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SOME CHARACTERIZATIONS OF NULL, PSEUDO NULL AND
PARTIALLY NULL RECTIFYING CURVES

IN MINKOWSKI SPACE-TIME

Kazlm İlarslan and Emilija Nešović

Abstract. In this paper, we define rectifying curves in Minkowski space-time
and characterize null, pseudo null and partially null rectifying curves in terms
of their curvatures. Also, we give some explicit equations of null, pseudo null
and partially null rectifying curves in E4

1 .

1. INTRODUCTION

Rectifying curves are introduced by B. Y. Chen in [4] as space curves whose
position vector always lies in its rectifying plane. The rectifying plane of an arbitrary
curve α(s) in the Euclidean 3-space, is orthogonal to the principal normal vector
N (s) and therefore represents the ortogonal complement of N (s). This implies that
the rectifying plane is spanned by the tangent vector T (s) and the binormal vector
B(s). Consequently, the position vector α of a rectifying curve in E3, satisfies the
equation

α(s) = λ(s)T (s) + µ(s)B(s),

for some differentiable functions λ(s) and µ(s). The Euclidean rectifying curves
have many interesting geometric properties. For example, if α is a rectifying curve
in E3, then the ratio of its torsion and its curvature is a non-constant linear function
in arclength s ([4]). On the other hand, there is a simple relationship between the
rectifying curves and the centrodes (i.e. the curves given by the Darboux vector).
Also, the rectifying curves can be studied as the extremal curves (see [5]).

In Minkowski 3-space, the rectifying curves have similar geometric properties
as in the Euclidean 3-space. Some characterizations of spacelike, timelike and null
rectifying curves, lying fully in Minkowski 3-space, are given in [6].
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In this paper, we characterize null, pseudo null and partially null rectifying
curves in Minkowski space-time. Firstly, we define the rectifying space of an
arbitrary curve in E4

1 , and then we define a rectifying curve in E4
1 as a curve

whose position vector always lies in its rectifying space. In particular, we give a
necessary and sufficient conditions for the null curves to be rectifying and obtain
some explicit equations of null, pseudo null and partially null rectifying curves in
Minkowski space-time.

2. PRELIMINARIES

The Minkowski space-time E4
1 is the Euclidean 4-space E 4 provided with the

standard flat metric given by

g = −dx2
1 + dx2

2 + dx2
3 + dx2

4,

where (x1, x2, x3, x4) is a rectangular coordinate system of E4
1 . Since g is indefinite

metric, recall that a vector v ∈ E4
1 can be spacelike if g(v, v) > 0 or v = 0, timelike

if g(v, v) < 0 and null (lightlike) if g(v, v) = 0 and v �= 0. In particular, the norm
(length) of a vector v is given by ||v|| =

√|g(v, v)|, and two vectors v and w are
said to be orthogonal, if g(v, w) = 0. Next, recall that an arbitrary curve α(s) in
E4

1 , can locally be spacelike, timelike or null (lightlike), if all its velocity vectors
α′(s) are respectively spacelike, timelike or null ([8]). Recall that a spacelike curve
in E4

1 is called pseudo null curve or partially null curve, if respectively its principal
normal vector is null or its first binormal vector is null ([2]). A null curve α is
parameterized by arclength function s, if g(α′′(s), α′′(s)) = 1 ([1]). In particular,
a pseudo null or a partially null curve α has unit speed, if g(α′(s), α′(s)) = 1.

Let {T, N, B1, B2} be the moving Frenet frame along a curve α inE4
1 , consisting

of the tangent, the principal normal, the first binormal and the second binormal
vector fields. Depending on the causal character of α, the Frenet equations have
the following forms.

Case (a). If α is null curve, the Frenet equations are given by ([1, 9]):

(1)




T ′

N ′

B′
1

B′
2


 =




0 κ1 0 0
κ2 0 −κ1 0
0 −κ2 0 κ3

−κ3 0 0 0







T

N
B1

B2


 ,

where the first curvature κ1(s) = 0, if α(s) is straight line, or κ1(s) = 1 in all other
cases. Therefore, such curve has two curvatures κ2(s) and κ3(s) and the following
equations hold:

g(T, T ) = g(B1, B1) = 0, g(N, N ) = g(B2, B2) = 1,
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g(T, N ) = g(T, B2) = g(N, B1) = g(N, B2) = g(B1, B2) = 0, g(T, B1) = 1.

Case (b). If α is pseudo null curve, the Frenet formulas are ([2, 9]):

(2)




T ′

N ′

B′
1

B′
2


 =




0 κ1 0 0
0 0 κ2 0
0 κ3 0 −κ2

−κ1 0 −κ3 0







T

N
B1

B2


 ,

where the first curvature κ1(s) = 0, if α is straight line, or κ1(s) = 1 in all other
cases. Such curve has two curvatures κ2(s) and κ3(s) and the following conditions
are satisfied:

g(T, T ) = g(B1, B1) = 1, g(N, N ) = g(B2, B2) = 0,

g(T, N ) = g(T, B1) = g(T, B2) = g(N, B1) = g(B1, B2) = 0, g(N, B2) = 1.

Case (c). If α is partially null curve, the Frenet formulas read ([2, 9]):

(3)




T ′

N ′

B′
1

B′
2


 =




0 κ1 0 0
−κ1 0 κ2 0
0 0 κ3 0
0 −κ2 0 −κ3







T

N
B1

B2


 ,

where the third curvature κ3(s) = 0 for each s. Such curve has two curvatures
κ1(s) and κ2(s) and lies fully in a lightlike hyperplane of E4

1 . In particular, the
following equations hold

g(T, T ) = g(N, N ) = 1, g(B1, B1) = g(B2, B2) = 0,

g(T, N ) = g(T, B1) = g(T, B2) = g(N, B1) = g(N, B2) = 0, g(B1, B2) = 1.

Let α be arbitrary curve in E4
1 . We define the rectifying space of α as the

orthogonal complement N⊥ of its principal normal vector field N . Therefore, the
rectifying space N⊥ is given by

N⊥ = {w ∈ E4
1 | g(w, N ) = 0}.

Next we define a rectifying curve in E4
1 as a curve whose position vector always

lies in its rectifying space. In particular, if α is a null curve, then N is the space-
like vector field and hence the rectifying space N⊥ is the 3-dimensional timelike
subspace of E4

1 , spanned by {T, B1, B2}. If α is a pseudo null curve, then N is
the null vector field and consequently the rectifying space N⊥ is the 3-dimensional
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lightlike subspace of E4
1 , spanned by {T, N, B1}. In particular, if α is a partially

null curve, then it lies fully in a lightlike hyperplane of E4
1 , spanned by {T, N, B1}.

Since N is the spacelike vector field, the rectifying space N⊥ is the 2-dimensional
lightlike subspace of E4

1, spanned by {T, B1}.
Consequently, the position vector α of the null, pseudo null and partially null

rectifying curves, satisfies respectively the equations

α(s) = a(s)T (s) + b(s)B1(s) + c(s)B2(s),

α(s) = a(s)T (s) + b(s)N (s) + c(s)B1(s),

α(s) = a(s)T (s) + b(s)B1(s),

where a(s), b(s) and c(s) are arbitrary differentiable functions.

3. NULL RECTIFYING CURVES

The null curves in E4
1 with the third curvature κ3(s) = 0 for each s, lie fully

in the timelike hyperplane of E4
1 , i.e. in Minkowski 3-space ([1, 3]). Accordingly,

the characterization of null rectifying curves in E4
1 with κ3(s) = 0 is equivalent to

characterization of null rectifying curves lying fully in E3
1 (see [6]). In this section

we characterize null rectifying curves lying fully in E4
1 , with curvatures κ1(s) = 1,

κ2(s) and κ3(s) �= 0. Note that the second curvature κ2(s) can be equal to zero or
different from zero. For example, the null curve with constant curvatures κ3(s) �= 0
and κ2(s), is a null helix, lying in pseudosphere in E4

1 ([3, 9]).
Let α(s) be a null rectifying curve in E4

1, parameterized by arclength s. Then
its position vector satisfies the equation

(4) α(s) = a(s)T (s) + b(s)B1(s) + c(s)B2(s),

for some differentiable functions a(s), b(s) and c(s). Differentiating (4) with respect
to s and by applying (1), we obtain system of equations
(4)
a′(s)− c(s)κ3(s) = 1, a(s) − b(s)κ2(s) = 0, b′(s) = 0, b(s)κ3(s) + c′(s) = 0.

By using (4), we find that the tangential component of the position vector α is
given by g(α, T ) = b(s). From the third equation of (5) we get b(s) = b0, b0 ∈ R.
Consequently, we may distinguish two cases: (I) g(α, T ) = 0 and (II) g(α, T ) �= 0.
With respect to this two possibilities, we obtain the following theorems.

Theorem 1. Let α(s) be a null curve in E4
1 , parameterized by arclength s and

with curvatures κ1(s) = 1, κ2(s) and κ3(s) �= 0. If α is a rectifying curve with the
tangential component g(α, T ) = 0, then the following statements hold:
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(i) α lies in pseudosphere S 3
1 (r), r ∈ R+

0 ;

(ii) the third curvature κ3(s) is non-zero constant;

(iii) the first binormal and the second binormal component of the position vector
α are respectively given by g(α, B1) = 0 and g(α, B2) = −1/κ3(s);

Conversely, if α(s) is a null curve in E 4
1 , parameterized by arclength s, with

curvatures κ1(s) = 1, κ2(s), κ3(s) �= 0 and one of statements (i), (ii) or (iii) holds,
then α is a rectifying curve.

Proof. First assume that α(s) is a null rectifying curve in E 4
1 , parameterized

by arclength s, with curvatures κ1(s) = 1, κ2(s), κ3(s) �= 0 and with g(α, T ) = 0.
Then its position vector is given by (4). Moreover, from (4) we easily obtain
g(α, T ) = b(s) = 0, so the system of equations (5) reduces to

(6) −c(s)κ3(s) = 1, a(s) = 0, b(s) = 0, c′(s) = 0.

Since c(s)κ3(s) �= 0, we get c(s) �= 0. Moreover, relation (6) implies

(7) c(s) = c0, c0 ∈ R0.

Hence by relations (4), (6) and (7) we find that α has equation

(8) α(s) = c0B2(s), c0 ∈ R0.

Then (8) yields g(α, α) = c2
0, which means that α lies in pseudosphere S 3

1 (r)
with center at the origin and of radius r = c0 ∈ R+

0 . This proves statement (i).
Next, relations (6), (7) and (8) imply κ3(s) = −1/c0 =constant, g(α, B1) = 0 and
g(α, B2) = −1/κ3(s), which proves (ii) and (iii).

Conversely, assume that α(s) is a null curve in E4
1 , parameterized by arclength

s and with curvatures κ1(s) = 1, κ2(s) and κ3(s) �= 0. If (i) holds, then g(α, α) =
r2, r ∈ R+

0 . Differentiating the previous equation with respect to s and using
(1), we find g(α, N ) = 0, which means that α is a rectifying curve. Next, if
(ii) holds, putting κ3(s) = −1/c, c ∈ R0 and by applying (1), we easily obtain
d
ds (α(s) − cB2(s)) = 0. Thus α is congruent to a rectifying curve. Finally, if (iii)
holds, by taking the derivative of the equation g(α, B1) = 0 with respect to s and
using (1), we easily get g(α, N ) = 0. Consequently, α is a rectifying curve.

Theorem 2. Let α(s) be a null curve in E4
1 , parameterized by arclength s and

with curvatures κ1(s) = 1, κ2(s) and κ3(s) �= 0. If α is a rectifying curve with the
tangential component g(α, T ) �= 0, then the following statements hold:

(i) The distance function ρ = ||α|| satisfies ρ 2 = |c1s + c2|, c1 ∈ R0, c2 ∈ R;
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(ii) The first binormal and the second binormal components of the position vector
α are respectively given by g(α, B1) = b0κ2(s), g(α, B2) = (b0κ

′
2(s) −

1)/κ3(s), where b0 ∈ R0.
(iii) the third curvature is given by

κ3(s) =
b0κ

′
2(s) − 1√

2(b0s − b2
0κ2(s) + c0)

,

where b0 ∈ R0, c0 ∈ R. Conversely, if α(s) is a null curve in E 4
1 , parame-

terized by arclength s, with curvatures κ1(s) = 1, κ2(s), κ3(s) �= 0 and one
of statements (i), (ii), or (iii) holds, then α is a rectifying curve.

Proof. First assume that α(s) is a null rectifying curve in E 4
1 , parameterized

by arclength s, with curvatures κ1(s) = 1, κ2(s), κ3(s) �= 0 and with g(α, T ) �= 0.
Then its position vector is given by (4). Relation (4) implies g(α, T ) = b(s) �= 0.
Moreover, from the third and the second equation of (5) we get

(9) b(s) = b0, a(s) = b0κ2(s),

where b0 ∈ R0. The last equation of (5) implies c′(s) = −b0κ3(s) �= 0 and hence
c(s) �= 0. Multiplying the first equation of (5) with b0 and the last equation of (5)
with c(s) and adding, we obtain differential equation

c(s)c′(s) + b2
0κ

′
2(s)− b0 = 0.

Integration of the previous equation gives

(10) c(s) = ±
√

2(b0s − b2
0κ2(s) + c0),

whereby c0 ∈ R0 and b0s − b2
0κ2(s) + c0 > 0. Accordingly, relations (4), (9) and

(10) imply that the curve α has the equation

(11) α(s) = b0κ2(s)T (s) + b0B1(s) +
√

2(b0s − b2
0κ2(s) + c0)B2(s).

From (11) we easily find ρ2 = |g(α, α)| = |c1s + c2|, c1 ∈ R0, c2 ∈ R, which
proves statement (i). Next, (4) and (9) imply g(α, B1) = a(s) = b0κ2(s), while
(4), (9) and the first equation of (5) yields g(α, B2) = c(s) = (b0κ

′
2(s)−1)/κ3(s).

This proves statement (ii). Since the first equation of (5) implies κ3(s) = (a′(s)−
1)/c(s), by using (9) and (10) we find

κ3(s) =
b0κ

′
2(s) − 1√

2(b0s − b2
0κ2(s) + c0)

,
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which proves statement (iii).
Conversely, suppose that α(s) is a null curve in E4

1 , parameterized by arclength
s and with curvatures κ1(s) = 1, κ2(s) and κ3(s) �= 0. If (i) holds, differentiating
the equation g(α, α) = ±(c1s + c2) with respect to s and by using (1), we get
g(α, N ) = 0, which means that α is a rectifying curve. If (ii) holds, in a similar
way we conclude that α is a rectifying curve. If (iii) holds, by applying (1) we
easily find that

d

ds

(
α(s) − b0κ2(s)T (s)− b0B1(s) −

√
2(b0s − b2

0κ2(s) + c0)B2(s)
)

= 0.

Up to isometries of E4
1 , it follows that α is a rectifying curve.

Theorem 3. Let α(s) be a null curve in E4
1 , parameterized by arclength s,

with curvatures κ1(s) = 1, κ2(s), κ3(s) �= 0 and with spacelike position vector.
Then α is a rectifying curve with the tangential component g(α, T ) �= 0 if and only
if, up to parametrization, it is given by

(12) α(t) = cety(t), c ∈ R+
0 ,

where y(t) is a unit speed timelike curve lying in S 3
1(1).

Proof. Let us first assume that α(s) is a null rectifying curve in E 4
1 , parame-

terized by arclength s, with curvatures κ1(s) = 1, κ2(s), κ3(s) �= 0, with spacelike
position vector and with g(α, T ) �= 0. By theorem 2, the distance function ρ = ||α||
satisfies ρ2 = g(α, α) = c1s + c2, c1 ∈ R0, c2 ∈ R. We may take c1 ∈ R+

0 . Let
us define a curve y(s) by y(s) = α(s)/ρ(s). Since g(y, y) = 1, the curve y lies in
pseudosphere S3

1(1) with center at the origin and of radius 1. Moreover, we have

(13) α(s) = y(s)
√

c1s + c2.

By taking the derivative of (13) with respect to s, we find

(14) T (s) =
c1

2
√

c1s + c2
y(s) + y′(s)

√
c1s + c2.

¿From (14) we get

0 = g(T (s), T (s)) =
c2
1

4(c1s + c2)
+ g(y′(s), y′(s))(c1s + c2),

and hence

(15) g(y′(s), y′(s)) = − c2
1

4(c1s + c2)2
.
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Consequently, y is a timelike curve. By using (15), we obtain that ||y′(s)|| =
c1/2(c1s + c2). Denote by t =

∫ s
0 ||y′(u)|| du the arclength parameter of the curve

y. It follows that t = (1/2) ln(c0(c1s + c2)), c0 ∈ R+
0 and thus c1s + c2 = e2t/c0.

Substituting this in (13), yields (12).
Conversely, suppose that α is a null curve in E4

1 with the curvatures κ1(s) = 1,
κ2(s), κ3(s) �= 0, with spacelike position vector and given by (12), where y(t) is a
unit speed timelike curve lying in pseudosphere S3

1(1). We may reparametrize the
curve α by t = (1/2) ln |c1s + c2|, where s is arclength function of α, c1 ∈ R0 and
c2 ∈ R. Substituting parameter t in (12), we obtain α(s) = cy(s)

√|c1s + c2| and
therefore ρ2 = ||α||2 = c2|c1s + c2|. According to theorem 2, we conclude that α
is a rectifying curve.

4. PSEUDO NULL AND PARTIALLY NULL RECTIFYING CURVES

In this section, we find parameter equations of pseudo null and partially null
rectifying curves in E4

1.

Theorem 1. Let α(s) be unit speed pseudo null rectifying curve in E 4
1 with

the curvature κ1(s) = 1. Then α is a planar curve.

Proof. Let us suppose that α(s) is unit speed pseudo null rectifying curve in
E4

1 , with the curvature κ1(s) = 1. Then its position vector satisfies the equation

α(s) = a(s)T (s) + b(s)N (s) + c(s)B1(s),

for some differentiable functions a(s), b(s) and c(s). Differentiating the previous
equation with respect to s and by applying (2), we obtain system of equations
(16)
a′(s) = 1, a(s) + b′(s) + c(s)κ3(s) = 0, b(s)κ2(s) + c′(s) = 0, c(s)κ2(s) = 0.

The last equation of (16) implies κ2(s) = 0 or c(s) = 0. If κ2(s) = 0 for each s,
α is a planar curve. If c(s) = 0, the system of equations (16) reduces to

a′(s) = 1 a(s) + b′(s) = 0 b(s)κ2(s) = 0.

Since b′(s) = −a(s) �= 0, it follows that b(s) �= 0 and consequently κ2(s) = 0,
which completes the proof of the theorem.

Theorem 2. Let α(s) be unit speed pseudo null curve in E 4
1 , with curvature

κ1(s) = 1. Then α is a rectifying curve if and only if it is given by

(17) α(s) = s2Q + sP,
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where P, Q ∈ E4
1 are constant vectors satisfying equations g(P, P ) = 1, g(Q, Q) =

0 and g(P, Q) = 0.

Proof. First suppose that α(s) is a unit speed pseudo null rectifying curve
in E4

1 , with curvature κ1(s) = 1. According to theorem 1, α is a planar curve
and hence κ2(s) = 0 for each s. Then Frenet equations (2) imply N ′(s) = 0,
so N (s) = α′′(s) =constant. Integration of the previous equation gives α(s) =
s2

2 Q0 +sP0 +R0, where P0, Q0, R0 ∈ E4
1 are constant vectors. Moreover, from the

condition g(T, T ) = 1, we get g(P0, P0) = 1, g(Q0, Q0) = 0, g(P0, Q0) = 0. Up
to a translation of E4

1 , we may take R0 = (0, 0, 0, 0). Putting P = P0 and Q = Q0
2 ,

we obtain that α is given by (17).
Conversely, assume that a unit speed pseudo null curve α in E4

1 with curvature
κ1(s) = 1, is given by (17). Since T (s) = α′(s) = 2sQ + P and N (s) = T ′(s) =
2Q, we easily find that (17) can be written in the form α(s) = sT (s) − s2

2 N (s),
which means that α is a rectifying curve.

Theorem 3. Let α(s) be unit speed partially null curve in E 4
1 , with curvature

κ3(s) = 0. Then α is a rectifying curve if and only if it is a straight line.

Proof. Let α(s) be unit speed partially null rectifying curve in E 4
1, with

curvature κ3(s) = 0. Then the position vector of the curve satisfies the equation

(18) α(s) = a(s)T (s) + b(s)B1(s),

for some differentiable functions a(s) and b(s). Differentiating (18) with respect to
s and by using (3), we obtain system of equations

(19) a′(s) = 1, a(s)κ1(s) = 0, b′(s) = 0.

It follows that a(s) �= 0, so the second equation of (19) implies κ1(s) = 0. Hence
α is a straight line.

Conversely, assume that α(s) is a unit speed partially null straight line. Since
the position vector α of the curve is collinear with tangent vector T (s), it follows
that α lies in the plane spanned by {T, B1}. Therefore, α is a rectifying curve.
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