
TAIWANESE JOURNAL OF MATHEMATICS
Vol. 8, No. 1, pp. 33-41, March 2004
This paper is available online at http://www.math.nthu.edu.tw/tjm/

A DIRECT PROOF OF GLOBAL EXISTENCE FOR THE
DIRAC-KLEIN-GORDON EQUATIONS

IN ONE SPACE DIMENSION

Yung-fu Fang

Abstract. We establish local and global existence results for Dirac-Klein-
Gordon equations in one space dimension, employing a null form estimate
and a fixed point argument.

0. INTRODUCTION AND MAIN RESULTS

In the present work, we want to consider the Cauchy problem for the Dirac-
Klein-Gordon equations

8
>><
>>:

DÃ = ÁÃ; (t; x) 2 R£ R1;

¤Á = ÃÃ;

Ã(0) = Ã0; Á(0) = Á0; @tÁ(0) = Á1;

(1)

where Ã is a 2-spinor field takes value in C4, Á is a scalar field takes value in R,
D is the Dirac operator, D = ¡ i°¹@¹; ¹ = 0; 1, and °¹ are the Dirac matrices,
which can be written as follows. First let us define the 2 £ 2 matrix ¾1,

¾1 =

µ
0 1
1 0

¶
:(2)

The matrices °¹ are defined by

°0 =

µ
I2 0
0 ¡I2

¶
; °1 =

µ
0 ¾1

¡¾1 0

¶
;(3)
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where I2 is the 2 £ 2 identity matrix, the wave operator ¤ = ¡@tt + @xx; and
Ã = Ãy°0; where y is the complex conjugate transpose.

The purpose of this work is to demonstrate a new proof of null form estimate, see
[1], by employing a solution representation of DKG equations, which apparently is
more simple. In a way, we give an interpretation of the null form structure depicted
within the nonlinear term ÃÃ, and it is different from that in [1]. This term has
been observed for possessing the null form structure, see[1] and [5, 6].

The energy for the DKG problem is not positive definite, therefore it is not
applicable. However we have the law of conservation of charge,

Z
jÃ(t)j2dx = constant(4)

which can be applied to derive the global existence result, once we establish the
local existence result. In this paper, the ”charge class” solutions mean solutions
with Ã(t; ¢) 2L2(R).

In ’73, Chadam showed that the Cauchy problem for the DKG equations has
a global unique solution if Ã0 2 H1, Á0 2 H1; Á1 2 L2, see [2]. In ’93, Zheng
proved that there exists a global weak solution to the Cauchy problem of the modified
DKG equations, based on the technique of compensated compactness, with Ã0 2L2,
Á0 2 H1; Á1 2 L2 , see [8]. In ’00, Bournaveas derived a new proof of a global
existence for the DKG equations, based on a null form estimate, if Ã0 2 L2,
Á0 2 H1; Á1 2 L2, see [1].

The approach we adopt in this work is as follows: First, we will derive the
solution representation for the Dirac equation, while the solution representation for
the wave equation is well known. Next, we will use it to estimate the quadratic
term ÃÃ. In addition to this, the derivations of some necessary estimates become
straight forward. Finally we can prove the local and global existence results of
DKG equations, which are parallel to those in [1] and [8].

The main result in this work is as follows.

Theorem 1. (Global Existence) If the initial data of (1), Ã0 2 L2, Á0 2 H1;
Á1 2 L2 , then there is a unique global solution for (1).

1. SOLUTION RPRESENTATION

Recall that, for the wave equation,

( ¤Á = F; (t;x) 2 R1£ R1;

Á(0) = Á0; Át(0) = Á1;
(5)
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the solution representations is as follows:

2Á(t;x) =
h
Á0(x+ t) + Á0(x¡ t)

i
+

Z x+t

x¡t
Á1(y)dy +

Z t

0

Z x+t¡s

x¡t+s
F (s; y)dyds:

(6)

Consider the Dirac equation,
( DÃ = G; (t;x) 2 R1 £R1;

Ã(0) = Ã0:
(7)

First we take D on the Dirac equation, then (7) becomes
( ¤Ã =DG; (t;x) 2 R1 £ R1;

Ã(0) = Ã0; @tÃ(0) = ¡°0°1 d
dxÃ0:

(8)

Applying the formula (6) and simplifying the expression, we finally have

2Ã(t; x) = (°0 + °1)°0Ã0(x+ t) + (°0 ¡ °1)°0Ã0(x¡ t)+

i

Z t

0

(°0 + °1)G(s;x+ t¡ s)ds+ i

Z t

0

(°0 ¡ °1)G(s;x¡ t + s)ds:

(9)

The formula (9) can also be derived in the approach via Fourier transform. First
we take the Fourier transform on the Dirac equation (9) over the space variable.
Then we solve the resulting ODE to get a formula for Ã̂(t; »). Finally we take
the inverse Fourier transform to obtain a solution formula for Ã(t; x). We will not
present the derivation of (9) via Fourier transform approach, due to the fact that it
is straight forward.

2. ESTIMATE

Lemma 1. For the solution of the Dirac equation (7), we have

kÃ(t)kL2 · C
³
kÃ0kL2 +

Z T

0
kG(s)kL2ds

´
:(13)

This can be shown directly.
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Consider two Dirac equations,
( DÃj =Gj ; j = 1;2;

Ãj(0) = Ã0j :
(14)

Lemma 2. (Null Form Estimate)

kÃ1Ã2kL2([0;T);L2)

· C
³
kÃ01kL2 +

Z T

0
kG1(s)kL2ds

´³
kÃ02kL2 +

Z T

0
kG2(s)kL2ds

´
:

(15)

Proof. For simplicity, we demonstrate a special case when Ã1 = Ã2 , and the
general case will follow. Consider the Dirac equation (7) and write its solution as

2Ã(t; x) = U+ +U¡ + iV+ + iV¡;(16)

where

U§(t;x) = (°0§ °1)°0Ã0(x§ t);(17)

V§(t; x) =

Z t

0
(°0 § °1)G(s;x§ (t¡ s))ds:(18)

Throughout calculations, we get

U+U+ = U¡U¡ = V +V+ = V ¡V¡ = 0;(19)

U+V+ = U¡V¡ = V +U+ = V ¡U¡ = 0;(20)

kU+U¡kL2([0;T);L2) · CkÃ0k2L2;(21a)

kV+U¡kL2([0;T);L2) · CkÃ0kL2

Z T

0
kG(s)kL2ds;(21b)

kU+V¡kL2([0;T);L2) · CkÃ0kL2

Z T

0
kG(s)kL2ds;(21c)

kV +V¡kL2([0;T);L2) · C

µZ T

0
kG(s)kL2ds

¶2

:(21d)

The rest cases are analogous. Among these cases, we only demonstrate the case of
V +V¡. Since

V +V¡ = 2

Z t

0

Z t

0
Gy(s;x+ t ¡ s)(°0¡ °1)G(r; x¡ t+ r)drds;(22)
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hence we have

kV +V¡kL2([0;T);L2)

· C

µZ T

0

Z ³ Z t

0

Z t

0
jGy(s;x+ t ¡ s)(°0¡ °1)G(r; x¡ t+ r)jdrds

´2
dxdt

¶1
2

· C

Z T

0

Z T

0

µZ T

0

Z ¯̄
¯Gy(s; x+ t¡ s)

¯̄
¯
2 ¯̄
¯G(r;x¡ t + r)

¯̄
¯
2
dxdt

¶1
2

drds

· C

Z T

0

Z T

0

kG(s)kL2kG(r)kL2drds

· C

µZ T

0
kG(s)kL2ds

¶2

:

(23)

This completes the proof of the lemma.

Lemma 3. For the wave equation (10), we have the energy estimate

kÁ(t)kH1 + kÁt(t)kL2 · C(T )

µ
kÁ0kH1 + kÁ1kL2 +

Z T

0

kF (s)kL2ds

¶
:(25)

This can be derived directly.

3. EXISTENCE

Let (Ã;Á) and (Ã0;Á0) be two charge class solutions of DKG equations. We
define the following quantities:

J(0) = kÃ0kL2 + kÁ0kH1 + kÁ1kL2;(26a)

J 0(0) = kÃ00kL2 + kÁ00kH1 + kÁ01kL2;(26b)

J(T ) = sup
[0;T ]

(kÃ(t)kL2 + kÁ(t)kH1 + kÁ(t)kL2) ;(26c)

J0(T ) = sup
[0;T ]

¡kÃ0(t)kL2 + kÁ0(t)kH1 + kÁ0(t)kL2

¢
;(26d)

¢(0) = kÃ0¡ Ã00kL2 + kÁ0¡ Á00kH1 + kÁ1 ¡Á01kL2;(26e)

¢(T ) = sup
[0;T ]

¡kÃ(t)¡Ã0(t)kL2 +kÁ(t)¡Á0(t)kH1 +kÁt(t)¡Á0t(t)kL2

¢
:(26f)



38 Yung-fu Fang

Lemma 4. For the solution of the DKG equations (1), we have

kÁ(t)kL1(R) · C(T;J(0)):(27)

This can be obtained by using the solution representation for Á and the law of
conservation of charge, see [1].

Lemma 5. Let T > 0 and let (Ã;Á) be a charge class solution of (1). Then
there exists a constant C > 0, depending only on T and J(0), such that

J(T) · C(T; J(0)):(28)

Proof. Since kÃ(t)kL2 = kÃ0kL2 ; this takes care the first term of J(T ). For
the terms involving Á, we first compute

Z T

0
kF (s)kL2ds =

Z T

0
kÃÃ(s)kL2ds

· T
1
2kÃÃkL2([0;T ];L2)

· T
1
2

³
kÃ0kL2 +

Z T

0
kDÃ(s)kL2ds

´2

· T
1
2

³
J(0)+

Z T

0
kÁ(s)kL1kÃ(s)kL2ds

2́

· C(T;J(0))T
1
2 :

(29)

Now we apply the energy estimate to get

kÁ(t)kH1 + kÁt(t)kL2 · C(T)

µ
J(0) +

Z T

0
kF(s)kL2ds

¶

· C(T; J(0)):

(30)

This completes the proof of the lemma.

Lemma 6. Let T > 0 and (Ã; Á), (Ã0; Á0) be two charge class solutions of
(1). Then there exists ² > 0, C > 0, depending only on J(0) and J0(0) such that
if T < ², then

¢(T ) · C¢(0):(31)

Proof. Consider the difference of the two solutions, we have the following
equations:
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( D(Ã ¡Ã0) = (Á¡ Á0)Ã+ Á0(Ã¡ Ã0);
¤(Á¡Á0) = (Ã¡Ã0)Ã+Ã0(Ã¡ Ã0):

(32)

For the first term of ¢(T ), first we compute

kD(Ã¡ Ã0)(s)kL2

· kÁ(s)¡Á0(s)kL1kÃ(s)kL2 + kÁ0(s)kL1kÃ(s)¡ Ã0(s)kL2

· kÁ(s)¡Á0(s)kH1J(0) +C(T;J 0(0))kÃ(s)¡ Ã0(s)kL2

· C
¡
T; J(0);J 0(0)

¢
¢(T ):

(33)

Invoke (13), we have

kÃ(t)¡Ã0(t)kL2 · C
³
kÃ0 ¡ Ã00kL2 +

Z T

0
kD(Ã¡Ã0)(s)kL2ds

´

· C
³
¢(0) +C

¡
T;J(0);J0(0)

¢
T¢(T)

´
:

(34)

For the other two terms, first we calculate
Z T

0
k¤(Á¡ Á0)(s)kL2ds

·
Z T

0
k(Ã¡ Ã0)Ã(s)kL2 + kÃ0(Ã¡ Ã0)(s)kL2ds

· T
1
2

³
k(Ã ¡Ã0)ÃkL2 + kÃ0(Ã¡ Ã0)kL2

´
;

(35)

then we calculate, invoke (15),

k(Ã ¡ Ã0)ÃkL2

· C
³
kÃ0 ¡ Ã00kL2 +

Z T

0

kD(Ã ¡ Ã0)(s)kL2ds
´³
kÃ0kL2+

Z T

0

kDÃ (s)kL2ds
´

· C
³
T; J (0);J 0(0)

´³
¢(0) + T¢(T)

´
:

(36)

The calculation for kÃ0(Ã¡Ã0)kL2 is the same. Therefore, applying (25), we get

kÁ(t)¡Á0(t)kH1 + kÁt(t)¡ Á0t(t)kL2

· C(T )

µ
kÁ0 ¡Á00kH1 + kÁ1¡ Á01kL2 +

Z T

0
k¤(Á¡Á0)(s)kL2ds

¶

· C(T )
³
¢(0) +T

1
2C(T; J(0);J 0(0))

´³
¢(0) + T¢(T )

´

· C
³
T;J(0); J0(0)

´³
¢(0) +T¢(T)

´
:

(37)
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Now we assume T · 1, thus

C
³
T; J(0);J 0(0)

´
· C

³
J(0); J0(0)

´
= C

³
1;J(0);J0(0)

´
(38)

and

¢(T) · C
³
J(0);J 0(0)

´³
¢(0) + T¢(T)

´
:(39)

This concludes the proof.

Combining (28), (31) and an iteration scheme, we have the following local
existence result.

Theorem 2. (Local Existence) Let Ã0 2 L2(R), Á0 2 H1(R), and Á1 2
L2(R). Then there exists a T > 0, depending only on J(0), and a unique charge
class solution of (1) defined on [0; T)£ R.

From Lemma 5, we have the inequality,

J(T) · C(T;J(0));(40)

which ensures that we can always extend the solution beyond T . Thus we have a
unique global solution for the Cauchy problem. The idea of this type of argument
is originated by Segal, see [7].

4. REMARK

Using the solution representation in Fourier transform, we can take full advan-
tage of the null form structure and derive the null form estimate,

kÃÃkL2 · C

Ã
kÃ0kL2 +

°°° Ã̂G

Ã̂W
1
2¡²

°°°
L2

!2

;(41)

where Ã̂W =
¯̄
¯j¿ j ¡ j» j

¯̄
¯ + 1. Equipping with this estimate, together with other

estimates, the result of global existence can be improved, i.e. if Ã0 2 L2(R),
Á0 2 H

1
2 (R), and Á1 2 H¡1

2 (R), then we have a unique global solution. The
proof will appear elsewhere.
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