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ENERGY TRANSPORT PROBLEM FOR SELF-GRAVITATING
PARTICLES

Takashi Suzuki

Abstract. We study the stationary state of the energy transport problem for
self-gravitating particles and show that radially symmetric negative energy
solutions exist if and only if 3 · n · 9, where n denotes the space dimension.

1. INTRODUCTION

Our purpose is to study the stationary state of an elliptic-parabolic system of
partial differential equations modeling the motion of Brownian particles subject to
the thermodynamical process and self-gravitations. It is proposed by Biler, Krzy-
wicki, and Nadzieja [2], taking into account of the Poisson type coupling of the
self-interaction in the Streater’s model [10], and therefore, is regarded as the case
that the temperature varies in the drift-diffusion model ([9]).

This system is concerned with the density of the mean field of the particle, the
temperature, and the gravitational potential created by those particles, respectively,
denoted by u ¸ 0, µ ¸ 0, and '. Letting '0 to be the potential of the outer force,
it is actually given as

ut = r ¢
£
·
¡
ru+ u

µr ('+ '0)
¢¤

(µu)t = r ¢ (¸rµ) +r ¢ [· (µru+ur ('+ '0))]

+r('+'0) ¢
£
·
¡
ru+ u

µr('+'0)
¢¤

¢' = u
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in a bounded domain ­½ Rn, with the boundary condition

@u

@º
+
u

µ

@

@º
('+ '0) = 0

@µ

@º
= 0

'= 0

on @­, the smooth boundary, and with the initial condition

(u; µ)jt=0 = (u0; µ0) > 0;

where º denotes the outer unit normal vector and the physical coefficients ·;¸ ¸ 0
are the functions of x; u; µ;', which may be 0 only at µ = 0.

Thus, the flux of mass is given as

j =¡·
h
ru+

u

µ
r('+'0)

i
(1)

and the system involves the mass conservation of the particle in such a way as

ut =¡rj in ­£ (0; T)

º ¢ j = 0 on @­£ (0;T );
(2)

which implies u > 0 from the maximum principle, and also its total mass preserving
as

dM

dt
= 0 for M =

Z

­
u:

It also includes

(uµ)t = r ¢ (¸rµ)¡r ¢ (µj)¡r('+ '0) ¢ j;(3)

which is equivalent to

uµt =r ¢ (¸rµ)¡ j ¢ rµ +
µ

·u
(j +·ru) ¢ j(4)

by (2) and (1). Thus, first µ > 0 follows from (4), and then (3) implies that

d

dt

Z

­
uµ = ¡

Z

­
r('+'0) ¢ j =

Z

­
('+'0)r ¢ j

= ¡ d

dt

Z

­
'0u¡

Z

­
'ut
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with Z

­
'ut =

Z

­
'¢'t = ¡

Z

­
r' ¢ r't = ¡1

2

d

dt

Z

­
jr'j2

=
1

2

d

dt

Z

­
u';

and in this way, the total energy

E =

Z

­
u

µ
µ +

1

2
'+'0

¶

is preserved as
dE

dt
= 0:

Finally, from (4) we have

u(log µ)t = µ¡1r ¢ (¸rµ)¡ j ¢ r log µ+
jjj2
·u

+r logu ¢ j;

and it holds that
Z

­
u(logµ)t =

d

dt

Z

­
u log µ ¡

Z

­
ut(log µ)

and
Z

­

Ã
µ¡1r ¢ (¸rµ)¡ j ¢ r log µ+

jjj2
·u

+ j ¢ r logu

!

=

Z

­

Ã
¸µ¡2 jrµj2 +

jjj2
·u

!
+

Z

­
(r ¢ j) log µ¡

Z

­
(r ¢ j) logu:

This implies from (2) that

d

dt

Z

­
u log µ =

Z

­

Ã
¸ jr log µj2 +

jjj2
·u

!
+

Z

­
ut logu

=

Z

­

Ã
¸ jr log µj2 +

jjj2
·u

!
+
d

dt

Z

­

u(logu¡ 1);

and hence the increase of the entropy follows as

dW

dt
+

Z

­

Ã
¸ jr log µj2 +

jjj2
·u

!
= 0(5)
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with

W =

Z

­

u (log(u=µ)¡ 1) :

In the equilibrium state, it holds by (5) that µ = constant and

j =¡·
h
ru+

u

µ
r('+ '0)

i
= 0:

This implies

r (logu+ ('+ '0)=µ) = 0

and hence we have

u = ¾ ¢ e¡('+'0)=µ

with the unknown constant ¾ > 0, which is prescribed by

M =

Z

­

u as ¾ =
MZ

­
e¡('+'0)=µ

:

We obtain

u=
Me¡('+'0)=µ
Z

­
e¡('+'0)=µ

and hence

¢' =
Me¡('+'0)=µZ

­

e¡('+'0)=µ

holds true.
Writing v = ¡'=µ, ¸ =M=µ, and K(x) = e¡'0=µ, we have

¡¢v =
¸K(x)evR
­K(x)ev

in ­; v = 0 on @­;

which is known as the Gel’fand equation ([11]), but the unknown constant µ > 0
is prescribed by

E =

Z

­

u

µ
µ +'0 +

1

2
'

¶
= µM +

Z

­

¢'

µ
'0 +

1

2
'

¶

= µM ¡
Z

­
r' ¢ r

µ
'0 +

1

2
'

¶

= µM ¡ µ2

2
krvk2

2¡
¸µ2

Z

­
(K logK)(x)ev

Z

­
K(x)ev

:
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This means, in the case of '0 = 0, that

¸¡ 1

2
krvk22 =

E

M2
¢ ¸2

by µ =M=¸. Thus, given (E;M), we get the problem to find ( ;̧ v) satisfying

¡¢v =
¸evR
­ e

v in ­; v = 0 on @­;(6)

and

E =
E

M2
¸2 for E = ¸¡ 1

2
krvk22 :(7)

We shall study this problem for the case of n ¸ 3.

2. SUMMARY

First, we review the work [1] in short. In fact, putting

¾ = ¸=

Z

­
ev and F = ¾ (ev¡ 1) ;

we get from (6) the Pohozaev identity

n

Z

­
F +

2 ¡n
2

Z

­
jrvj2 =

1

2

Z

@­

µ
@v

@º

¶2

(x ¢ º) ¸ 0;(8)

where it holds that
Z

­
F = ¾

Z

­
ev ¡¾ j­j = ¸¡ ¾ j­j

= ¸
¡
1 ¡ 1

X

¢(9)

for

X =
1

j­j

Z

­
ev :

Thus, we obtain

1

2
krvk22 ·

n

n¡ 2
¢ ¸ ¢

µ
1¡ 1

X

¶
:(10)

On the other hand, we have for

= ¸ev=

Z

­
ev



6 Takashi Suzuki

that

¡¢v = u in ­; v = 0 on @­

and hence it follows that

v = logu¡ log

µ
¸=

Z

­
ev
¶

= logu¡ log

µ
¸

X j­j

¶

and

krvk22 =

Z

­
uv =

Z

­
u logu¡ ¸ log

µ
¸

X j­j

¶
:

Here, because f(s) = s log s is a convex function of s > 0, we have

1

j­j

Z

­
f(u)¸ f

µ
1

j­j

Z

­
u

¶
= f

µ
¸

j­j

¶
;

which means that
Z

­

u logu ¸ ¸ log

µ
¸

j­j

¶
:(11)

Thus, we obtain

krvk22 ¸ ¸ logX:(12)

Inequalities (10) and (12) are now summarized as

logX · 2n

n¡ 2

µ
1 ¡ 1

X

¶

for X = j­j¡1 R
­ e

v , or equivalently,

1 <X ·X¤(n);

where X¤ = X¤(n) denotes the unique solution to

logX =
2n

n¡ 2

µ
1¡ 1

X

¶
(X > 1):

Thus, we obtain

E = ¸¡ 1

2
krvk22 ¸ ¸¡

n

n¡ 2
¸

µ
1 ¡ 1

X

¶
=

1

n¡ 2

n n
X
¡ 2
o
¢ ¸

¸ 1

n

½
n

X¤
¡ 2

¾
¢ ¸:
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In this way, we get the conclusion that the solution to (6) with (7) exists only if

¸

M2
¢E ¸ 1

n¡ 2

½
n

X¤
¡ 2

¾
:

In particular, the non-positive energy solution does not exist in the case of X¤ · n
2 ,

which is equivalent to

logX ¸ 2n

n¡ 2

µ
1 ¡ 1

X

¶

for X = n=2, or n ¸ 15.
On the other hand, the high-energy solution actually exists in the following

way. First, from the theory of Crandall and Rabinowitz [3], there exists a family of
solutions f(¾; v¾)g0<¾¿1 for

¡¢v = ¾ev in ­; v = 0 on @­(13)

satisfying

lim
¾#0

kv¾k1 = 0:

This family generates the one to (6) by

¸ = ¾ ¢
Z

­

ev¾ :

Here, we have ¸ ¼ ¾ and krv¾k22 ¼ ¾2, and it holds that

E
¸2

=
1

¸
¡ krvk

2
2

2¸2
!+1

as ¾ # 0. Therefore, problem (6) with (7) has a solution if E=M2 À 1.
Under those considerations, [1] conjectured that there exists `0 2 R such that

E=M2 > `0 and E=M2 < `0 imply the existence and the non-existence of the
solution, respectively, in the case of n¸ 3, and it proved, among many other things,
that this is actually the case if ­ is a ball by the Emden transformation, and also
proposed the problem of the existence of negative energy solutions.

Actually, from the known result on the Gel’fand equation it follows immediately
that the set of solutions to (6) forms a smooth one-parameter family in [0;1)£C(­)
if ­ is a ball, labeled by f(¸(s); v(s))gs2R. It satisfies ¸(s)! 0 as s!¡1 and
also

v(s) !
(

0 (s!¡1) in L1(­)

2 log 1
jxj (s!+1) in W 2;q(­)

(14)
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for q 2 [1;n=2). Therefore, the profile of the set of solutions to (13) with (14) for
given ` is obtained from the study of

s 2 R 7! `(s) ´ 1

¸(s)
¡ krv(s)k

2
2

2¸(s)2
:

Actually, refining the argument in [1], we shall show the following.

Theorem 1. Let ­ = B ´ fjxj < 1g ½ Rn and `0 be the threshold value for
the existence of the solution to (6) with (7) proven by [1]. Then, putting

`¤ =
n¡ 3

2!n(n¡ 2)
¸ 0;

we have the following, where !n denotes the surface area of @B,

1. If n ¸ 10, then `0 = `¤. For each ` ´ E=M2 > `0, the solution to (6)
with (7) is unique, and there is no solution for ` = `0 . In particular, no
negative energy solution is admitted to (6) with (7). Actually, under the
above parametrization f(¸(s); v(s))gs2R of the solution to (6), the mapping
s 7! `(s) is monotone decreasing and lims!+1 `(s) = `0.

2. If 3 · n · 9, then `0 < 0 and ` = `0 takes the slution. The solutions
are infinitely many for ` = `¤ and the number of solutions grows +1 as
` ! `¤ § 0. Actually the function s 7! `(s) meets transversalily with the
line ` = `¤ infinitely many times in the above parametrization. Furthermore,
`0 = infs2R `(s) < 0 is attained and it holds that lims!+1 `(s) = `¤ . In
particular, negative energy solutions exist for each ` 2 [`0; 0), and in the
case of n = 3, their number grows infinite as ` " 0. Finally, the number of
solutions to (6) with (7) is finite if n= 4 and 0 < j` ¡ `¤j ¿ 1.

From this theorem, we get the suggestion of the complex transient dynamics in
low energy level to the non-stationary problem with n = 3.

3. EMDEN TRANSFORMATION

First, we note that the solution to (6) or (13) is always radially symmetric as
v = v (jxj) in the case of ­ = B, from the theorem of Gidas, Ni, and Nirenberg
[5]. Next, the solution to (13) is classified by the Emden transformation, so that we
take the orbit

O = f(w(t); _w(t)) j t 2 Rg
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by

Äw+ (n¡ 2) _w+ 2(n¡ 2) (ew ¡ 1) = 0 (¡1< t <1)

limt!¡1 fw(t)¡ 2tg = limt!¡1 e¡t f _w(t)¡ 2g = 0:
(15)

This orbit is in _w < 2 and is absorbed into the origin (0;0) as t ! +1. It is
spiral if 3 · n· 9, and if n ¸ 10, then O is expressed as a graph _w = _w(w) with
w < 0. In any case, the solution (¾; v) to (13) is bi-jectively associated with each
point (w(s); _w(s)) on O by

¾ = 2(n¡ 2)ew(s)

v(r) = w(t)¡ 2t¡ w(s) +2s

r = et¡s:

See Gel’fand [4], Joseph and Lundgren [6], Nagasaki and Suzuki [7], [8] for those
facts and more details.

Then, the solution to (13) is recovered by

¾ =
¸Z

­
ev
;

or
¸(s) =

Z

­

(¡¢v) =¡!nvr(1) = ¡!n( _w¡ 2)jr=1

= !n (2 ¡ _w(s)) :

It holds also that

krvk22 = !n

Z 1

0
v2
rr
n¡1dr = !n

Z s

¡1
( _w(t)¡ 2)2 e(n¡2)(t¡s)dt

= !n

Z 0

¡1
( _w(t+ s)¡ 2)2 e(n¡2)tdt =

1

!n

Z 0

¡1
¸(t + s)2e(n¡2)tdt;

and hence we get that

`(s) =
1

¸(s)

½
1¡ 1

2!n¸(s)

Z 0

¡1
¸(t + s)2e(n¡2)tdt

¾

¸(s) = !n (2 ¡ _w(s)) :

(16)

From the second expression of (16) and the profile ofO, the bifurcation diagram
of the solution set to (6) is taken clearly. It is actually very similar to the one for
(6), including infinite and no bendings for 3 · n · 9 and n ¸ 10, respectively,
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with ¸(s) ! 0 and kv(s)k1 ! 0 as s ! ¡1 and (14). The difference is the
singular value and it holds actually that

lim
s!+1

¸(s) = 2!n(17)

by lims!+1 (w(s); _w(s)) = (0; 0). Henceforth, the first bending point of the
above diagram is denoted by (¸(s0); v(s0)) for s0 2 R in the case of 3 · n · 9.
If n ¸ 10, we set s0 = +1.

Then, putting ¸0 = lims!s0 ¸(s), we have

¸(s) 2 (0; ¸0] for s 2 R; lim
s!¡1

¸(s) = 0;

and
¸(t + s)

¸(s)
· 1 for s < s0 and t · 0:

Those relations imply the existence of the high-energy solution to (6) with (7) again.
In fact, it follows from the dominated convergence theorem that

`(s)¸ 1

¸(s)

½
1¡ 1

2!n

Z 0

¡1
¸(t+ s)e(n¡2)tdt

¾
! +1(18)

as s! ¡1. Similarly, from (17) we obtain

lim
s!+1

`(s) =
1

2!n

½
1 ¡ 4!2

n

2!n ¢ 2!n
¢
Z 0

¡1
e(n¡2)tdt

¾
= `¤;

which implies that `0 · `¤.
Letting

I(s) =
1

2!n

Z 0

¡1
¸(t + s)2e(n¡2)tdt;

we have

¸(s)2`(s) = ¸(s)¡ I(s);
and then

¸2 _̀ = (1 ¡ 2¸`) _̧ ¡ _I

follows. If n ¸ 10, it holds always that _̧ (s) > 0, and hence _̀< 0 if ` > 1=2¸, or
equivalently, I < ¸=2. This is actually the case as

I(s) <
1

2!n
¢ ¸(s) ¢ 2!n

Z 0

¡1
e(n¡2)tdt =

¸(s)

n¡ 2
<
¸(s)

2
:

Thus, the mapping s 2 R 7! `(s) is monotone increasing in this case of n ¸ 10,
and the proof of the first part of Theorem 1 is complete.
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4. LOW DIMENSIONAL CASE

Now, we show the second part of Theorem 1, where 3 · n · 9. For this
purpose, we make use of the Pohozaev identity (8). In fact, if ­ = B, then j­j =
!n=n and it holds that

Z

@­

µ
@v

@º

¶2

(x ¢ º) = !nvr(1)2 =
¸2

!n
:

On the other hand, we have from (8) that

n¡ 2

2
krvk2

2 = n¸¡¾!n ¡
¸2

2!n
:

Thus, we obtain

E = ¸¡ krvk2
2

2
=

!n¾

n¡ 2
¡ 2¸

n¡ 2
+

¸2

2(n¡ 2)!n

= 2!ne
w(s) ¡ 2!n (2¡ _w(s))

n¡ 2
+

¸2

2(n¡ 2)!n
;

or equivalently,

E
¸2
¡ 1

2(n¡ 2)!n
=

2!n
n¡ 2

n
(n¡ 2)ew(s)¡ 2 + _w(s)

o
=!2

n (2¡ _w(s))2

=
2

!n(n¡ 2)
¢G(s);

where

G(s) =
(n¡ 2)ew(s)¡ 2 + _w(s)

(2¡ _w(s))2
:

Let us confirm that

lim
s!+1

G(s) =
n¡ 4

4

and

`(s) =
2

(n¡ 2)!n

½
G(s) +

1

4

¾
:

Therefore, it follows from (18) that

lim
s!¡1

G(s) = +1:
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Given ¹ 2 R, we now study the equation G(s) = ¹. In fact, G = ¹ is
equivalent to

(n¡ 2)ew ¡ 2 + _w = ¹(2¡ _w)2;(19)

which defines curves in w ¡ _w plane. If ¹ = 0, it is realized as the graph _w =
2 ¡ (n ¡ 2)ew, denoted by S0, which is monotone decreasing in w 2 R and
approaches _w = 2 as t ! ¡1. If ¹ > 0, it has two components and the one in
_w < 2, denoted by S¹ is given by

_w = 2 +
1 ¡

p
1 + 4¹(n¡ 2)ew

2¹
:

It is monotone decreasing in w 2 R and approaches _w = 2 as w ! ¡1. More
precisely, it holds that

_w » 2 +
1

2¹
¡ 1

2¹
(1 +2¹(n¡ 2)ew)

= 2¡ (n¡ 2)ew
(20)

as w!¡1. In the case of ¹ < 0, it is connected and is expressed as

_w = 2 +
1 §

p
1 + 4¹(n¡ 2)ew

2¹

with w · w¤(¹) = log
³
¡ 1

4¹(n¡2)

´
. It is again denoted by S¹. Actually, it is in

2 + 1=¹ < _w < 2 and w · w¤(¹), and the upper part has the asymptotics (20) as
w!¡1.

On the other hand, for (w(t); _w(t)) 2O we have from (15) that

w(t) = 2t¡ 2(n¡ 2)

Z t

¡1
e¡(n¡2)´d´

Z ´

¡1
e(n¡2)»

³
ew(»)¡ 1

´
d»;

which implies that

_w » 2 ¡ 2(n¡ 2)

n
ew

as w!¡1 by w » 2t. Thus,O is in the above of S¹ in w¡ _w plane forw¿ ¡1.
The solution to (6) with (7) for

E

M2 =
2

(n¡ 2)!n

µ
¹+

1

4

¶

corresponds bi-jectively to (w(s); _w(s)) 2 O \ S¹ satisfying G(s) = ¹. To
get the profile of S¹ for ¹ ¿ ¡1, we note that lim¹!¡1w¤(¹) = ¡1 and
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lim¹!¡1
³
2 + 1

2¹

´
= 2 hold. Then, we see O \ S¹ = ; in this case of ` ¿ ¡1.

We also see that `0 = infs2R `(s) is attained and `0 < `¤ = lims! `(s), and hence

`0 = inf
s2R

`(s) < lim
s!+1

`(s) = `¤ < lim
s!¡1

`(s) = +1(21)

holds true. We see that ` = 0 corresponds to ¹ = ¡1=4, and then S¹ takes _w =§2
as the asymptotic lines for w ! ¡1 and (log(n¡ 2);0) is its vertex. Because
O is in the above of S¹ in w¡ _w plane for w ! ¡1, they meet each other for
¹= ¡1=4. This is also the case with

¯̄
¹+ 1

4

¯̄
¿ 1 and it holds that `0 < 0.

On the other hand, the case 0 2 S¹ occurs if and only if ¹ = n¡4
4 , and then

] (S¹ \O) = +1 follows because O is absorbed into (w; _w) = (0; 0) spirally.
Therefore, there is sk ! +1 such that G(sk) = n¡4

4 , and furthermore, we can
show that infinitely many of those crossing points are transversal. In fact, we have

d

dt

µ
w
_w

¶
=

µ
_w

¡(n¡ 2)f _w+ 2(ew ¡ 1)g

¶

on O and the tangential vector of O is positive and negative in w direction if and
only if _w > 0 and _w < 0, respectively. Also, it is positive and negative in _w
direction if and only if _w < 2 ¡ 2ew and _w > 2 ¡ 2ew, respectively. From those
facts, we see that if n = 3, then the crossing points of O \ S(n¡4)=4 in _w < 0
are infinitely many and transversal. In the case of n = 4, S(n¡4)=4 coincides with
_w= 2¡2ew and any of those crossing points are transversal. Finally, if n ¸ 5, then
S(n¡4)=4 is above in w¡ _w plane near (w; _w) = (0;0) in _w < 0 and any crossing
point in that region is transversal. Thus, G0(sk) 6= 0 holds for infinitely many sk’s,
and the number of the solution to G(s) = ¹ becomes infinite as ¹! (n¡4)=4§0.
The same situation arises for `(s) = ` with `! `¤ § 0.

For the solutions to `(s) = `¤ to be at most finite for ` 6= `¤, it must hold
that G0(sk) 6= 0 for any k sufficiently large in the above notation, which, is open
except for n = 4. However, in this case of n = 4, G0(sk) 6= 0 holds for any k, and
this, together with (21), implies the finiteness of the solution for 0 < j`¡ `¤j ¿ 1.
Then, the proof is complete.
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