
TAIWANESE JOURNAL OF MATHEMATICS
Vol. 12, No. 5, pp. 1015-1034, August 2008
This paper is available online at http://www.tjm.nsysu.edu.tw/

THE EXPONENTIAL DIOPHANTINE EQUATION
AX2 + BY 2 = λkZ AND ITS APPLICATIONS

Zhenfu Cao, Chuan I Chu and Wai Chee Shiu

Abstract. Let A, B ∈ N with A > 1, B > 1 and gcd(A, B) = 1, k ≥ 2
be an integer coprime with AB, and let λ ∈ {1, 2, 4} be such that if λ = 4,
then A �= 4 and B �= 4; and if k is even, then λ = 4. In this paper, we shall
describe all solutions of the equation

AX2 + BY 2 = λkZ , X, Y, Z ∈ Z, gcd(X, Y ) = 1, Z > 0

with X|∗A or Y |∗B, where the symbol X|∗A means that every prime divisor
of X divides A. Then, using this result, we give some more general results
on the number of solutions of the equation lax + mby = λcz , x > 1, y > 1,
z > 1. In addition, using Cao’s result on Pell equation, we obtain some im-
provement of Terai’s results on the equations ax + 2 = cz, ax + 4 = cz and
ax + 2y = cz .

1. INTRODUCTION

In this paper, we let Z, N, P be the sets of integers, positive integers and prime
numbers respectively. For x, A ∈ N, the notation x|∗A means that every prime
factor of x is also a factor of A.

Let A, B ∈ N with A > 1, B > 1 and gcd(A, B) = 1. If the equation

(1.1) X2 + ABY 2 = pZ , X, Y, Z ∈ N, p ∈ P, gcd(X, Y ) = 1

has a solution (X, Y, Z), then there exists a unique solution (Xp, Yp, Zp) which
satisfies Zp ≤ Z, where Z runs over all solution of (1.1). The solution (Xp, Yp, Zp)
is called the least solution of (1.1).
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In [10], Cao considered the solutions (x, y, z) ∈ N3 of the Diophantine equation

(1.2) AX2 + BY 2 = pZ , X, Y, Z ∈ N, p ∈ P, gcd(X, Y ) = 1.

He obtained the following two theorems.

Theorem A. Suppose that x, y, z ∈ N satisfy the equation

(1.3) Ax2 + By2 = 2z, z > 2, x|∗A and y|∗B.

Then
|Ax2 − By2| = 2X2, xy = Y2, 2z − 2 = Z2,

except for (A, B, x, y, z) = (5, 3, 1, 3, 5), (5, 3, 5, 1, 7) and (13, 3, 1, 9, 8), where
(X2, Y2, Z2) is the least solution of the equation (1.1) with p = 2.

Theorem B. Suppose that x, y, z ∈ N satisfy the equation

(1.4) Ax2 + By2 = pz, p ∈ P, p > 2, x|∗A and y|∗B.

Then
|Ax2 − By2| = Xp, 2xy = Yp, 2z = Zp,

or

|Ax2 − By2| = Xp|X2
p − 3ABY 2

p |, 2xy = Yp|3X2
p − ABY 2

p |, 2z = 3Zp,

the latter occurring only for

Ax2 + By2 = 34s+3

(
32s − 1

8

)
+
(

32s+2 − 1
8

)
=
(

32s+1 − 1
2

)3

= pz,

where (Xp, Yp, Zp) is the least solution of the equation (1.1) and s ∈ N.

From Theorems A and B, we have (please see Lemma 6 of [23]).

Theorem C. The equation

ax + by = cz, gcd(a, b) = 1, c ∈ P, a > 1, b > 1

has at most one solution when the parities of x and y are fixed, except for (a, b, c) =
(5, 3, 2), (13, 3, 2), or (10, 3, 13). The solutions in the case of (5, 3, 2) are given
by (x, y, z) = (1, 1, 3), (1, 3, 5), (3, 1, 7); in the case of (13, 3, 2) by (1, 1, 4) and
(1, 5, 8); and in the case of (10, 3, 13) by (1, 1, 1) and (1, 7, 3). (c.f. [6, 22]).
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In [11], Cao obtained further results when the right sides of Equation (1.3) and
Equation (1.4) are replaced by 4kz and kz respectively, where k ∈ N.

Let A, B ∈ N with A > 1, B > 1 and gcd(A, B) = 1. Let k ≥ 2 be an integer
coprime with AB, and let λ ∈ {1, 2, 4} be such that λ = 4 if k is even. In this
paper, we shall first consider a more general equation of the form:

(1.5) AX2 + BY 2 = λkZ , X, Y, Z ∈ Z, gcd(X, Y ) = 1, Z > 0.

Suppose that λ = 4, A = 4 and (X, Y, Z) is a solution of (1.5). Since gcd(A, B) = 1,
Y must be even. Thus Equation (1.5) can be rewritten as

X2 + B
(Y

2

)2
= kZ , X, Y, Z ∈ Z, gcd(X, Y ) = 1, Z > 0.

This equation was discussed in [11]. From now on, we will assume that if
λ = 4, then A �= 4. For the same reason we shall assume that B �= 4 as well if
λ = 4.

2. PRELIMINARIES

Before considering Equation (1.5) we recall some known results.
For a, b, c ∈ Z, the discriminant of the form aX2 + 2bXY + cY 2 is 4b2 − 4ac,

thus −4D is the discriminant of D1X
2 + D2Y

2, where D = D1D2. The set of
positive binary quadratic forms of discriminant −4D is partitioned into a finite
number of equivalence classes which we denote by h(−4D).

By Theorems 11.4.3, 12.10.1 and 12.14.3 of Hua [18], we get (see Proposition
1 of [3]).

Lemma 2.1. Let D ∈ N. We have

h(−4D) <
4
√

D

π
log(2e

√
D).

Let D1 and D2 be coprime positive integers, D = D1D2 and let k ≥ 2 be an
integer coprime with D. Let λ ∈ {1, 2, 4} be such that λ = 4 if k is even. Keeping
these notations, Bugeaud and Shorey [3] proved the following lemma.

Lemma 2.2. Let D1D2 �∈ {1, 3}. The solutions of the equation

(2.1) D1X
2 + D2Y

2 = λkZ , X, Y, Z ∈ Z, gcd(X, Y ) = 1, Z > 0

can be put into at most 2ω(k)−1 classes, where ω(k) denotes the number of distinct
prime divisors of k. Furthermore, in each such class S , there is a unique solution
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(X1, Y1, Z1) such thatX1 > 0, Y1 > 0 and Z1 is minimal among the solutions in S .
This minimal solution satisfies the condition that Z 1 divides h(−4D) if D1 = 1 or
D2 = 1, and 2Z1 divides h(−4D) otherwise. Moreover, every solution (X, Y, Z)
of (2.1) belonging to S can be defined as

(2.2) Z = Z1t,
X
√

D1 + Y
√−D2√

λ
= λ1

(
X1

√
D1 + λ2Y1

√−D2√
λ

)t

where t ≥ 1 is an integer, λ1 ∈ {−1, 1,−i, i} and λ2 ∈ {−1, 1}. If λ = 2, then
t is odd. Furthermore, λ1 ∈ {−1, 1} if D2 �= 1 or t is odd and λ1 ∈ {−i, i} if
D2 = 1 and t is even.

A Lucas pair (respectively a Lehmer pair) is a pair (α, β) of algebraic integers
such that α+β and αβ (respectively (α+β)2 and αβ) are non-zero coprime rational
integers and α/β is not a root of unity. For a given Lucas pair (α, β), one defines
the corresponding sequence of Lucas numbers by

un = un(α, β) =
αn − βn

α − β
(n = 0, 1, 2, . . .).

For a given Lehmer pair (α, β), we define the corresponding sequence of Lehmer
numbers by

ũn = ũn(α, β) =


αn − βn

α − β
, if n is odd,

αn − βn

α2 − β2
, if n is even.

It is clear that every Lucas pair (α, β) is also a Lehmer pair, and

un =

{
ũn, if n is odd,

(α + β)ũn, if n is even.

Let (α, β) be a Lucas (resp. Lehmer) pair. A prime number p is a primitive
divisor of the Lucas (resp. Lehmer) number un(α, β) (resp. ũn(α, β)) if p divides
un but does not divide (α − β)2u1 · · ·un−1 (resp. if p divides ũn but does not
divide (α2 − β2)2ũ1 · · · ũn−1). Y. Bilu, G. Hanrot and P. Voutier [2] proved the
following

Lemma 2.3. For any integer n > 30, every n-th term of any Lucas or Lehmer
sequence has a primitive divisor.

A Lucas (respectively Lehmer) pair (α, β) such that un(α, β) (respectively
ũn(α, β)) has no primitive divisors will be called n-defective Lucas (respectively
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Lehmer) pair. Two Lucas pairs (α1, β1) and (α2, β2) are equivalent if α1
α2

= β1
β2

= ±1. Two Lehmer pairs (α1, β1) and (α2, β2) are equivalent if α1
α2

= β1
β2

∈ {±1,

±√−1}.
For n ≤ 30, all n-defective Lucas pairs and Lehmer paris are determined by

Voutier [26] and Bilu et al. [2] as follows.

Lemma 2.4. ([26]) Let n satisfy 4 < n ≤ 30 and n �= 6. Then, up to
equivalence, all n-defective Lucas pairs are of the form ((a− √

b)/2, (a+
√

b)/2),
where (a, b) is given in Table 1 of [2].

Let n satisfy 6 < n ≤ 30 and n �∈ {8, 10, 12}. Then, up to equivalence, all
n-defective Lehmer pairs are of the form ((

√
a − √

b)/2, (
√

a +
√

b)/2), where
(a, b) is given in Table 2 of [2].

Lemma 2.5. ([2]) Any Lucas pair is 1-defective, and any Lehmer pair is 1-
and 2-defective.

For n ∈ {2, 3, 4, 6}, all (up to equivalence) n-defective Lucas pairs are of the
form ((a −√

b)/2, (a +
√

b)/2), where (a, b) is given in Table 3 of [2].
For n ∈ {3, 4, 5, 6, 8, 10, 12}, all (up to equivalence) n-defective Lehmer pairs

are of the form ((
√

a −√
b)/2, (

√
a +

√
b)/2), where (a, b) is given in Table 4 of

[2].

From Remark 1.1, Proposition 2.1(i) and Corollary 2.2 of [2], we get a classical
result as follows.

Lemma 2.6. If p is a primitive divisor of the Lucas (respectively Lehmer)
number un(α, β) (respectively ũn(α, β)), then n ≡ ±1 (mod p).

In this paper, we let Fl and Ll be the l-th terms of Fibonacci number and Lucas
number respectively, l ∈ Z. That is F0 = 0, F1 = 1, Fl = Fl−1 +Fl−2 and L0 = 2,
L1 = 1, Ll = Ll−1 + Ll−2. By Binet formulas we have

(2.3) L2
l − 5F 2

l = (−1)l4.

Lemma 2.7. For n ≥ 3, the equation Ll = 2n has no solution for l ≥ 0.
Indeed L0 = 2 and L3 = 22 are the only solutions.

Proof. If Ll = 2n for some n ≥ 3, then from (2.3) we have 22n−5F 2
l = (−1)l4.

So Fl is even. Hence we have, 22n−2 − 5
(

Fl
2

)2
= (−1)l. Thus Fl

2 must be odd

and then
(

Fl
2

)2 ≡ 1 (mod 8). Hence we have 3 ≡ (−1)l (mod 8), which is
impossible.
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Lemma 2.8. For n ≥ 4, the equation Fl = 2n has no solution for l ≥ 0.
Indeed F3 = 2 and F6 = 23 are the only solutions.

Proof. If Fl = 2n for some n ≥ 4, then from (2.3) we have Ll is even

and
(

Ll
2

)2
− 5(2n−1)2 = (−1)l. Thus Ll

2 must be odd and l is even. Hence(
Ll
2

)2 − 1 = 5(2n−1)2. Put a = Ll
2 + 1 and b = Ll

2 − 1. As both a and b are even
and a − b = 2 we have two cases.

Case 1. Suppose that a = 5·2i with i ≥ 1 and b = 22n−2−i with 2n−2−i ≥ 1.
Since a− b = 2, we have 5 · 2i−1 − 22n−i−3 = 1. Clearly the equation cannot have
solution if 2 ≤ i ≤ 2n − 4.

If i=1, then we have 5−22n−4=1. Hence 22n−4 =4 which implies that n=3.
If i = 2n − 3, then we get 5 · 22n−4 − 1 = 1, which is also impossible.

Case 2. Suppose that a = 2j and b = 5 ·22n−2−j for some j ≥ 4 (since a > b)
and 2n − 2 − j ≥ 1. Since a − b = 2, we have 2j−1 − 5 · 22n−j−3 = 1.

Thus if 2n − j − 3 ≥ 1, then the above equation cannot have solution. We
only have to consider 2n − j − 3 = 0. That is, j − 1 = 2n − 4. Again we get
22n−4 − 5 = 1 which obviously has no solution.

It is easy to check the following lemma holds. Also one may refer to Lemma 2.3
of [3].

Lemma 2.9. For any integer l ≥ 2 and any ε ∈ {−1, 1}, we have

4Fl − Fl+2ε = Ll−ε,

and
4Ll − Ll+2ε = 5Fl−ε.

Furthermore, for any integer l ≥ 4, we have

Fl+2

(
9F2l−1 − F2l−7 + (−1)l−1 · 6

10

)2

+ Ll−1 = 4F 5
l

and
Fl−2

(
9F2l+1 − F2l−5 + (−1)l · 6

10

)2

+ Ll+1 = 4F 5
l .

3. MAIN THEOREMS

It is known (for example, see [13]) that if Equation (1.5) has a solution (X, Y, Z),
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then the solutions of the equation can be put into at most 2ω(k)−1 classes, where
ω(k) denotes the number of distinct prime divisors of k . In each such class, say S ,
there is a unique solution (XλS, YλS, ZλS) such that XλS > 0, YλS > 0 and ZλS
is minimal among the solutions in S .

Theorem 3.1. Suppose (X, Y, Z) ∈ N3 is a solution in the class S of
Equation (1.5), and X |∗A or Y |∗B. Then

(X, Y, Z) = (XλS, YλS, ZλS),

except the following exceptional cases:
(1) 3·132+5·12 = 4·27, 5·412+7·72 = 4·37, 13·712+3·12 = 4·47 (or = 4·214),

7 · 11692 + 11 · 12 = 2 · 97 (or = 2 · 314);
(2) 5 · 192 + 3 · 92 = 4 · 29;
(3) λ

4 (q + 3l)(2q − 3l)2 + λ
4 (3q − 3l)(3l)2 = λq3, q ∈ N with q > 3l−1, l ≥ 0

and 3 � q if l > 0,

q ≡


(−1)l+1 (mod 4), for λ = 1,

(−1)l (mod 4), q > 1, for λ = 2,

0 (mod 2), for λ = 4;

(4) (a) λ
4Fl−2ε

[
4F 2

l − 2Fl−2εFl + (−1)l
]2 + λ

4Ll+ε · 12 = λF 5
l , l ∈ N, where

ε = ±1, l ≥ 3 and

l ≡


2ε (mod 6), for λ = 1,

5ε (mod 6), for λ = 2,

0, ε (mod 3), for λ = 4.

(b) λ
4 Ll−2ε

[
4L2

l − 2Ll−2εLl + 5(−1)l+1
]2 + λ

4 · 5Fl+ε · 52 = λL5
l , where

ε = ±1, l ≥ 0 and

l ≡


5ε (mod 6), for λ = 1,

2ε (mod 6), for λ = 2,

0, ε (mod 3), l �= 1, for λ = 4.

Proof. For A > 1, B > 1, we have AB �∈ {1, 3}. Let (X, Y, Z) ∈ N3 be a
solution in the class S of Equation (1.5). Put (X1, Y1, Z1) = (XλS, YλS, ZλS). By
Lemma 2.2, we get

(3.1) Z = Z1t,
X
√

A + Y
√−B√

λ
= λ1

(
X1

√
A + λ2Y1

√−B√
λ

)t

,
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where t ≥ 1, λ1, λ2 ∈ {−1, 1}.
Suppose t is even. By Lemma 2.2, λ is equal to 1 or 4. From (3.1) we have

(3.2)

X
√

A + Y
√−B√

λ
= λ1

(
u + v

√−AB√
λ

)t/2

, where

u =
AX2

1 − BY 2
1√

λ
=

−2BY 2
1 + λkZ1

√
λ

=
2AX2

1 − λkZ1

√
λ

,

v =
2√
λ

λ2X1Y1.

One can easily check that u, v ∈ Z and

(3.3) u2 + v2AB = λk2Z1.

We would like to write λ1

(
u + v

√−AB√
λ

)t/2

=
U + V

√−AB√
λ

for some U, V ∈
Q. It can be shown that U, V ∈ Z (for λ = 1, it is clear; for λ = 4 it can be shown
by induction).

From (3.1) we have X
√

A = U and Y = V
√

A. Hence A is a square. From
(1.5), we have A(X2 + BV 2) = λkZ . Since gcd(AB, k) = 1, A|λ. Since A > 1
and A is a square, A = 4 = λ. But this contradicts to our assumption.

Hence we get that t must be odd.
Let

α =
X1

√
A + Y1

√−B√
λ

, β =
X1

√
A − Y1

√−B√
λ

.

Then from (3.1) we have

X = X1

∣∣∣∣αt + βt

α + β

∣∣∣∣, Y = Y1

∣∣∣∣αt − βt

α − β

∣∣∣∣,
and so X = X1a, Y = Y1b, where

(3.4) a = |(αt + βt)/(α + β)|, b = |(αt − βt)/(α − β)|.

Clearly, the number (αt + βt)/(α + β) is t-th term of Lehmer sequence with pair
(α,−β) and the number (αt − βt)/(α − β) also is t-th term of Lehmer sequence
with pair (α, β).

We write the Lehmer pair in (3.4) as ((
√

u −√
v)/2, (

√
u +

√
v)/2), then it is

easy to see that

(*) (u, v) = (4AX2
1/λ,−4BY 2

1 /λ).
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Since t is odd, from the first equality of (3.4), we have

(3.5)
λ

1
2
(t−1)a =

∣∣∣∣(X1

√
A)t−1 +

(
t

2

)
(X1

√
A)t−3(Y1

√−B)2 + · · ·

+
(

t

t − 1

)
(Y1

√−B)t−1

∣∣∣∣.
Using (*) we get

(3.6) a =
1

2t−1

∣∣∣∣u(t−1)/2 +
(

t

2

)
u(t−3)/2v + · · ·+

(
t

t − 1

)
v(t−1)/2

∣∣∣∣ ;
and similarly we have

(3.7) b =
1

2t−1

∣∣∣∣tu(t−1)/2 +
(

t

3

)
u(t−3)/2v + · · ·+ v(t−1)/2

∣∣∣∣ .
If X |∗A, then a|∗A since X = X1a. Suppose that q ∈ P with q|a. Since a|∗A, we
know from (3.5) that q|( t

t−1

)
(Y1

√−B)t−1. Since gcd(A, B) = gcd(X, Y ) = 1,
q|t. By Lemma 2.6 and the first equality of (3.4), we have that (αt + βt)/(α + β)
has no primitive divisor, i.e. (αt + βt)/(α + β) is t-defective.

Similarly, if Y |∗B then (αt − βt)/(α − β) is t-defective.
For t = 1, our theorem clearly holds. For t ≥ 3 and odd, by using Lemmas 2.3,

2.4 and 2.5, Tables 2 and 4 in [2] we get only 4 cases, namely t = 3, 5, 7 or 9.
Since A, B > 1, we shall get the following 4 exceptional cases:

Case 1. t = 7. We have (u, v) = (3,−5), (5,−7), (13,−3) or (14,−22). By
using Equations (3.6) and (3.7) we get the following cases:

3 · 132 + 5 · 12 = 4 · 27;
5 · 412 + 7 · 72 = 4 · 37;
13 · 712 + 3 · 12 = 4 · 47 (or = 4 · 214);
7 · 11692 + 11 · 12 = 2 · 97 (or = 2 · 314).

Case 2. t = 9. We have (u, v) = (5,−3) or (7,−5). For (u, v) = (5,−3) we
get

5 · 192 + 3 · 92 = 4 · 29.

For (u, v) = (7,−5), there is no solution.

Case 3. t = 3. We have (u, v) = (1 + q, 1 − 3q), q ∈ N with q > 1 or
(3l + q, 3l − 3q) with 3 � q, (l, q) �= (1, 1), l ∈ N. When (u, v) = (1 + q, 1− 3q),
from (3.7) we have b = 1. Similarly, when (u, v) = (3l + q, 3l − 3q) we have
b = 3l. Thus, combining these two cases we have
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λ

4
(q + 3l)(2q − 3l)2 +

λ

4
(3q − 3l)(3l)2 = λq3,

where q ∈ N with l ≥ 0; if l = 0 then, q > 1; if l ≥ 1, then q > 3 l−1 with 3 � q;
and

q ≡


(−1)l+1 (mod 4), for λ = 1,

(−1)l (mod 4), for λ = 2, q > 1,

0 (mod 2), for λ = 4.

Case 4. t = 5. We have (u, v) = (Fl−2ε, Fl−2ε − 4Fl) for l ≥ 3 or
(Ll−2ε, Ll−2ε − 4Ll) for l ≥ 0 and l �= 1, where ε ∈ {−1, 1}.

If (u, v) = (Fl−2ε, Fl−2ε − 4Fl), l ≥ 3, then from Equations (3.7) and (3.6) we
have

b = |F 2
l−2ε − 3Fl−2εFl + F 2

l |;
a = |F 2

l−2ε − 5Fl−2εFl + 5F 2
l |.

It is easy to show by induction that F2
l−2ε −3Fl−2εFl +F 2

l = (−1)l. Thus we have
b = 1 and a = |4F 2

l − 2Fl−2εFl + (−1)l|. Hence, by Lemma 2.9 we have

(3.8)
λ

4
Fl−2εa

2 +
λ

4
Ll+ε · 12 = λF 5

l , l ∈ N with l ≥ 3,

where a = |4F 2
l − 2Fl−2εFl + (−1)l|.

In (3.8), we can easily see that if l ≡ 5ε (mod 6) then Fl−2ε ≡ Ll+ε ≡ 2
(mod 4), if l ≡ 2ε (mod 6) then Fl−2ε ≡ Ll+ε ≡ 0 (mod 4), and if l �≡ 2ε

(mod 3) then Fl−2ε ≡ Ll+ε ≡ 1 (mod 2). Hence, we have

l ≡


2ε (mod 6), for λ = 1,

5ε (mod 6), for λ = 2,

0, ε (mod 3), for λ = 4.

Similarly, if (4AX2
1/λ,−4BY 2

1 /λ) = (Ll−2ε, Ll−2ε−4Ll), for l ≥ 0 and l �= 1,
where ε ∈ {−1, 1}, l is a non-negative integer, then from (3.7) we calculate b = 5
and we get the following exceptional cases:

(3.9)
λ

4
Ll−2εc

2 +
λ

4
· 5Fl+ε · 52 = λL5

l ,

where c = |4L2
l − 2Ll−2εLl + 5(−1)l+1|. Hence we have

l ≡


5ε (mod 6), for λ = 1,

2ε (mod 6), for λ = 2,

0, ε (mod 3), l �= 1, for λ = 4.
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This completes the proof.

Note that condition “X |∗A and Y |∗B” in Theorems A and B is improved in
Theorem 3.1 to “X |∗A or Y |∗B”.

4. SOME COROLLARIES OF THE MAIN THEOREM

Applying Theorem 3.1 we will obtain the following results.

Corollary 4.1. Suppose Z �∈ {3, 5, 7, 9, 14}. Then Equation (1.5) has at most
2ω(k)−1 solutions (X, Y, Z) with X |∗A or Y |∗B. Moreover, the solution (X, Y, Z)
satisfies Z < 2

π

√
AB log(2e

√
AB).

Proof. SupposeZ �∈ {3, 5, 7, 9, 14}. Then from Theorem 3.1 we have that in the
class S , there is a unique solution (X, Y, Z) = (XλS, YλS, ZλS). So, Equation (1.5)
has at most 2ω(k)−1 solutions (X, Y, Z) satisfyingX∗|A or Y ∗|B, since the solution
of Equation (1.5) can be put into at most 2ω(k)−1 classes. Also, by Lemma 2.2, we
know that the minimal solution (XλS, YλS, ZλS) satisfies 2ZλS divides h(−4AB),
where h(−4AB) is the class number of primitive binary quadratic forms with the
discriminant −4AB. Hence, by Lemma 2.1, we get

Z = ZλS ≤ 1
2
h(−4AB) <

2
π

√
AB log(2e

√
AB).

Let l, m, a, b, c ∈ N with a > 1, b > 1, c > 1 and gcd(la, mb) = 1, and let
λ ∈ {1, 2, 4} be such that λ = 4 if c is even. Le [20] showed that the Diophantine
equation

(4.1) lax + mby = λcz, x > 1, y > 1, z > 1

has at most 2ω(c)+1 solutions (x, y, z) with l = m = λ = 1 and c odd. From
Theorem 3.1, we have

Corollary 4.2. Except the following possible cases:

5 · 192 + 35 = 211, 1 · 612 + 3 · 53 = 212, 11 · 192 + 53 = 212,

(2e +3l)(2e+1−3l)2+(3 ·2e−3l) ·32l = 23e+2, e, l ∈ N with (e, l) �= (1, 1), (2, 2),

Equation (4.1) has at most 4 solutions (x, y, z) with c = 2.

Proof. Since λ = 4 when c = 2, from Equation (4.1) we have

(4.2) lax + mby = 2z+2, a > 1, b > 1, x > 1, y > 1, z > 1.
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We classify all solutions (x, y, z) of (4.2) as follows: Class 1. x even, y even; Class
2. x even, y odd; Class 3. x odd, y even; Class 4. x odd, y odd. For each class,
Equation (4.2) can be written as

(4.3) lai(a(x−i)/2)2 + mbj(b(y−j)/2)2 = 2z+2,

where i, j ∈ {0, 1, 2}, both i and j cannot be zero. By Theorem 3.1, except some
cases, Equation (4.3) has at most one solution (x, y, z).

Now, we consider the exceptional cases described in Theorem 3.1. Since (4.2)
required a > 1 and b > 1, it is easy to check that the case “5 · 192 + 35 = 211” and
the case “(2e +3l)(2e+1−3l)2 +(3 ·2e −3l) ·32l = 23e+2, e, l ∈ N with 2e > 3l−1

and (e, l) �= (1, 1), (2, 2)” are exceptional cases. For the other cases, it suffices to
check the cases when Ll = 2n for some n ∈ N and Fl = 2m for some m ∈ N. By
Lemmas 2.7 and 2.8 we only have to consider four cases: F3 = 2, F6 = 8, L0 = 2
and L3 = 4.

For the first two cases, since (4.2) requires a > 1 and b > 1, from (3.8) that if
there is an exceptional case then Ll+ε must be a square, for ε = ±1. But this is
clearly impossible.

For the case L0 = 2, we have 3 · 12 + 5 · 52 = 27, which is not in the form of
(4.1). For the case L3 = 4, we have

11 · 192 + 53 = 212;

1 · 612 + 3 · 53 = 212.

Note that Theorem 3.1 requires A > 1, we cannot apply Theorem 3.1 to the last
case. That means it is another exceptional case.

It is easy to get the following corollary.

Corollary 4.3. Except some possible exceptional cases described in Theo-
rem 3.1, Equation (4.1) has at most 2ω(c)+1 solutions (x, y, z). Moreover, the
solution (x, y, z) satisfies

z <
2ab

√
lm

π
log(2eab

√
lm).

5. OTHER RESULTS

In addition, we shall consider the following three special types of Equation (4.1).

(5.1) ax + 2 = cz, x, z ∈ N, a > 1, c > 1;



Exponential Diophantine Equation AX2 + BY 2 = λkZ 1027

(5.2) ax + 4 = cz, x, z ∈ N, a > 1, c > 1;

(5.3) ax + 2y = cz, x, y, z ∈ N, a > 1, c > 1 with a and c are odd.

In 1984 and 1986, Cao [5, 7], showed that

(1) Suppose that a, c ∈ P and a + 2 = c (i.e., a and c are twin primes). Then
Equation (5.1) has only solution (x, z) = (1, 1).

(2) Suppose that a, c ∈ P and either at2 ± 4 = c or ct2 ± 4 = a for some t ∈ N.
Then Equation (5.2) has no solutions with x > 1, z > 1.

(3) Suppose that a, c ∈ P, at2 + 4 = c and a �≡ 1 (mod 8), for some t ∈ N.
Then Equation (5.3) has only the solution t = ak, (x, y, z) = (2k + 1, 2, 1),
where k ∈ Z with k ≥ 0.
Results (1), (2) and (3) can also be found in [6]. By using a lower bound for
linear forms in logarithms of algebraic numbers, Terai [25] showed that

(4) Suppose that a + 2 = c with a ≥ 3394 or a2 + 2 = c with a ≥ 3. Then
Equation (5.1) has no solutions with z > 1 (Theorems 3 and 4 of [25]).

(5) Suppose that aµ +2 = c with µ = 1 or 3, a ≡ 3 or 5 (mod 8), and a ≥ 1697
if µ = 1. Then Equation (5.3) has only the solution (x, y, z) = (µ, 1, 1)
(Theorems 5 and 6 of [25]).

Also, some other results on Equation (5.3) can be found in [12] and its
references.

Lemma 5.1. [(8, 9, 14)] Let a, b ∈ N with ab not a square. Suppose that
c ∈ {1, 2, 4}, 1 < a �= c and there exist x, y ∈ N such that

ax2 − by2 = c, x|∗a or y|∗b.
Then

ax2 + by2

2
+ xy

√
ab =


1
2
ε or

1
2
ε3, for c = 1,

ε or ε3, for c = 2,

Ω or
1
4
Ω3, for c = 4,

except (a, b, c, x, y) = (5, 1, 4, 5, 11). Here ε = u0 + v0

√
ab and Ω = U0 + V0

√
ab

are the least positive integer solution of Pell’s equation u 2 − abv2 = 1 and U 2 −
abV 2 = 4, respectively.

By applying the above Cao’s result on Equations (5.1) and (5.2) we have the
following two lemmas.



1028 Zhenfu Cao, Chuan I Chu and Wai Chee Shiu

Lemma 5.2. Let a, c ∈ N and at2 + 2 = c, where t ∈ N. If Diophantine
Equation (5.1) has a solution (x, z) with xz ≡ 1 (mod 2), then t = ak−1, x =
2k − 1, z = 1, for some k ∈ N.

Proof. Since 2 � xz, Equation (5.1) can be written as

(5.4) (at2 + 2)((at2 + 2)(z−1)/2)2 − a(a(x−1)/2)2 = 2.

Note that it can be shown that ac is not a square. By Lemma 5.1, (5.4) gives

(5.5)

(at2 + 2)((at2 + 2)(z−1)/2)2 + a(a(x−1)/2)2

2
+ ((at2 + 2)(z−1)/2)(a(x−1)/2)

√
a(at2 + 2)

= ε or ε3,

where ε = u0 +v0

√
a(at2 + 2) is the least positive integral solution of Pell’s equa-

tion u2−a(at2 +2)v2 = 1. From [13], we know that ε = at2 +1+ t
√

a(at2 + 2).
Hence, (5.5) gives

(5.6)
(at2 + 2)((at2 + 2)(z−1)/2)2 + a(a(x−1)/2)2

2
= at2 + 1,

((at2 + 2)(z−1)/2)(a(x−1)/2) = t,

or

(5.7)
(at2+2)((at2+2)(z−1)/2)2+a(a(x−1)/2)2

2
=(at2+1)(4(at2)2+8at2+1),

((at2 + 2)(z−1)/2)(a(x−1)/2) = t(4(at2)2 + 8at2 + 3).

Clearly, (5.6) gives z = 1, t = a(x−1)/2, i.e. t = ak−1, x = 2k − 1, where k ∈ N.
And we easily check that (5.7) is impossible.

Lemma 5.3. Let a, c ∈ N and at2 ± 4 = c, where t ∈ N. If the Diophantine
equation (5.2) has a solution (x, z) with xz ≡ 1 (mod 2), then z = 1.

Proof. Assume that 2 � xz. Then Equation (5.2) can be written as

(5.8) (at2 ± 4)((at2± 4)(z−1)/2)2 − a(a(x−1)/2)2 = 4.

Note that it can be shown that ac is not a square. By Lemma 5.1, (5.8) gives

(5.9)

(at2±4)((at2±4)(z−1)/2)2+a(a(x−1)/2)2

2
+((at2±4)(z−1)/2)(a(x−1)/2)

√
a(at2±4)

= Ω or 1
4Ω3,
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where Ω = U0 + V0

√
ab is the least positive integral solution of Pell’s equation

U2 − abV 2 = 4. From [13], we know that Ω = at2 ± 2 + t
√

a(at2 ± 4). By using
the same argument as in the proof of Lemma 5.2, we get z = 1.

Nagell [21] showed the following lemma.

Lemma 5.4. The equation x2 + 2 = yn, n > 1 has only the positive integral
solution (x, y, n) = (5, 3, 3). The equation x2+4 = yn, n > 1 has the only positive
integral solutions (x, y, n) = (2, 2, 3) or (11, 5, 3).

Cao and Dong [15] extended the above lemma and provided an elementary
proof.

Lemma 5.5. The equation x2 + 2m = yn, y odd, m > 2, n > 1 has only
the positive integral solutions (x, y, m, n) = (7, 3, 5, 4) and (x, y, n) = (2 m−2 −
1, 2m−2 + 1, 2).

In 1986, Cao [4] claimed that Lemma 5.5 is valid and using Lemma 5.5, Sun and
Cao [24] gave all solutions of the Diophantine equation x2+2m = yn, x, y, m, n ∈
N, 2|y, n > 1. But in [4], Cao did not give a detail proof. Six years later, Cohn
[16] only solved the case 2 � m. In 1997, Le [19] proved that Lemma 5.5 holds for
sufficiently large n. In 1999, Cohn [17] proved that Lemma 5.5 is true in general.
In fact, using a result of Y. Bilu, G. Hanrot and P. Voutier [2], and M. Abouzaid
[1], we can obtain a simple proof of Lemma 5.5.

Theorem 5.6. If a, c ∈ N and a2k−1 + 2 = c, for some k ∈ N, then Equa-
tion (5.1) has the only solution (x, z) = (2k − 1, 1).

Proof. Suppose xz ≡ 1 (mod 2). Then Equation (5.1) has the only solution
(x, z) = (2k − 1, 1) by Lemma 5.2.

Suppose x ≡ 0 (mod 2). If z > 1, then by Lemma 5.4, we have (a
x
2 , c, z) =

(5, 3, 3) which contradicts to the hypothesis that a2k−1 + 2 = c. If z = 1, then by
the given assumption we must have x = 2k − 1 which is odd. Thus it contradicts
to even x.

Suppose x ≡ 1 (mod 2) and z ≡ 0 (mod 2). Then it is clear that both a and
c are odd. From (5.1) we have a + 2 ≡ 1 (mod 8). Hence a = 2sa1 − 1 for some
s ≥ 3 and a1 ∈ N with a1 �≡ 0 (mod 2). Then Equation (5.1) can be written as

(2sa1 − 1)x + 2 = ((2sa1 − 1)2k−1 + 2)z.

Since x ≡ 1 (mod 2) and z ≡ 0 (mod 2), we have

(2sa1 − 1) + 2 ≡ ((2sa1 − 1) + 2)z ≡ 1 (mod 2s+1).
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Then a1 ≡ 0 (mod 2), which is impossible.

Theorem 5.7. If a, c ∈ N and at2 ± 4 = c, where t ∈ N, then Equation (5.2)
has only the solution z = 1 except 25 + 4 = 62.

Proof.

Case 1. Suppose that xz ≡ 1 (mod 2). Then Equation (5.2) has only the
solution z = 1 by Lemma 5.3.

Case 2. Suppose that x ≡ 0 (mod 2). Then by Lemma 5.4, we see that
Equation (5.2) is impossible since at2 ± 4 = c.

Case 3. Suppose that x ≡ 1 (mod 2) and z ≡ 0 (mod 2). If x = 1, then
since at2 ± 4 = c, from (5.2) we have t2 = c±4

cz−4 ≤ c+4
c2−4

≤ 3
5 . Then (5.2) has no

solution. So we may assume x ≥ 3. Suppose both a and c are odd. Then (5.2)
gives

cz/2 − 2 = ax
1 , cz/2 + 2 = ax

2 , a = a1a2, a2 > a1 ≥ 1,

and so ax
2 − ax

1 = 4. Hence,

4 = ax
2 − ax

1 = (a2 − a1)(ax−1
2 + ax−2

2 a1 + · · ·+ a2a
x−2
1 + ax−1

1 )

≥ ax−1
2 + ax−2

2 a1 + · · ·+ a2a
x−2
1 + ax−1

1 > 4,

which is impossible.
Suppose that a or c is even. Then both of them are even. If z > 2, then (5.2)

gives that 4‖ax. This contradicts to x ≥ 3. So z = 2. Since a and c are even, from
ax

4 +1 =
(

c
2

)2 we have 2‖c. From c = at2 ±4 we have 2‖a and t is odd. By (5.2)
we have ax = c2−4 = a2t4±8at2 +12. Thus, a|12. Hence a = 2 or 6. For a = 2
we only get 25 + 4 = 62. For a = 6, (5.2) becomes 2x−23x−1 = 3t4 ± 4t2 + 1.
After taking modulo 3, only 2x−23x−1 = 3t4 − 4t2 + 1 = (3t2 − 1)(t2 − 1) can
happen. Since t is odd, 3t2 − 1 ≡ 2 (mod 4). Thus 2‖3t2 − 1. As 3 � 3t2 − 1 we
have 2 = 3t2 − 1 and hence t2 = 1. Then 2x−23x−1 = 0 which is absurd.

This completes the proof.

Theorem 5.8. If a, c ∈ N with a �≡ 1 (mod 8) and at2 + 2 = c, where
t ∈ N with 2s+1|t2 − 1 if 2s‖a + 1 for some 1 < s ∈ N, then the solutions of
Diophantine Equation (5.3) are: (x, y, z, t) = (2k−1, 1, 1, ak−1); and (x, y, z, t) =
(2, l + 2, 2, 1), a = 2l − 1 and c = 2l + 1, where k ∈ N and 1 < l ∈ N.

Proof. We first observe that if a + 1 ≡ 0 (mod 8), then a + 1 = 2sa1 with
s ≥ 3 and a1 is odd. Then we have

(5.10) ax ≡
{

2sa1 − 1 if x odd
1 if x even ≡

{
2s − 1 if x odd

1 if x even (mod 2s+1).
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By the hypothesis of the theorem we have t2 ≡ 1 (mod 2s+1). Since c = at2 + 2,

(5.11) cz ≡
{

2sa1 + 1 if z odd
1 if z even ≡

{
2s + 1 if z odd

1 if z even (mod 2s+1).

Suppose x ≡ 0 (mod 2) and z = 1. Equation (5.3) becomes

(5.12) ax + 2y = at2 + 2.

When y = 1. From Equation (5.12) we have ax = at2. Since x is even, a must be a
perfect square. Hence a ≡ 1 (mod 8), which is not the case. It is easy to check that
(5.12) is impossible when y = 2. So we may assume that y ≥ 3. Note that t is odd
since a is odd. Equation (5.12) gives 1 ≡ a+2 (mod 8) or equivalently a+1 ≡ 0
(mod 8). By (5.10) and (5.11) we have 1+2y ≡ 2s +1 (mod 2s+1). Then we get
y = s. Since a is odd, from (5.12) we have a|2s−1 − 1. Thus 2s−1 ≥ a + 1 ≥ 2s,
which is impossible.

Suppose x ≡ 0 (mod 2) and z > 1. Rewrite Equation (5.3) as (ax/2)2 + 2y =
cz . By Lemmas 5.4 and 5.5, we have

(ax/2, c, z, y) = (5, 3, 3, 1), (2, 2, 3, 2), (11, 5, 3, 2), (7, 3, 5, 4)

or (2m−2 − 1, 2m−2 + 1, 2, m) for m ≥ 3.

Only the last case is possible. When m = 3, we get a = 1 which is not the
case. When m ≥ 4, we have ax/2 = 2m−2 − 1 ≡ −1 (mod 4). It implies that
x
2 must be odd. Since 2m−2 = ax/2 + 1 = (a + 1)(a

x
2
−1 − · · · − a + 1) =

(a + 1) × (an odd integer), a + 1 = 2m−2. Hence x = 2. So t = 1, a = 2l − 1,
c = 2l + 1, y = l + 2 and z = 2, where l > 1.

Suppose xz ≡ 1 (mod 2). Equation (5.3) becomes a + 2y ≡ c = at2 + 2
(mod 8). Thus t is odd and hence 2y ≡ 2 (mod 8). It gives y = 1. So, equation
(5.3) has the only solution t = ak−1, x = 2k − 1 and z = 1, where k ∈ N by
Lemma 5.2.

Finally, suppose x ≡ 1 (mod 2) and z ≡ 0 (mod 2). If y ≥ 3, then Equa-
tion (5.3) becomes a ≡ 1 (mod 8). This contradicts to the assumption. If y = 2,
then (5.3) gives

cz/2 − 2 = ax
1 , cz/2 + 2 = ax

2 , a = a1a2,

and so ax
2 − ax

1 = 4, which is impossible. If y = 1, then Equation (5.3) gives
a + 1 ≡ 0 (mod 8). By (5.10) and (5.11) we have 2s − 1 + 1 ≡ 1 (mod 2s+1). It
is impossible.

Corollary 5.9. If a, c ∈ N with a �≡ 1 (mod 8) and a2k−1 +2 = c, where k ∈
N, then Diophantine Equation (5.3) has the only solutions (x, y, z) = (2k−1, 1, 1)
and (k, a, c, x, y, z) = (1, 2l − 1, 2l + 1, 2, l + 2, 2), where 1 < l ∈ N.
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Proof. By taking t = ak−1 for some k ∈ N, we have that if 2s ‖ a + 1 then
t2 − 1 = a2k−2 − 1 ≡ 0 (mod 2s+1). Then Theorem 5.5 applies.

Corollary 5.9 is an improvement of Theorems 5 and 6 in [25].
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