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THE ORTHOGONALITY IN THE LOCALLY CONVEX SPACES

H. Mazaheri and R. Kazemi

Abstract. The purpose of this paper is to introduce and to discuss the con-
cept of orthogonality in the locally convex spaces, and obtaining some results
on orthogonality in locally convex spaces similar to orthogonality of normed
spaces. We shall obtain some characterizations of the best approximation and
the best coapproximation in locally convex spaces.

1. INTRODUCTION

Suppose that X is a vector space over φ ∈ {C,R}. A seminorm is a function
p : X → [0,∞) having the following properties:

(a) p(x + y) ≤ p(x) + p(y) ∀x, y ∈ X ;
(b) p(αx) = |α|p(x), ∀α ∈ φ and ∀x ∈ X . It follows from (b) that p(0) = 0.

A norm is a seminorm p such that
(c) x = 0 if p(x) = 0.

A topological vector space is a vector space X together with respect to this
topology

(a) the map X × X −→ X defined by (x, y) �→ x + y is continuous;
(b) the map φ × X −→ X defined by (α, x) �→ αx is continuous.

A topological vector space X is a locally convex space whose topology is
defined by seminorms P such that

⋂

p∈P

{x ∈ X : p(x) = 0} = {0}.
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Many authors have introduced the concept of orthogonality in different ways
(see [1-2], [5], [14]). In [1] G. C. Birkhoff modified the concept of orthogonality,
in fact, if X is a normed linear space and x, y ∈ X , x is said to be orthogonal to
y and is denoted by x ⊥ y if and only if ‖x‖ ≤ ‖x + αy‖ for all scalar α. In [5],
we define the concept of orthogonality in vector spaces with a seminorm p, we said
that x is orthogonal to y if and only if

p(x) 	= 0, p(x) = inf αp(x + αy).

In this note, we shall define orthogonality in the locally convex spaces.

Definition 1.1. Let (X, P ) be a locally convex space, and x, y ∈ X . We say
that x is orthogonal to y if and only if for all p ∈ P

p(x) ≤ p(x + αy) (α ∈ φ),

in this case we write x⊥y. If M1 and M2 are subsets of X , we say that M1 is
orthogonal to M2 if and only if g1⊥g2 for all g1 ∈ M1, g2 ∈ M2. If M1 is or-
thogonal to M2, we write M1⊥M2. Suppose p is a seminorm on X . If x ∈ X , put

Mp
x = {Λ : X

linear→ φ : |Λ(z)| ≤ p(z), ∀z ∈ X, Λ(x) = p(x)}.
At first we state the following lemmas which is needed in the proof of the main
results.

Lemma 1.2. ([13]) Let M be a subspace of a vector space X and let f be a
linear functional on M such that;

|f(x)| ≤ p(x) (x ∈ M).

Then f extends to a linear functional Λ on X that satisfies

|Λ(x)| ≤ p(x) (x ∈ X).

Lemma 1.3. ([5]) Let X be a locally convex space, G be a subspace of X ,
x ∈ X\Ḡ. Then the following statements are equivalent: (a) x⊥G

(b) For all p ∈ P there exists a linear functional Λ p on X such that Λp ∈ Mp
x and

Λp|G = 0.

2. MAIN RESULTS

In this section we state and prove our main results.

Corollary 2.1. Let (X, P ) be a locally convex space and x, y ∈ X . Then the
following two conditions are equivalent:
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(a) x⊥y.

(b) For all p ∈ P there exists a linear functional Λ p on X such that, Λp ∈ Mp
x

and Λp(y) = 0.

Lemma 2.2. Let (X, P ) be a locally convex space and x, y ∈ X . Then the
following statements are true:

(a) x⊥y then < x > ∩ < y >= {0}.
(b) For all x ∈ X , 0⊥x and x⊥0.

Proof.

(a) Suppose z ∈< x > ∩ < y >. Then z = αx = βy for some scalars α, β ∈ φ.
If α = 0, then z = 0. In the otherwise, suppose α 	= 0 and p ∈ P From
Corollary 2.2, there exists a linear functional Λp onX such that, Λp ∈ Mp

x and
Λp(y) = 0. Therefore Λp(z) = 0 and p(x) = 0. It follows that z = x = 0,
since X is a locally convex space.

(b) It is trivial.

Corollary 2.3. Let (X, P ) be a locally convex space, G be a nonempty subset
of X and x ∈ X\G. Then the following two conditions are equivalent:

(a) G⊥x.

(b) For all p ∈ P and all g ∈ G there exists a linear functional Λ g
p on X with

Λg
p ∈ Mp

g and Λg
p(x) = 0.

Example 2.4. Let X be a linear space of dimension greater than 1. Suppose
‖., .‖ is a real-valued function on X × X satisfying the following conditions:

(a) ‖x, y‖ = 0 if and only if x and y are linearly dependent vectors.

(b) ‖x, y‖ = ‖y, x‖ for all x, y ∈ X .

(c) ‖λx, y‖ = |λ|‖x, y‖ for all λ ∈ R and all x, y ∈ X .

(d) ‖x + y, z‖ ≤ ‖x, z‖+ ‖y, z‖ for all x, y, z ∈ X .

Then ‖., .‖ is called a 2-norm on X and (X, ‖., .‖) is called a linear 2-normed
space. Some of the basic properties of 2-norms, that they are non-negative and
‖x, y + αx‖ = ‖x, y‖ for all x, y ∈ X and all α ∈ R.

Every 2-normed space is a locally convex topological vector space. In fact for a
fixed b ∈ X , pb(x) = ‖x, b‖, x ∈ X , is a seminorm and the family P = {pb : b ∈
X} of seminorms generates a locally convex topology on X.
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Suppose (X, ‖., .‖) is a 2-normed space and x, y ∈ X . Then from Definition
1.1,

x⊥y ⇔ ∀b ∈ X ∀α ∈ φ ‖x, b‖ ≤ ‖x + αy‖.

Example 2.5. Let X be a normed space and x ∈ X . Define px : X∗ −→
[0,∞), by px(x∗) = |x∗(x)|. Then px is a seminorm and P = {px : x ∈ X}
makes X∗ into a locally convex space., the topology defined by these seminorms
is called weak-star topology on X∗, it often denoted by σ(x∗, x). For y∗1 , y∗2 ∈ X∗

we say
y∗1⊥y∗2 ⇔ ∀x ∈ X ∀α ∈ C |y∗1(x)| ≤ |(y∗1 + αy∗2)(x)|.

Example 2.6. If X is a topology vector space and M is a closed linear space.
Then X

M with the quotient topology is a topology vector space. If p is a seminorm
on X define p on X

M by p(x + M) = inf{p(x + y) : y ∈ M}, p is a seminorm on
X
M and if X is a locally convex space by seminorm P = {p} then X

M is a locally
convex space by seminorm P = {p}. The orthogonality in X

M is defined by

z1, z2 ∈ X, z1 + M⊥z2 + M ⇔ ∀y ∈ M ∀α ∈ C, p(z1) ≤ p(z1 + αz2 + y).

In the normed linear spaces, the concepts of best approximation and best coapprox-
imation have been defined. (see [3-12, 14]) we shall define these concepts for the
locally convex spaces.

Let G be a subspace of the locally convex space X . we will define

Ĝ = {x ∈ X : x⊥G},
and

Ğ = {x ∈ X : G⊥x},
also a point g0 ∈ G is said to be a best approximation (resp. best coapproximation)
for x ∈ X if and only if x − g0 ∈ Ĝ (resp. x − g0 ∈ Ğ).

The set of all best approximations (resp. best coapproximations) of x ∈ X in
G is shown by PG(x) (resp. RG(x)). In other words

PG(x) = {g0 ∈ G : x − g0 ∈ Ĝ}
and

RG(x) = {g0 ∈ G : x − g0 ∈ Ğ}.
If PG(x) (resp. RG(x)) is non-empty for every x ∈ X , then G is called a Prox-
iminal (resp. coproximinal) set. The set G is Chebyshev (resp. cochebyshev) if
PG(x) (resp. RG(x)) is a singleton set for every x ∈ X .

Corollary 2.7. Let (X, P ) be a locally convex space, G be a subspace of X
and x ∈ X\Ḡ. Then the following statements are equivalent: (a) g0 ∈ PG(x) (b)
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For all p ∈ P there exists a linear functional Λ p on X such that Λp ∈ Mp
x−g0

and Λp|G = 0.

Corollary 2.8. Let (X, P ) be a locally convex space, G be a subspace of X
and x ∈ X\Ḡ. Then the following statements are equivalent:

(a) g0 ∈ RG(x)

(b) For all p ∈ P and all g ∈ G there exists a linear functional Λ g
p on X such

that Λg
p ∈ Mp

g and Λg
p(x − g0) = 0.

Lemma 2.9. Let (X, P ) be a locally convex space, G be a subspace of X .
Then the following statements are true:

(a) G ∩ Ĝ = {0}
(b) G ∩ Ğ = {0}.
(c) αx ∈ Ĝ, if x ∈ Ĝ and α ∈ φ.

Proof. The parts (c) and (d) are consequences of definition of orthogonality
and Lemma 2.2. Suppose x ∈ G ∩ Ĝ (resp. x ∈ G ∩ Ğ), then x⊥G (resp. G⊥x )
and x ∈ G. Therefore x⊥x, form Lemma 2.2, x = 0.

Theorem 2.10. Let X be a locally convex space. Then if G is a proximinal
subspace of X and Ĝ is a convex set, then G is Chebyshev.

Proof. Suppose x ∈ X and g1, g2 ∈ PG(x), then x − g1, x − g2 ∈ Ĝp. Since
Ĝ is convex, it follows that 1

2 (g1 − g2) ∈ Ĝ. Since 1
2 (g1 − g2) ∈ G. The Lemma

2.8 shows that g1 = g2.
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