i} \quad i=1,2, \cdots
$$

then

$$
\|y\|_{M}=\|x\|_{M}=1 \quad\|z\|_{M}=\|x\|_{M}=1
$$

By A, we get $\lambda(y)>0$. By Lemma 2, we get $\lambda(x) \geq \lambda(X) \lambda(y)>0$.
Theorem 1. $l_{M}(X)$ has λ property if and only if X has uniform λ property.
Proof. Sufficiency. It follows by Lemma 7. Necessity. Otherwise, suppose that X fails to have the uniform λ property, then there exist $x_{i} \in S(X)$ so that

$$
\lambda\left(x_{i}\right)<\frac{1}{i}, \quad i=1,2, \cdots .
$$

Since M is a N -function there exist positive numbers $t_{i} \in S_{M}$ so that $t_{i} \searrow 0$ (see [8]). If necessary passing to a subsequence, assume

$$
0<N\left(p\left(t_{i}\right)\right)<\frac{1}{2^{i}}
$$

Since $0<N\left(p\left(t_{1}\right)\right)<\frac{1}{2}$, take positive integer m_{1} such that $0<m_{1} N\left(p\left(t_{1}\right)\right) \leq \frac{1}{2}$. Since $0<N\left(p\left(t_{2}\right)\right)<\frac{1}{4}$, take positive integer m_{2} such that $\frac{1}{2}<m_{1} N\left(p\left(t_{1}\right)\right)+$ $m_{2} N\left(p\left(t_{2}\right)\right) \leq \frac{1}{2}+\frac{1}{4}$. In such a way, since $0<N\left(p\left(t_{n}\right)\right)<\frac{1}{2^{n}}$, take positive integer m_{n} such that

$$
\sum_{i=1}^{n-1} \frac{1}{2^{i}}<\sum_{i=1}^{n} m_{i} N\left(p\left(t_{i}\right)\right) \leq \sum_{i=1}^{n} \frac{1}{2^{i}} \quad n=1,2, \cdots
$$

hence $\sum_{i=1}^{\infty} m_{i} N\left(p\left(t_{i}\right)\right)=1$. Define

$$
x=(\cdots, \overbrace{t_{i} x_{i}, \cdots, t_{i} x_{i}}^{m_{i}}, \cdots)
$$

then

$$
\rho_{N}(p(x))=\sum_{i=1}^{\infty} N(p(\|x(i)\|))=\sum_{i=1}^{\infty} m_{i} N\left(p\left(t_{i}\left\|x_{i}\right\|\right)\right)=1
$$

Hence $1 \in k(x)$ and $\|x\|_{M} \in\|x\|_{M} k(x)=k\left(\frac{x}{\|x\|_{M}}\right)$. Since $l_{M}(X)$ has λ property we have $\lambda\left(\frac{x}{\|x\|_{M}}\right)>0$. For $\lambda\left(\frac{x}{\|x\|_{M}}\right)>\lambda>0$, there exist $y \in \operatorname{Ext} B\left(l_{M}(X)\right)$ and $z \in B\left(l_{M}(X)\right)$ satisfying

$$
\frac{x}{\|x\|_{M}}=\lambda y+(1-\lambda) z
$$

By [8], we have

$$
\begin{aligned}
1 & =\left\|\left\{\frac{\|x(i)\|^{\prime}}{\|x\|_{M}}\right\}\right\|_{M} \\
& =\sum_{i=1}^{\infty} \frac{\|x(i)\|}{\|x\|_{M}} p(\|x(i)\|) \\
& =\sum_{i=1}^{\infty}(\|\lambda y(i)+(1-\lambda) z(i)\|) p(\|x(i)\|) \\
& \leq \sum_{i=1}^{\infty}(\lambda\|y(i)\|+(1-\lambda)\|z(i)\|) p(\|x(i)\|) \\
& \left.\leq \lambda \sum_{i=1}^{\infty}\|y(i)\| p(\|x(i)\|)+(1-\lambda) \sum_{i=1}^{\infty}\|z(i)\|\right) p(\|x(i)\|) \\
& =1
\end{aligned}
$$

thus

$$
\left.\sum_{i=1}^{\infty}\|y(i)\| p(\|x(i)\|)=1=\|y\|_{M} \quad \sum_{i=1}^{\infty}\|z(i)\|\right) p(\|x(i)\|)=1=\|z\|_{M}
$$

By Lemma 5, we have for all i

$$
\begin{array}{ll}
p_{-}(h\|y(i)\|) \leq p(\|x(i)\|) \leq p(h\|y(i)\|) & \forall h \in k(y) \\
p_{-}(k\|z(i)\|) \leq p(\|x(i)\|) \leq p(k\|z(i)\|) & \forall k \in k(z) .
\end{array}
$$

Since $\|x(i)\|=t_{i^{\prime}} \in S_{M}$, we have for all i

$$
h\|y(i)\|=\|x(i)\|=k\|z(i)\| .
$$

Moreover

$$
\begin{aligned}
1 & =\left\|\frac{x}{\|x\|_{M}}\right\|_{M}=\left\|\left\{\frac{\|x(i)\|}{\|x\|_{M}}\right\}\right\|_{M}=\left\|\frac{h}{\|x\|_{M}}\{\|y(i)\|\}\right\|_{M} \\
& =\frac{h}{\|x\|_{M}}\|\{\|y(i)\|\}\|_{M}=\frac{h}{\|x\|_{M}}
\end{aligned}
$$

we have $h=\|x\|_{M}$. Similarly $k=\|x\|_{M}$. Thus we have for all i

$$
\|y(i)\|=\frac{\|x(i)\|}{\|x\|_{M}}=\|z(i)\|
$$

From

$$
\frac{x(i)}{\|x\|_{M}}=\lambda y(i)+(1-\lambda) z(i)
$$

we have

$$
\begin{aligned}
& \frac{t_{i^{\prime}} x_{i^{\prime}}}{\|x\|_{M}}=\lambda y(i)+(1-\lambda) z(i) \\
x_{i^{\prime}} & =\lambda \frac{\|x\|_{M}}{t_{i^{\prime}}} y(i)+(1-\lambda) \frac{\|x\|_{M}}{t_{i^{\prime}}} z(i) \\
= & \lambda \frac{h}{t_{i^{\prime}}} y(i)+(1-\lambda) \frac{k}{t_{i^{\prime}}} z(i) \\
= & \lambda \frac{h\|y(i)\|}{t_{i^{\prime}}} \frac{y(i)}{\|y(i)\|}+(1-\lambda) \frac{k\|z(i)\|}{t_{i^{\prime}}} \frac{z(i)}{\|z(i)\|} \\
= & \lambda \frac{y(i)}{\|y(i)\|}+(1-\lambda) \frac{z(i)}{\|z(i)\|} .
\end{aligned}
$$

By Lemma 6 and $y \in \operatorname{ExtB}\left(l_{M}(X)\right)$, we have that for all $i, \frac{y(i)}{\|y(i)\|} \in \operatorname{Ext} B(X)$, hence

$$
\lambda\left(x_{i}\right) \geq \lambda
$$

a contradiction with that $\lambda\left(x_{i}\right)<\frac{1}{i}, \quad i=1,2, \cdots$.
Theorem 2. $l_{M}(X)$ has uniform λ property if and only if (i) X has uniform λ property and (ii) $\sup _{0<b_{i} \leq 1} \frac{b_{i}}{a_{i}}<\infty$.

Proof. Necessity. By Theorem 1, (i) follows. By Lemma 3 and [5], similarly to [10], (ii) follows.

Sufficiency. For $x \in S\left(l_{M}(X)\right)$. If $x \in \operatorname{Ext} B\left(l_{M}(X)\right)$, then $\lambda(x)=1$. For $x \in B\left(l_{M}(X)\right) \backslash \operatorname{Ext} B\left(l_{M}(X)\right)$, by the proof of Lemma 7, we have

$$
\lambda(x) \geq \frac{\|y\|_{M}}{2} \lambda(X)
$$

where y is defined (in the formula (1) in Lemma 7) by

$$
k y(i)= \begin{cases}a_{i^{\prime}} \frac{x(i)}{\|x(i)\|} & i \in I \\ b_{i^{\prime}} \frac{x(i)}{\|x(i)\|} & i \in J \\ k x(i) & i \in \tilde{S}_{M}\end{cases}
$$

Since $a_{i^{\prime}}<k\|x(i)\|<b_{i^{\prime}}$, we have

$$
N\left(p\left(a_{i^{\prime}}\right)\right)=N\left(p_{-}(k\|x(i)\|)\right) \leq \rho_{N}\left(p_{-}(k x)\right) \leq 1
$$

so $a_{i^{\prime}} \leq q\left(N^{-1}(1)\right.$. Since $p(s) \longrightarrow \infty(s \longrightarrow \infty)$, we get $b_{i^{\prime}} \leq c$ for some $c>0$. Set $c_{M}=\sup \left\{\frac{b_{i}}{a_{i}}: 0<b_{i} \leq c\right\}$, then $c_{M}<\infty$. In fact

$$
\begin{aligned}
c_{M} & \leq \sup \left\{\frac{b_{i}}{a_{i}}: 0<b_{i} \leq 1\right\}+\sup \left\{\frac{b_{i}}{a_{i}}: 1<b_{i} \leq c\right\} \\
& \leq \sup \left\{\frac{b_{i}}{a_{i}}: 0<b_{i} \leq 1\right\}+\frac{c}{1} \\
& <\infty
\end{aligned}
$$

Hence if $i \in \tilde{S}_{M}, y(i)=x(i)$, so $\|y(i)\|=\|x(i)\|$. If $i \in J, k y(i)=b_{i} \frac{x(i)}{\|x(i)\|}$, so $k\|y(i)\|=b_{i}>k\|x(i)\|$, moreover $\|y(i)\|>\|x(i)\|$. If $i \in I, k y(i)=a_{i} \frac{x(i)}{\|x(i)\|}$, so $k\|y(i)\|=a_{i}=\frac{a_{i}}{b_{i}} b_{i}>\frac{a_{i}}{b_{i}} k\|x(i)\| \geq \frac{1}{c_{M}} k\|x(i)\|$, moreover $\|y(i)\|>\frac{1}{c_{M}}\|x(i)\|$.

Since $\frac{1}{c_{M}} \leq 1$, we have for all $i,\|y(i)\|>\frac{1}{c_{M}}\|x(i)\|$. By Lemma 4, we have $\|y\|_{M} \geq \frac{1}{c_{M}}\|x\|_{M}=\frac{1}{c_{M}}$. Hence

$$
\lambda(x) \geq \frac{\|y\|_{M}}{2} \lambda(X) \geq \frac{1}{2 c_{M}} \lambda(X) .
$$

References

1. R. M. Aron and R. H. Lohman, A geometric function determined by extreme points of the unit ball of a normed space, Pacific J. Math., 127 (1987), 209-231.
2. A. S. Granero, λ-property in Orlicz Spaces, Bull. Polish Aca. Sci. Math., 37 (1989), 421-431.
3. S. Chen, H. Sun and C. Wu, λ-property of Orlicz spaces, Bull. Polish Acad. Sci. Math., 39 (1991), 63-69.
4. S. Chen and H. Sun, λ-property of Orlicz sequence spaces, Ann. Polan. Math., 59 (1994), 239-249.
5. S. Chen, Geometry of Orlicz spaces, Dissertation, Warszawa, Poland, 1996.
6. Y. Liu, Z. Shi and P. Zhang, Rotundity of Orlicz-Bochner spaces with Luxemburg norm, J. ShangHai Univ. (English Edition), 7(4) (2003), 322-326.
7. H. Hudzik, Strongly extreme points in Kothe-Bochner spaces, Rocky Mountain J. Math., 23 (1993), 899-909.
8. M. A. Krasnoselskii and Y. B. Rutickii, Convex Functions and Orlicz Spaces, P. Noordhoff Ltd., Groningen, 1961.
9. Z. Shi, Y. Liu and P. Zhang, Rotundity of Orlicz-Bochner sequence spaces with Orlicz norm, Functional space theory and its applications, 2004, pp. 232-242. (United Kingdom).
10. R.Shi and P. Zhang, Orlicz-Bochner sequence spaces that have the uniform lamdaproperty, Comment. Math., (2004), Ser. 1, 215-227, (Poland),

Zhongrui Shi and Linsen Xie
Department of Mathematics,
ShangHai University,
Shanghai 200444,
P. R. China

E-mail: zshi@sh163.net

