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A DOMINATED CONVERGENCE THEOREM IN
THE K-H INTEGRAL

Jitan Lu and Peng-Yee Lee

Abstract. In this paper, we give a nonabsolute dominated convergence theorem
for the K-H integral on the real line. Furthermore, as the converse part, we
also give a corresponding Riesz type definition of the K-H integral.

1. INTRODUCTION

The dominated convergence theorem (see for example [6, Theorem 9.20]) plays
an important role in the Lebesgue integral. A dominated convergence theorem
for the K-H integral is also known (see [2, Theorem 8.12]). But unfortunately it
was proved to be absolute. Although some nonabsolute dominated convergence
theorems were given later (see [3, Theorem 5.5.5] and [5, Theorem 3]), we have
never seen that any Riesz type definition of the K-H integral corresponding to
some dominated convergence theorem was given. In this paper, we give another
dominated convergence theorem, which is also truly nonabsolute. More than that, as
the converse part, we give a corresponding Riesz type definition of the K-H integral.

2. PRELIMINARIES

Let E be a closed bounded interval on the real line, if necessary, sometime
we write it as [a; b]; where a and b are the two end points of E: We shall call
an subinterval I of E with one of its end points x; (x; I) a point-interval pair. A
partial division D of E is a finite collection of point-interval pairs (x; I) with the
intervals non-overlapping, and their union forming a subset of E: We shall write
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D = f(x; I)g: If a partial division D is such that the union of the intervals in D is
E; we call D a division of E:

Let ± : E ! (0; 1) be a function on E and we call it a gauge of E: A partial
division D = f(x; I)g is said to be ±-fine if, for each point-interval pair (x; I);
we have I ½ [x ¡ ±(x); x + ±(x)]: We recall that a real-valued function f defined
on an interval E is said to be Kurzweil-Henstock (K-H) integrable if there exists a
real number A; for every " > 0; there is a gauge ± of E, such that for any ±-fine
division D = f(x; I)g of E; we always have

¯̄
¯(D)

X
f(x)jIj ¡A

¯̄
¯ < ";

where jIj denotes the length of the interval I and (D)
P

denotes the sum over
all point-interval pairs (x; I) in D: It is known that if f is K-H integrable on an
interval E; so is it on any subinterval I of E: Then we obtain an interval function
F defined on the family of all the subintervals of E: We call F the primitive of the
K-H integrable function f: It is also known that F is finitely additive in the sense
of that if I = [ni=1Ii and Ii are nonoverlapping intervals then

F (I) =

nX

i=1

F (Ii):

3. A DOMINATED CONVERGENCE THEOREM

Let E be an interval of the real line, and

¤(E) = f(x; I) : (x; I) is a point-interval pair of Eg ;

Let H be a function defined on ¤(E) and X a subset of E. We say H is
BV ¤(X) if

sup(D)
X

jH(x; I)j < +1:

where the supremum is taken over all partial divisions D = f(x; I)g of E with x 2
X: We say H is BV G¤ on E if there exists a sequence of fXig with [1i=1Xi = E
such that H is BV ¤(Xi) for any i:

Definition 3.1. Let F; H and G be functions on ¤(E): H is said to be a major
function of F on E if H is BV G¤ on E and

H(x; I) ¸ F (x; I)

for every (x; I) 2 ¤(E); G is said to be a minor function of F on E if G is BV G¤

on E and
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F (x; I) ¸ G(x; I)

for every (x; I) 2 ¤(E):
Based on the concepts given above, we have the following dominated conver-

gence theorem.

Ttheorem 3.1. If the following conditions are satisfied:

(1) fn(x) ! f(x) almost everywhere in E as n ! 1 where each fn is K-H
integrable on E;

(2) The primitive Fn of fn; n = 1; 2; : : : ; have at lease one common major
function H and at least one common minor function G on E;

(3) Fn converge uniformly to a limit function F on E;

then f is K-H integrable to F (E) on E:

We note that the primitive F of a K-H integrable function on E can be treated as
a special function defined on ¤(E): So the major and minor functions in Theorem
3.1 are meaningful.

Proof of Theorem 3.1. Follow the proof of [2, Theorem 8.12] using standard
category argument.

4. A RIESZ-TYPE DEFINITION OF THE K-H INTEGRAL

In this section, we will show that the converse part of Theorem 3.1 is also true,
which provides a Riesz type definition of the K-H integral. Furthermore, it also
shows that Theorem 3.1 is a nonabsolute dominated convergence theorem.

Let fn be a sequence of K-H integrable functions on E with the primitive Fn:
We say ffng is dominated convergent to a function f if all the conditions in Theorem
3.1 hold. Then we have the following result.

Theorem 4.1. Let f be a K-H integrable function on E. Then there exists a se-
quence of Lebesgue integrable functions ffng which is dominated convergent to f:

Proof. Let F be the primitive of f on E = [a; b]: Then by [2, Lemma 6.17] F
is V BG¤ on E: Hence E = [1n=1Xn and F is V B¤(Xn) for each n: We assume
that Xn is closed by [2, Lemma 6.16] and moreover Xn ½ Xn+1 for any n:

Define Fn(x) = F (x) when x 2 Xn; Fn(a) = F (a); Fn(b) = F (b) and

Fn(x) = F (ak) +
F (bk)¡ F (ak)

bk ¡ ak
(x¡ ak) when x 2 (ak; bk)
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where (a; b)¡Xn = [1k=1(ak; bk):
We can prove that Fn is absolutely continuous on E (see the proof of [3,

Theorem 5.3.13]). So by [2, Theorem 5.5] the derivative fn(x) = F 0n(x) almost
everywhere in [a; b] is absolutely K-H integrable, that is Lebesgue integrable on
[a; b] with the primitive Fn: Moreover, it is obvious that Fn converges uniformly to
F and fn converges to f almost everywhere.

Now we define two functions H and G on ¤(E) as follows:

H(x; I) = sup fFn(I)g

and
G(x; I) = inf fFn(I)g

for any (x; I) 2 ¤(E); here the supremum and infimum taking over all n. From the
fact that Fn converges uniformly to F; we know that the supremum and infimum
exist, and it is obvious that for any (x; I) 2 ¤(E);

H(x; I) ¸ Fn(I) ¸ G(x; I)

for all n:

Now we fix Xi. We shall prove that both H and G are V B¤(Xi):
First we can check that Fn is V B¤ on E: For any j = 1; 2; : : : ; i ¡ 1; there

exists Mj > 0; such that for any partial division D = f(x; I)g of E; we have

(D)
X

!(Fj ; I) ·Mj :(4.1)

where !(Fj; I) denotes the oscillation of F over I , that is,

!(Fj ; I) = sup
©¯̄
F (I 0)

¯̄
: I 0 ½ I

ª
:

We see that for any n ¸ i; Fn(x) = f(x) when x 2 Xi and that

1X

k=1

!(Fn; [ak; bk]) ·
1X

k=1

!(F ; [ak; bk]) < M 0(4.2)

where (a; b) ¡Xi = [1k=1(ak; bk), M
0 is a positive number. The existence of M 0

comes from the fact that F is V B¤(Xi) and continuous on E (see [3, Lemma 5.3.8]).
Certainly we may assume that M 0 is bigger than Mn for any n = 1; 2; : : : ; i¡ 1:

Since F is V B¤(Xi);then there exist a positive number M 00 > 0 such that for
any partial division D0 = f(x; I)g of E with x 2 Xi; we have

(D0)
X

jF (I)j < M 00:(4.3)
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Let D = f(x; I) : x 2 Xig be any partial division of E: Now we rearrange it
as follows.

For any element (x; I) 2 D; (1) if both the two ends of I belong to Xi; leave
it alone; (2) if another end point of I does not belong to Xi; then divide I into two
parts I1 and I2, such that both of the two end points of I1 belong to Xi and I2 is
included in some [ak; bk]. All the elements we get in the above two cases form a
new partial division D0 of E: We divide D0 into two parts:

D1 =
©
(x0; I 0) 2 D0 : I 0is included in some [ak;bk]

ª

and D2 the rest. For any k; it is obvious that
X

(x0;I0)2D1
I½(ak;bk)

¯̄
Fn(I

0)
¯̄
· 2!(Fn; [ak; bk]) · 2!(F ; [ak; bk]):

So X

(x0;I0)2D1
I0½[ak;bk]

¯̄
H(x0; I 0)

¯̄

· maxf2!(F ; [ak; bk]); 2!(Fj ; [ak; bk]) : j = 1; 2; : : : i¡ 1g:
(4.4)

Combining (4.1) and (4.2) and (4.4), we have that

(D1)
X¯̄

H(x0; I 0)
¯̄

· 2max

( 1X

k=1

!(F ; [ak; bk]);
1X

k=1

!(Fj ; [ak; bk]) : j = 1; : : : ; i¡ 1

)

< 2M 0:

(4.5)

For any interval I 0 in D2; it is obvious that
¯̄
Fn(I

0)
¯̄
=
¯̄
F (I 0)

¯̄
(4.6)

for any n ¸ i: Moreover we notice that D2 is a partial division of E with x0 2 Xi:
So (4.3) holds for D2: Thus

(D2)
X¯̄

F (I 0)
¯̄
< M 00:(4.7)

Combining (4.1), (4.3), (4.6) and (4.7), we have

(D2)
X¯̄

H(x0; I 0)
¯̄

· (D2)
X

max
©¯̄
F (I 0)

¯̄
; jFj(I 0)j : j = 1; 2; : : : ; i¡ 1

ª

· (D2)
X¯̄

F (I 0)
¯̄
+ (D2)

X i¡1X

j=1

jFj(I 0)j
(4.8)
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< M 00 +
i¡1X

j=1

Mj:

Now let M = maxf2M 0;M 00 +
Pi¡1

j=1Mjg: Then for any partial division D =
f(x; I) : x 2 Xig of E; combining (4.5) and (4.8), we have

(D)
X¯̄

H(x0I 0)
¯̄

· (D1)
P jH(x0I 0)j+ (D2)

P jH(x0I 0)j < M:
(4.9)

This means that H is V B¤(Xi) for any i and then is V BG¤ on E. Similarly we
can prove that G is also V BG¤ on E: Up to now, we have proved that H and G are
the common major and minor functions of Fn and then fn is a dominated Lebesgue
integrable sequence and fn converges to f .
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