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UNBOUNDED FATOU COMPONENTS OF COMPOSITE
TRANSCENDENTAL MEROMORPHIC FUNCTIONS

WITH FINITELY MANY POLES

Keaitsuda Maneeruk and Piyapong Niamsup*

Abstract. Let fi, i = 1, 2, . . . , m be transcendental meromorphic functions of
order less than 1

2
with at most finitely many poles and at least one of them

has positive lower order. Let g = fm ◦ fm−1 ◦ · · · ◦ f1. Then either g has no
unbounded Fatou components or at least one unbounded Fatou component g
is multiply connected.

1. INTRODUCTION

Let f be a transcendental meromorphic function in the complex plane C. The
n - iteration of f(z) is denoted by fn(z) = f(fn−1(z)), n = 1, 2, . . . . Then fn(z)
is well defined for all z ∈ C outside a (possible) countable set consisting of the
poles of fk(z), k = 1, 2, . . . , n − 1. Define the Fatou set F (f) of f(z) as F (f)
={z ∈ C̄: {fn(z)} is well defined and normal in a neighborhood of z } and
J(f) = C̄ − F (f) is the Julia set of f(z). F (f) is open and J(f) is closed
and perfect. It is well-known that F (f) is completely invariant under f , that is,
z ∈ F (f) if and only if f(z) ∈ F (f). Let U be a connected component of F (f).
For each n ≥ 1, fn(U) ⊆ U , then U is called a periodic component and such the
smallest integer n is the period of periodic component U . In particular, a periodic
component of periodic one is also called invariant. If for some n, Un is periodic,
but U is not periodic, then U is called preperiodic; U is called a Baker domain of
period p, if U is periodic, fnp(z) → a ∈ ∂U ∪ {∞} in U as n → ∞ and f p(z)
is not defined at z = a; U is called a wandering domain if Um ∩ Un = ∅ for all
m 
= n.
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Let f(z) be a meromorphic function in C. Let T (r, f) denote the Nevanlinna
characteristic function of f(z). The order and lower order of f(z) are defined
respectively by

ρ(f) = lim sup
r→+∞

log T (r, f)
log r

and

µ(f) = lim inf
r→+∞

log T (r, f)
log r

.

In [10], Zheng and Wang studied the non-existence of unbounded Fatou compo-
nents of the composition of finitely many entire and meromorphic functions under
some suitable conditions.

C. Cao and Y. Wang [6] generalized the result in [10] by studying the bounded-
ness of Fatou components of composition of finitely many transcendental holomor-
phic functions with small growth. Their main result is the following.

Theorem 1.1. Let h(z) = fN ◦fN−1◦· · ·◦f1(z) where fi(z), i = 1, 2, . . . , N,
are non-constant holomorphic functions in the plane, each having order less than
1
2 . If there is a number j ∈ {1, 2, . . . , N} such that the lower order of f j is
greater than 0, then every Fatou component of h is bounded.

For more details on boundedness of components of F (f) of transcendental
entire function f(z), we refer to Baker [2], Stallard [7], Wang [8], Zheng [9], and
references cited therein.

In this paper, we discuss the boundedness of Fatou components of composition
of finitely many transcendental meromorphic functions of order less than 1

2 with
finitely many poles and obtain a generalization of Theorem 1.1.

2. MAIN RESULTS

In this paper, we mainly prove the following result.

Theorem 2.1. Let fj(z), j = 1, 2, ...,m, be transcendental meromorphic func-
tions of order less than 1

2 with at most finitely many poles and at least one of them
has positive lower order. Let g(z) = fm ◦ fm−1 ◦ . . . ◦ f1(z). Then either g(z) has
no unbounded Fatou components or at least one unbounded Fatou component is
multiply connected.

In order to prove Theorem 2.1, we need the following two lemmas and the basic
knowledge of the hyperbolic metric.
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Lemma 2.1. Let f(z) be a meromorphic function of order less than 1
2 with

finitely many poles. There exist d > 1 and R > 0 such that for all r > R, there
exists r̃ ∈ (r, rd) satisfying

|f(z)| ≥ m(r̃, f) = M(r, f)

for all z ∈ {z : |z| = r̃}.

Lemma 2.1 follows directly from [4], satz 1. Actually, f(z) in Lemma 2.1
can be written into the form f(z) = g(z) + R(z) where g(z) is entire with order
ρ(g) = ρ(f) < 1/2 and R(z) is a rational function such that R(z) → 0 as z → ∞.
It is well-known that Lemma 2.1 is true for g, and hence it is easy to see that Lemma
2.1 holds for f .

Lemma 2.2. Let f(z) be a transcendental meromorphic function with only
finitely many poles, finite order ρ and positive lower order µ. Then for any d > 1
such that dµ > ρ, we have

lim
r→∞

log M(rd, f)
logM(r, f)

= ∞.

Lemma 2.2 follows immediately from the proof of Corollary 2 of Zheng [10]. In
what follows, we provide some basic knowledge in hyperbolic geometry; for more
details see [1], or [5]. An open set W in C is called hyperbolic if C−W contains
at least two points. Let U be a hyperbolic domain in C. Let λU(z) be the density
of the hyperbolic metric on U and let ρU(z1, z2) be the hyperbolic distance between
z1 and z2 in U , namely

ρU(z1, z2) = inf
γ∈U

∫
γ
λU(z)|dz|,

where γ is a Jordan curve connecting z1 and z2 in U . If U is simply-connected and
d(z, ∂U) is the Euclidean distance between z ∈ U and ∂U , then for any z ∈ U ,

(1)
1

2d(z, ∂U)
≤ λU(z) ≤ 2

d(z, ∂U)
.

Let f : U → V be an analytic function, where U and V are hyperbolic domains.
By the principle of hyperbolic metric, we have

(2) ρV (f(z1), f(z2)) ≤ ρU(z1, z2)

for any z1, z2 ∈ U.
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We are now ready to prove Theorem 2.1.

Proof of Theorem 2.1. Suppose that F (g) has an unbounded component U and
every unbounded component of F (g) is simply-connected. Then by our assumption,
U is simply connected. Take a point z0 ∈ U. Then there exists a sufficiently large
R0 > |z0| so that each fj(z) has no poles in {z : |z| > R0}.

We first prove the following result: there exists h > 1 such that for all suf-
ficiently large r and for an arbitrary curve γ which intersects {z : |z| < r} and
{z : |z| > rh}, we have

g(γ)∩ {z : |z| < R} 
= ∅ and g(γ)∩ {z : |z| > Rh} 
= ∅

where R = Mm(r, g), M1(r, g) = M(r, f1), ..., Mm(r, g) = M(Mm−1(r, g), fm).
Assume that fk(z) has positive lower order, k ∈ {1, 2, . . . , m}. By Lemma 2.1, for
each j, we have t > 0 such that for any r > t, there exists r̃j ∈ (r, rd) such that

|fj(z)| > M(r, fj), on Γj := {z : |z| = r̃j}, j = 1, 2, . . . , m

where each fj(z) has no poles in {z : |z| > t} and M(r, fj) is increasing for r > t.
Assume that γ is a curve under our consideration for h = d2k, where d is as in
Lemma 2.2 for fk, namely, γ ∩ {z : |z| < r} 
= ∅ and γ ∩ {z : |z| > rh} 
= ∅.
From Lemma 2.1, there exists r̃1 ∈ (rd2k−1

, rd2k
) such that

|f1(z)| > M(rd2k−1
, f1) > M(r, f1)d2k−2

, on Γ1 := {z : |z| = r̃1}.

Let R1 = M(r, f1). Then, f1(γ)∩ {z : |z| > Rd2k−2

1 } 
= ∅ and from the maximum
modulus principle, we have f1(γ) ∩ {z : |z| < R1} 
= ∅.

Thus, there exists R̃1 ∈ (Rd2k−3

1 , Rd2k−2

1 ) such that

|f2(z)| > M(Rd2k−3

1 , f2) > M(R1, f2)d2k−4
, onΓ2 := {z : |z| = R̃1}.

Let R2 = M(R1, f2). Then,

f2 ◦ f1(γ)∩ {z : |z| < R2} 
= ∅ and f2 ◦ f1(γ)∩ {z : |z| > Rd2k−4

2 } 
= ∅.

Thus, there exists R̃2 ∈ (Rd2k−5

2 , Rd2k−4

2 ) such that

|f3(z)| > M(Rd2k−5

2 , f3) > M(R2, f3)d2k−6
, onΓ3 := {z : |z| = R̃2}.

Inductively, we set Rk−2 = M(Rk−3, fk−2). Then,

fk−2 ◦ fk−3 ◦ · · · ◦ f1(γ)∩ {z : |z| > Rd4

k−2} 
= ∅
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and
fk−2 ◦ fk−3 ◦ · · · ◦ f1(γ)∩ {z : |z| < Rk−2} 
= ∅.

Thus, there exists R̃k−2 ∈ (Rd3

k−2, R
d4

k−2) such that

|fk−1(z)| > M(Rd3

k−2, fk−1) > M(Rk−2, fk−1)d2
, on Γk−1 := {z : |z| = R̃k−2}.

Set Rk−1 = M(Rk−2, fk−1). Then,

fk−1 ◦ fk−2 ◦ · · · ◦ f1(γ)∩ {z : |z| > Rd2

k−1} 
= ∅

and
fk−1 ◦ fk−2 ◦ · · · ◦ f1(γ)∩ {z : |z| < Rk−1} 
= ∅.

Thus, there exists R̃k−1 ∈ (Rd
k−1, R

d2

k−1) such that

|fk(z)| > M(Rd
k−1, fk) > M(Rk−1, fk)d2m

, on Γk := {z : |z| = R̃k−1},

where the last inequality follows from 2.2.
Set Rk = M(Rk−1, fk). Then,

fk ◦ fk−1 ◦ · · · ◦ f1(γ)∩ {z : |z| > Rd2m

k } 
= ∅

and
fk ◦ fk−1 ◦ · · · ◦ f1(γ)∩ {z : |z| < Rk} 
= ∅.

Thus, there exists R̃k ∈ (Rd2m−1

k , Rd2m

k ) such that

|fk+1(z)| > M(Rd2m−1

k , fk+1) > M(Rk, fk+1)d2m−2
, on Γk+1 := {z : |z| = R̃k}.

Inductively, we set Rm−1 = M(Rm−2, fm−1). Then, we have

fm−1 ◦ fm−2 ◦ · · · ◦ f1(γ) ∩ {z : |z| > Rd2k+2

m−1 } 
= ∅

and
fm−1 ◦ fm−2 ◦ · · · ◦ f1(γ)∩ {z : |z| < Rm−1} 
= ∅.

Thus, there exists R̃m−1 ∈ (Rd2k+1

m−1 , Rd2k+2

m−1 ) such that

|fm(z)| > M(Rd2k+1

m−1 , fm) > M(Rm−1, fm)d2k
= Mm(r, g)h,

on Γm := {z : |z| = R̃m−1}.
Moreover, there exists a point zm1 ∈ γ such that

|fm−1 ◦ fm−2 ◦ · · · ◦ f1(zm1)| = R̃m−1.
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Thus, |g(zm1)| > Mm(r, g)h > M(R0, g)h > |g(z0)|h. By setting
Rm1 = Mm(r, g), we obtain

g(γ)∩ {z : |z| = Rh
m1} 
= ∅ and g(γ)∩ {z : |z| = Rm1} 
= ∅.

Repeating the previous process above inductively, there is a point zmn ∈ γ such
that

(3) |gn(zmn)| > M(Rmn, g)h ≥ M(R0, g)h > |gn(z0)|h,
where Rmn = Mm(Rn−1, g). Since gn(U) ⊆ Un and U is unbounded, so Un is
an unbounded component of F (g) and by our assumption Un is simply-connected.
For an arbitrary point a ∈ J(g), we obtain, by (1), that

(4) λUn(z) ≥ 1
2d(z, ∂Un)

≥ 1
2|z − a| ≥

1
2(|z|+ |a|) .

It follows from (4) that

(5)
ρUn(gn(z0), gn(zmn)) ≥

∫ |gn(zmn)|

|gn(z0)|

dr

2(r + |a|)

=
1
2
log

|gn(zmn)|+ |a|
|gn(z0)| + |a| .

Set A = max{λU(z0, z) : z ∈ γ}. Clearly A ∈ (0, +∞). From (2), noting that
zmn ∈ γ ⊂ U , we have

(6) ρUn(gn(z0), gn(zmn)) ≤ ρU(z0, zmn) ≤ A.

Therefore, by combining (3), (5) and (6) we obtain

|gn(z0)|h < M(R0, g
n)h < |gn(zmn)| + |a| ≤ (|gn(z0)|+ |a|)e2A.

This is impossible, since a and e2A are constants, h > 1 and |gn(z0)| → +∞ as
n → +∞. Therefore, if F (g) has an unbounded Fatou component, then at least one
of them is multiply connected. This completes the proof.

Since all unbounded Fatou components of a transcendental entire function are
simply connected [3], we obtain Theorem 1.1 as a corollary of Theorem 2.1.

Corollary 2.1. Let fj(z), j = 1, 2, ...,m, be transcendental entire functions
with order less than 1

2 and at least one of them has positive lower order. Let
g(z) = fm ◦ fm−1 ◦ . . . ◦ f1(z). Then g(z) has no unbounded Fatou components.

Remark 2.1. One may find another proof of Corollary 2.1 in [6].
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