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ON THE NORM OF A CERTAIN SELF-ADJOINT INTEGRAL
OPERATOR AND APPLICATIONS TO BILINEAR

INTEGRAL INEQUALITIES

Bicheng Yang

Abstract. In this paper, the norm of a bounded self-adjoint integral operator
T : L2(0,∞) → L2(0,∞) is obtained. As applications, a new bilinear integral
inequality with a best constant factor and some particular cases such as Hilbert-
type inequalities are considered.

1. INTRODUCTION

LetH be a real separable Hilbert space. If T : H → H is a bounded self-adjoint
operator, then

(1) |(a, T b)| ≤ ||T ||||a||||b|| (a, b ∈ H),

where the constant factor ||T || is the best possible. If T is also a semi-positive
definite operator, then inequality (1) can be improved as :

(2) |(a, T b)| ≤ ||T ||√
2

(||a||2||b||2 + (a, b)2)
1
2 (a, b ∈ H),

where (a, b) is the inner product of a and b, and ||a|| =
√

(a, a) is the norm of a
(see [10]).

One can conclude that the constant factor ||T ||/√2 in (2) is still the best possible.
Otherwise, suppose ||T || > 0, there exists a positive number K, with K < ||T ||,
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such that (2) is still valid if one replaces ||T || by K. In particular, for a = Tb( �= θ),
by Cauchy-Schwarz’s inequality (see [3]), one has

||Tb||4 = (Tb, T b)2 ≤ K2

2
(||Tb||2||b||2 + (Tb, b)2).

≤ K2

2
(||Tb||2||b||2 + ||Tb||2||b||2) = (K||Tb||||b||)2,

and then ||Tb|| ≤ K||b||. This contradicts the fact that ||T || is the norm of T.

Recently, Yang [9] considered the norm of a bounded self-adjoint operator
T : l2 → l2 and its applications to the Hilbert-type inequalities. In this paper,
the norm of a bounded self-adjoint integral operator T : L2(0,∞) → L2(0,∞) is
obtained. As applications, a new bilinear integral inequality with a best constant
factor is given, and as its particular cases, some new Hilbert-type integral inequali-
ties are established.

We need the formula of the Beta function B(u, v) as (cf. Wang et al. [4]):

(3) B(u, v) =
∫ ∞

0

tu−1dt

(1 + t)u+v
=
∫ 1

0
(1− t)u−1tv−1dt = B(v, u) (u, v > 0).

2. MAIN RESULTS

Lemma 1. Let the function k(x, y) be non-negative measurable and -1-
homogeneous in (0,∞)× (0,∞), satisfying k(x, y) = k(y, x), for x, y ∈ (0,∞).
If k(u, 1)(u ∈ (0, 1)) is a positive continuous function, and there exist constants
0 ≤ α < 1

2 , β < 1 and C1, C2 ≥ 0, such that limu→0+ uαk(u, 1) = C1 and
limu→1−(1 − u)βk(u, 1) = C2, then for ε ∈ [0, min{ 1

2 , 1 − 2α}), the integral∫∞
0 k(u, 1)u− 1+ε

2 du is a constant dependent on ε, and

(4) k(ε) : =
∫ ∞

0

k(u, 1)u− 1+ε
2 du = k(0) + o(1) (ε → 0+).

Proof. One finds that limu→0+ uα(1 − u)βk(u, 1) = C1 and limu→1− uα(1 −
u)βk(u, 1) = C2. Since k(u, 1) is continuous in (0, 1), there exists a constant
L > 0 such that uα(1 − u)βk(u, 1) ≤ L(u ∈ [0, 1]). Setting u = 1/v in the
following second integral, since k(1

v , 1) = vk(v, 1), one finds from (3) that

0 < k(ε) =
∫ 1

0
k(u, 1)u− 1+ε

2 du +
∫ ∞

1
k(u, 1)u− 1+ε

2 du

=
∫ 1

0
k(u, 1)u− 1+ε

2 du +
∫ 1

0
k(v, 1)v−

1−ε
2 dv
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=
∫ 1

0
[uα(1− u)βk(u, 1)](1− u)−βu−α(u− 1+ε

2 + u− 1−ε
2 )du

≤ L

∫ 1

0
(1− u)(1−β)−1[u( 1−ε

2
−α)−1 + u( 1+ε

2
−α)−1]du

= L[B(1 − β,
1− ε

2
− α) + B(1 − β,

1 + ε

2
− α)].

Hence the integral
∫∞
0 k(u, 1)u− 1+ε

2 du is a constant dependent on ε. Since by (3),
one obtains

|k(ε)−k(0)| = |
∫ 1

0
k(u, 1)(u− 1+ε

2 + u− 1−ε
2 − 2u− 1

2 )du|

≤
∫ 1

0
uα(1−u)βk(u, 1)(1−u)−β|u− 1+ε

2
−α+u− 1−ε

2
−α− 2u− 1

2
−α|du

≤ L

∫ 1

0
(1 − u)−β |(u− 1+ε

2
−α − u− 1

2
−α) + (u− 1−ε

2
−α − u− 1

2
−α)|du

≤ L

∫ 1

0
(1 − u)−β(|u− 1+ε

2
−α − u− 1

2
−α| + |u− 1

2
−α − u− 1−ε

2
−α|)du

= L|
∫ 1

0
(1− u)−β(u− 1+ε

2
−α − u− 1

2
−α + u− 1

2
−α − u− 1−ε

2
−α)du|

= L|
∫ 1

0
(1− u)(1−β)−1[u( 1−ε

2
−α)−1 − u( 1+ε

2
−α)−1]du|

= L|B(1− β,
1 − ε

2
− α) − B(1 − β,

1 + ε

2
− α)|,

then k(ε) = k(0) + o(1) (ε → 0+). The lemma is proved.

Note 1. In applying Lemma 1, if k(u, 1) is continuous in [0, 1), then one can
set α = 0 and only considers limu→1−(1 − u)βk(u, 1); if k(u, 1) is continuous in
(0, 1], then one can set β = 0 and only considers limu→0+ uαk(u, 1); if k(u, 1) is
continuous in [0, 1], then one can set α = β = 0 and does not consider the above
two types of limit.

Theorem 1. Suppose that k(x, y) satisfies the conditions of Lemma 1. If
L2(0,∞) is a real space and the integral operator T : L 2(0,∞) → L2(0,∞) is
defined by: for all f ∈ L2(0,∞) and y ∈ (0,∞),

(Tf)(y) :=
∫ ∞

0
k(x, y)f(x)dx,

then, T is a bounded self-adjoint operator and

(5) ||T || = k := k(0) =
∫ ∞

0
k(u, 1)u− 1

2 du = 2
∫ 1

0
k(u, 1)u− 1

2 du > 0.
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Proof. Setting u = x/y, one finds
∫∞
0 k(y, x)( y

x)
1
2 dx =

∫∞
0 k(u, 1)u− 1

2 du =
k. By Cauchy’s inequality with weight (see[2]), one obtains that: for all f ∈
L2(0,∞),

(∫ ∞

0
k(x, y)f(x)dx

)2

=

{∫ ∞

0
k(x, y)

[( y

x

) 1
4

][(
x

y

) 1
4

f(x)

]
dx

}2

≤
[∫ ∞

0
k(y, x)

(y

x

) 1
2
dx

]∫ ∞

0
k(x, y)

(
x

y

)1
2

f2(x)dx

= k

∫ ∞

0
k(x, y)

(
x

y

)1
2

f2(x)dx.

Since ||f || = {∫∞
0 f2(x)dx}1/2, in view of the above result, one finds that

(6)

||Tf ||2 =
∫ ∞

0

(∫ ∞

0

k(x, y)f(x)dx

)2

dy

≤ k

∫ ∞

0

∫ ∞

0
k(x, y)

(
x

y

) 1
2

f2(x)dxdy

= k

∫ ∞

0

[∫ ∞

0

k(x, y)
(

x

y

)1
2

dy

]
f2(x)dx = k2||f ||2,

and then ||Tf || ≤ k||f ||. It follows that Tf ∈ L2(0,∞) with ||T || ≤ k.
Since k > 0, if ||T || < k, then, there exists 0 < k1 < k, such that ||Tf || <

k1||f ||( for ||f || > 0). It follows

(7)
∫ ∞

0

(∫ ∞

0
k(x, y)f(x)dx

)2

dy < k2
1

∫ ∞

0
f2(x)dx.

Since α < 1
2 , there exists a constant γ > 0, such that α + γ < 1

2 . For 0 < ε <

min{1
2 , 1 − 2(α + γ)} , setting fε as: fε(x) = 0, x ∈ (0, 1); fε(x) = x−(1+ε)/2,

x ∈ [1,∞), one obtains

I : =
∫ ∞

0

(∫ ∞

0

k(x, y)fε(x)dx

)2

dy ≥
∫ ∞

1

(∫ ∞

1

k(x, y)x− 1+ε
2 dx

)2

dy

=
∫ ∞

1

1
y1+ε

(∫ ∞

y−1

k(u, 1)u− 1+ε
2 du

)2

dy

=
∫ ∞

1

1
y1+ε

(
k(ε)−

∫ y−1

0

k(u, 1)u− 1+ε
2 du

)2

dy
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≥
∫ ∞

1

1
y1+ε

(k2(ε)−2k(ε)
∫ y−1

0
k(u, 1)u− 1+ε

2 du)dy

=
k2(ε)

ε
− 2k(ε)

∫ ∞

1

1
y1+ε

[∫ y−1

0

[uα(1−u)βk(u, 1)]uγ(1−u)−βu− 1+ε
2

−α−γdu

]
dy

≥ k2(ε)
ε

− 2k(ε)L
∫ ∞

1

1
y

[∫ y−1

0

uγ(1 − u)−βu− 1+ε
2

−α−γdu

]
dy

≥ k2(ε)
ε

− 2k(ε)L
∫ ∞

1

1
y

[
y−γ

∫ 1

0
(1− u)(1−β)−1u( 1−ε

2
−α−γ)−1du

]
dy

=
k2(ε)

ε
− 2k(ε)

L

γ
B(1 − β,

1 − ε

2
− α − γ).

Hence by (7), one finds

(8)
k2(ε) − 2εk(ε)

L

γ
B

(
1 − β,

1 − ε

2
− α − γ

)

≤ εI < εk2
1

∫ ∞

0
f2
ε (x)dx = k2

1,

and k = k(0) ≤ k1(ε → 0+). This contradiction shows that ||T || ≥ k, and hence
||T || = k.

By Fubini’s theorem, one has

(Tf, g) =
∫ ∞

0

∫ ∞

0
k(x, y)f(x)g(y)dxdy = (f, Tg).

It follows that T = T ∗, and T is a bounded self-adjoint operator (see [3]).

Note 2. By (6), one has a inequality with the best constant factor k2 = ||T ||2
as follows: ∫ ∞

0

(∫ ∞

0
k(x, y)f(x)dx

)2

dy ≤ k2||f ||2.

By (1) and (5), one has

Theorem 2. If L2(0,∞) is a real space, f, g ∈ L2(0,∞), the operator T and
the function k(x, y) are indicated as in Theorem 1, then

(9)
∣∣∣∣
∫ ∞

0

∫ ∞

0
k(x, y) f(x)g(y)dxdy| = |(Tf, g)| ≤ k||f ||||g|

∣∣∣∣ ,
where the constant factor k(=

∫∞
0 k(u, 1)u− 1

2 du = 2
∫ 1
0 k(u, 1)u− 1

2 du) is the best
possible.
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Note 3. It is obvious that Theorems 1 and Theorem 2 still hold when L2(0,∞)
is replaced by L2(a, b) in some certain conditions.

3. APPLICATIONS TO BILINEAR INTEGRAL INEQUALITIES

(a) Let k(x, y) = ln(x/y)
xλ−yλ (xy)

λ−1
2 (λ > 0). Setting k(1, 1) = 1

λ , one finds that

k(u, 1) = ln u
uλ−1

u
λ−1

2 (u ∈ (0, 1]) is continuous, and limu→0+ uαk(u, 1) = 0(α >

max{1−λ
2 , 0}). Since ∫∞

0
lnu
u−1u− 1

2 du = π2 ( cf. [1]), setting v = uλ, one obtains
from (5) that

k =
∫ ∞

0

ln u

uλ − 1
u

λ−1
2

− 1
2 du =

1
λ2

∫ ∞

0

ln v

v − 1
v−

1
2 dv = (

π

λ
)2.

Hence by (9), one has

Corollary 1. If L2(0,∞) is a real space, f, g ∈ L2(0,∞), then for λ > 0,

(10)

∣∣∣∣∣∣
∫ ∞

0

∫ ∞

0

(xy)
λ−1

2 ln(x
y )

xλ − yλ
f(x)g(y)dxdy| ≤ (

π

λ
)2||f ||||g|

∣∣∣∣∣∣ ,
where the constant factor ( π

λ )2 is the best possible.

(b) Let k(x, y) = |x−y|λ−1

(max{x,y})λ (λ > 0). One obtains that k(u, 1) = (1−u)λ−1

(max{u,1})λ =

(1−u)λ−1(u ∈ [0, 1)) is continuous, and limu→1−(1−u)βk(u, 1) = 1(β = 1−λ <
1). Then one obtains from (5) and (3) that

k = 2
∫ 1

0

(1− u)λ−1u
1
2
−1du = 2B(λ,

1
2
).

Hence by (9), one has

Corollary 2. If L2(0,∞) is a real space, f, g ∈ L2(0,∞), then for λ > 0,

(11)
∣∣∣∣
∫ ∞

0

∫ ∞

0

|x − y|λ−1

(max{x, y})λ
f(x)g(y)dxdy| ≤ 2B(λ,

1
2
)||f ||||g|

∣∣∣∣ ,
where the constant factor 2B(λ, 1

2 ) is the best possible.

(c) Let k(x, y) = |xλ−1−yλ−1|
(max{x,y})λ (λ > 1

2 , λ �= 1). One obtain that k(u, 1) =
|uλ−1−1|

(max{u,1})λ = |uλ−1 − 1| (u ∈ (0, 1]) is continuous, and limu→0+ uαk(u, 1) =
0(α > max{1 − λ, 0}). By (5), one obtains that
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(i) if 1
2 < λ < 1, then

k = 2
∫ 1

0
(uλ−1 − 1)u− 1

2 du =
8(1− λ)
2λ − 1

;

(ii) if λ > 1, then

k = 2
∫ 1

0
(1− uλ−1)u− 1

2 du =
8(λ − 1)
2λ − 1

.

By (9), it follows that

Corollary 3. If L2(0,∞) is a real space, f, g ∈ L2(0,∞), then for λ > 1
2

(λ �= 1),

(12)
∣∣∣∣
∫ ∞

0

∫ ∞

0

|xλ−1 − yλ−1|
(max{x, y})λ

f(x)g(y)dxdy| ≤ 8|λ − 1|
2λ − 1

||f ||||g|
∣∣∣∣ ,

where the constant factor 8|λ−1|
2λ−1 is the best possible. In particular, for λ = 2, one

has

(13)
∣∣∣∣
∫ ∞

0

∫ ∞

0

|x − y|
(max{x, y})2 f(x)g(y)dxdy| ≤ 8

3
||f ||||g|

∣∣∣∣ .

(d) Let k(x, y) = (min{(x/y),(y/x)})λ/2

max{x,y} (λ ≥ 0). One obtains that k(u, 1) =
(min{u,1/u})λ/2

max{u,1} = uλ/2(u ∈ (0, 1]) is continuous, and limu→0+ uαk(u, 1) = 0(0 <

α < 1
2 ). By (5), one obtains that

k = 2
∫ 1

0

(min{u, 1/u})λ/2

max{u, 1} u− 1
2 du = 2

∫ 1

0
u

λ−1
2 du =

4
1 + λ

.

By (9), it follows that

Corollary 4. If L2(0,∞) is a real space, f, g ∈ L2(0,∞), then for λ ≥ 0,

(14)

∣∣∣∣∣
∫ ∞

0

∫ ∞

0

(min{(x
y ), ( y

x)})λ/2

max{x, y} f(x)g(y)dxdy| ≤ 4
1 + λ

||f ||||g|
∣∣∣∣∣ ,

where the constant factor 4/(1 + λ) is the best possible.
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(e) Let k(x, y) = |x−y|λ−1

(min{x,y})λ (0 < λ < 1
2 ). One obtains that k(u, 1) =

|u−1|λ−1

(min{u,1})λ = (1−u)λ−1u−λ (u ∈ (0, 1)) is continuous, and limu→0+ uαk(u, 1) =

1(α = λ); limu→1−(1 − u)βk(u, 1) = 1(β = 1 − λ). By (5), one obtains that

k = 2
∫ 1

0

(1 − u)λ−1u( 1
2
−λ)−1du = 2B(λ,

1
2
− λ).

By (9), it follows that

Corollary 5. If L2(0,∞) is a real space, f, g ∈ L2(0,∞), then for 0 < λ < 1
2 ,

(15)
∣∣∣∣
∫ ∞

0

∫ ∞

0

|x − y|λ−1

(min{x, y})λ
f(x)g(y)dxdy| ≤ 2B(λ,

1
2
− λ)||f ||||g|

∣∣∣∣ ,
where the constant factor 2B(λ, 1

2 − λ) is the best possible.

(f) Let k(x, y) = (xy)(λ−1)/2

|x−y|λ (0 < λ < 1). One obtains that k(u, 1) = u(λ−1)/2

(1−u)λ (u
∈ (0, 1)) is continuous and limu→0+ uαk(u, 1) = 1(α = (1− λ)/2); limu→1−(1−
u)βk(u, 1) = 1(β = λ). By (5), one obtains that

k = 2
∫ 1

0

(1− u)(1−λ)−1u
λ
2
−1du = 2B

(
1 − λ,

λ

2

)
.

By (9), it follows that

Corollary 6. If L2(0,∞) is a real space, f, g ∈ L2(0,∞), then for 0 < λ < 1,

(16)

∣∣∣∣∣
∫ ∞

0

∫ ∞

0

(xy)(λ−1)/2

|x − y|λ f(x)g(y)dxdy| ≤ 2B(1 − λ,
λ

2
)||f ||||g|

∣∣∣∣∣ ,
where the constant factor 2B(1 − λ, λ

2 ) is the best possible (cf. [7]).

(g) Let k(x, y) = | ln(x/y)|(xy)(λ−1)/2

(max{x,y})λ (λ > 0). One obtains that k(u, 1) =
| lnu|u(λ−1)/2

(max{u,1})λ = (− lnu)u(λ−1)/2 (u ∈ (0, 1]) is continuous, and limu→0+ uαk(u, 1) =

0(max{1−λ
2 , 0} < α < 1

2). By (5), one obtains that

k = 2
∫ 1

0
(− lnu)u(λ−1)/2u− 1

2 du =
4
λ

∫ 1

0
(− lnu)du

λ
2 =

8
λ2

.

By (9), it follows that
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Corollary 7. If L2(0,∞) is a real space, f, g ∈ L2(0,∞), then for λ > 0,

(17)

∣∣∣∣∣
∫ ∞

0

∫ ∞

0

| ln(x/y)|(xy)(λ−1)/2

(max{x, y})λ
f(x)g(y)dxdy| ≤ 8

λ2
||f ||||g|

∣∣∣∣∣ ,
where the constant factor 8

λ2 is the best possible.

Remarks.

(i) For λ = 2, inequality (11) also reduces to (13). Hence inequalities (11) and
(12) are extensions of (13).

(ii) For λ = 1 in (11) and λ = 0 in (14) , both of them reduce to the following
base Hilbert-type inequality (see [1]):

(18)
∣∣∣∣
∫ ∞

0

∫ ∞

0

f(x)g(y)
max{x, y}dxdy

∣∣∣∣ ≤ 4
{∫ ∞

0
f2(x)dx

∫ ∞

0
g2(x)dx

}1
2

.

Hence inequalities (11) and (14) are extensions of (18). Another extension of
(18) was given in [5].

(iii) For λ = 1 in (10), one has the following base Hilbert- type inequality (see
[1]):

(19)

∣∣∣∣∣
∫ ∞

0

∫ ∞

0

ln(x
y )

x − y
f(x)g(y)dxdy

∣∣∣∣∣≤π2

{∫ ∞

0
f2(x)dx

∫ ∞

0
g2(x)dx

}1
2

.

Hence inequality (10) is an extension of (19). One also has another extension
of (19) (see [6]).

(iv) F λ = 1 in (17), one has the following new base Hilbert- type inequality (see
[8]):

(20)

∣∣∣∣∣
∫ ∞

0

∫ ∞

0

| ln(x
y )‖f(x)g(y)

max{x, y} dxdy

∣∣∣∣∣ ≤ 8
{∫ ∞

0
f2(x)dx

∫ ∞

0
g2(x)dx

}1
2

.

(v) Inequality (9) is a new bilinear integral inequality with a best constant factor .
By using (9), one can establish many new Hilbert’s type integral inequalities
with the best constant factors such as (10-12, 14-16) and (17).

Open Problem. Is the operator T defined by Theorem 1 semi-positive definite
and is it suitable to use (2)?
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