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MULTIPLIERS AND TENSOR PRODUCTS
OF VECTOR VALUED Lp (G;A) SPACES

Birsen Saģir

Abstract. In this paper we define a normed space Aqp (G;A) and prove some
properties of this space. In particular, we show that the spaceLp (G;A)L1(G;A)

Lq (G;A) is isometrically isomorphic to the space Apq (G;A) and the space of

multipliers from Lp (G;A) to Lq
0
(G;A¤) is isometrically isomorphic to the

dual of the space Aqp (G;A) if G satisfies a property P qp .

1. INTRODUCTION AND PRELIMINARIES

Throughout this paper, we let G be a locally compact Abelian group with Haar
measure dt, A be a commutative Banach algebra with identity of norm 1 and X
be a Banach space. C0(G;X) denotes the Banach space of X-valued continuous
functions on G vanish at infinity, under the supremum norm

kfk1X = sup
t2G

kf(t)kX for f 2 C0(G;X)

Let CC(G;X) be the space of all continuous and X-valued functions on G with
compact support. and

LP (G;X) = ff : G! X ; f is measurable and kf (:)kX 2 LP (G)g

with the norm given by

kfkpX =

0
@
Z

G

kf(t)kpX dt

1
A

1=p

; 1 –< p <1:
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It follows that Lp (G;X) is a Banach space for 1 –< p <1. If X = C; the set of
complex numbers, then we write that Lp (G;X) = LP (G). If A is a commutative
Banach algebra with identity of norm 1, then the space L1 (G;A) is a commutative
Banach algebra under convolution

f ¤ g (t) =

Z

G

f (t¡ s) g (s) ds =

Z

G

f (s) g (t¡ s) ds

and the norm

kfk1A =

Z

G

kf (t)kA dt

for f; g 2 L1 (G:A),([4], [6]).
For 1 < p < 1; 1

p + 1
q = 1; the dual space LP (G;X)¤ is isometrically

isomorphic to Lq(G;X*) if and only if X* has the Radon-Nikodym property (RNP
for brevity) in the wide sense (Lai [9]). (See Theorem 1.2 in [8]). Thus for
f 2 Lp (G;X) ; g 2 Lq (G;X¤), the dual pair < f (:) ; g (:) >2 L1 (G) and Hölder
inequality implies

Z

G

j < f(:); g(:) > jdt –< kfkpX ¢ kgkqX¤ :

In [8], Lai proved the following theorems.

Theorem A ([8;Theorem2.2]). Let 1 < p <1; 1
p + 1

q = 1; f 2 Lp (G;A) and
g 2 Lq (G;A). Then f ¤ g 2 C0 (G;A) and

kf¤gk1A –< kfkpA : kgkqA
Analogy to the scalar function case ([4] 20.18. Theorem) we can easily obtain the
following;

Theorem B Let 1
p + 1

q > 1 and 1
p + 1

q ¡1 = 1
r . If f 2 Lp (G;A), g 2 Lq(G;A)

then f ¤ g 2 Lr (G;A) and

kf¤gkrA –< kfkpA : kgkqA
A Banach space V is called a left (right) Banach A-module over a Banach

algebra A if V is a left (right) module over A in the algebraic sense for some
multiplication, (a; v) ! a:v, and satisfies kavk –< kak : kvk for all a 2 A; v 2 V:
Again, we can assume that V is a Banach A-module. Then the closed linear
subspace of V spanned by

AV = fav ja 2 A; v 2 V g
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is called the essential part of V and is denoted by Ve. If V = Ve, then V is said to
be an essential Banach A-module. In [8], Lai proved the following theorem.

Proposition C ([8; Proposition 2.3]). Let X* have the wide RNP. Then the
Banach space Lp (G;X) is an essential L1 (G;A) - module under convolution such
that for f 2 L1 (G;A) and g 2 Lp (G;X) we have

kf¤gkpX –< kfk1A : kgkpX :

Let V and W be a left and right Banach A-module respectively. Let V ° W
denote the projective tensor product (Bonsall-Duncan,[1]) of V and W , and let K
be the closed linear subspace of V ° W which is spanned by all the elements of
the form

av  ! ¡ º  a!; for every a 2 A; v 2 V; ! 2W:

Then the A-module tensor product V AW is defined to be the quotient Banach
space (V ° W ) =K. It is known that every element t of V AW is defined by

t =

1X

i=1

ºi  wi; ºi 2 V;Wi 2W;
1X

i=1

kºik kwik <1:(1.1)

It is a normed space under the norm

ktk = inf

( 1X

i=1

kvik kwik <1
)

where the infimum is taken over all possible representations for t.
If V and W are left (right) Banach A-modules, then a multiplier (or module

homomorphism) from V to W is a bounded linear operator T from V to W , which
commutes with module multiplication i.e. T (aº) = aT (º) for a 2 A and º 2 V .
We denote HomA(V;W ) or M(V;W ) as the space of multipliers from V to W .

Now let V and W be a left and right Banach A-module respectively. It is known
that W ¤, the dual of W , is a left Banach A-module. Rieffel in [11] proved that
there is a natural isometric isomorphism

HomA(V;W ¤) »= (V AW )¤(1.2)

under which the linear functional t on V AW , which corresponds to an operator
T 2 HomA(V;W ¤) has the value < !; T (v) >= t (v  !) for v  ! 2 V AW
and the ultra weak*-topology on HomA(V;W ¤) corresponds to the weak*- topology
on (V AW )* (see Rieffel [11] and also Lai [6], [7]).
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Rieffel [11,5.5.Theorem] proved that if G satisfies property P qp (see Def. 2, x3)
then Lp(G)GLq(G) »= Aqp, for 1 –< p, q <1. By using the before-mentioned Ri-
effel’s technique, in this study we will show that Lp (G;A)L1(G;A))L

q (G;A¤) »=
Aqp (G;A).

2. The Space Aqp(G;A)

Throughout this section we let G be a locally compact Abelian group, A be a
commutative Banach algebra with identity of norm 1.

In view of TheoremB, we can define a bilinear map b from Lp (G;A) xLq (G;A)
into Lr (G;A)by

b (f; g) = ~f ¤ g; f 2 Lp (G;A) ; g 2 Lq (G;A)

where ~f (x) = f (¡x). It is easy to see that kbk –< 1. Then, b lifts to a linear
map B from Lp (G;A) ° Lq (G;A) into Lr (G;A) ; B (f  g) = ~f ¤ g, where
f 2 Lp (G;A) ; g 2 Lq (G;A) and kBk –< 1 by the Theorem 6 in (Bonsall-Duncan,
[1]).

Definition 1. The range of B with the quotient norm will be denoted by
Aqp (G;A) :

Thus Aqp (G;A) is a Banach space of functions defined on G, which can be
viewed as a linear submanifold in Lr (G;A). In view of the fact that every element
of Lp (G;A)° Lq (G;A) has an expansion of the form (1.1), we can see that (see
[8]) Aqp (G;A) consists of exactly those functions h on G, which has at least one
expansion of the form

h =
1X

i=1

fi ¤ gi; fi 2 Lp (G;A) ; gi 2 Lq (G;A)

such that
1P
i=1
kfikpA : kgikqA <1 . Aqp (G;A) is equipped with the norm

kjhjk = inf

( 1X

i=1

kfikpA kgikqA : fi 2 Lp (G;A); gi 2 Lq (G;A)

)

Applying relation (1.2) to the spaces V = Lp (G;A) and W = Lq(G;A) yields

HomL1(G;A)

³
Lp (G;A) ; Lq

0
(G;A¤)

´
»=
¡
Lp (G;A)L1(G;A) L

q (G;A)
¢¤



Multipliers and Tensor Products of Vector Valued Lp (G;A) Spaces 497

for 1 –< p < 1 and 1 –< q < 1. We now turn to the problem of representing the
dual space of Lp (G;A)L1(G;A)L

q (G;A) as a function space. Lai [8] has shown
that

HomL1(G;A)

¡
L1 (G;A) ; Lp (G;X¤)

¢»=
¡
L1 (G;A)L1(G;A) L

q (G;X)
¢¤

»= Lp (G;X¤)

where 1 < p <1; 1
p + 1

q = 1: Thus we can assume that p > 1 and q > 1.

3. MULTIPLIERS FROM Lp (G;A) To Lq
0
(G;A¤)

In this section, we assume that G is not a compact Abelian group. Let K be
the closed linear subspace of Lp (G;A) ° Lq (G;A), which is spanned by all the
elements of the form

(' ¤ f) g ¡ g  ( ~' ¤ f)

where f 2 Lp (G;A) ; g 2 Lq (G;A) and ' 2 L1 (G;A). Then, the L1 (G;A)-
module tensor product Lp (G;A) L1(G;A) L

q (G;A) is defined to be the quotient
Banach space

Lp (G;A)° Lq (G;A) =K:

We denote by Lsf the s-translation of f on G, that is,

Lsf (t) = f (t¡ s) for t; s 2 G:

A bounded linear operator T from Lp (G;A) to Lq
0
(G;A¤) is invariant if T

commutes with the translation operators Ls (s 2 G). That is, LsT = TLs; s 2 G.

Lemma 1. ([12; lemma 1]. Let G be a non-compact locally compact Abelian
group. Then

lim
s!+1

kf + LsfkpX = 21=p: kfkpX

for f 2 Lp (G;X) ; 1 –< p <1.

Theorem 1. If T is a bounded invariant operator from Lp (G;A) to Lq
0
(G;A¤)

and p > q0 then T ´ 0:

Proof. Assume that T 6´ 0. Since T is a linear bounded operator, there exists
c > 0, such that

kTfkq0A¤ –< c: kfkpA ; f 2 Lp (G;A)(3.1)
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Since T is an invariant linear operator, we write

kTf + LsTfkq0A¤ –< c: kf + LsfkpA :

Also by Lemma 1 we have

21=q0 kTfkq0A¤ –< c:21=p kfkpA :

Hence, we find

kTfkq0A¤ –< c:2
1
p
¡ 1
q0 kfkpA

and c:21=p¡1=q0 < c if p < q0. But, this is a contradiction because c is the smallest
constant satisfying the inequality (3.1). Therefore, T ´ 0.

Theorem 2. If 1
p + 1

q < 1 and 1 –< p; q <1 then

Lp (G;A)L1(G;A) L
q (G;A) = f0g

Proof. If 1
p + 1

q < 1 then, p > q0, where 1
q + 1

q0 = 1. Moreover, we have

³
Lp(G;A)L1(G;A) L

q(G;A)
´
¤´HomL1(G;A)

³
Lp(G;A); Lq

0
(G;A¤)

´
(3.2)

(see Theorem 1.4 in Rieffel, [11]). From (3.2), Theorem 1 and the Hahn-Banach
theorem, we obtain

Lp (G;A)L1(G;A) L
q (G;A) = f0g :

This completes the proof.
It is known that the X-valued space Cc(G;X) of continuous functions with

compact support in G is dense in Lp (G;X), 1 –< p <1. The following lemma is
easily proved.

Lemma 2. Let 1 < p; q < 1; 1
p + 1

q ¸ 1 and q0 = 2p. Given any ' 2
Cc (G;A), define T' by T' (f) = f¤'; f 2 Lp (G;A). Then, T' 2 HomL1(G;A)³
Lp (G;A) ; Lq

0
(G;A¤)

´
and the inequality

jkT'kjq0;A jk'kjq;A
holds.

Proof. For all f 2 Lp (G;A) and g 2 L1 (G;A) we have

T' (g¤f) = (g¤f)¤ ' = g¤ (f¤') = g¤T' (f) :
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That means T' is a L1 (G;A) -homomorphism. Since q0 = 2p, we have 1
q0 =

1
p + 1

q ¡ 1 and 1
p + 1

q ¸ 1. Hence, if we apply Theorem B, we have

f ¤ ' 2 Lq0 (G;A) and kT' (f)kq0;A –< kfkp;A jk'kjq;A ;

for f 2 Lp (G;A) and ' 2 Cc (G;A) ½ Lq (G;A). Therefore, we find

jkT'kjq0;A · jk'kjq;A ;

where kj:jkq0;A and kj:jkq;A are operator norms on Lq
0
(G;A) and Lq (G;A), re-

spectively. Thus T' is continuous. Consequently,

T' 2 HomL1(G;A)

³
Lp (G;A) ; Lq

0
(G;A¤)

´
:

Definition 2. A locally compact Abelian group G is said to satisfy property P qp
if every element of HomL1(G;A)

³
Lp (G;A) ; Lq

0
(G;A¤)

´
can be approximated in

the ultraweak operator topology by operators of the form T'; ' 2 Cc (G;A) :

Theorem 3. Let G be a locally compact Abelian group. If q0 = 2p; 1
p+

1
q¡1 = 1

r

and 1
p + 1

q ¸ 1 then the following statements are equivalent:
(a) G satisfies property P qp .
(b) The kernel of B is K and

Lp (G;A)L1(G;A) L
q (G;A) ´ Aqp (G;A) :

Proof. Assume that G satisfies property P qp . It is obvious that K ½ KerB: To
show KerB ½ K, it suffices to show K? ½ (KerB)?. Let F 2 K?. From the
isometric isomorphism

K? »=
¡
Lp (G;A)L1(G;A) L

q (G;A)
¢¤ »= HomL1(G;A)

³
Lp (G;A) ; Lq

0
(G;A¤)

´
;

there is a multiplier T 2 HomL1(G;A)

³
Lp (G;A) ; Lq

0
(G;A¤)

´
corresponding F

such that

< t; F >=
1X

i=1

< gi; T fi >(3.3)

where t 2 KerB; t =
1P
i=1

fi  gi and
1P
i=1
kfikpA : kgikqA <1. Furthermore, since

G satisfies property P qp , there exist operators net
¡
T'j
¢
; 'j 2 Cc (G;A) such that
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lim
j

1X

i=1

< gi; T'j fi > = lim
j

1X

i=1

< gi; fi ¤ 'j > =
1X

i=1

< gi; Tfi >:(3.4)

We also note that
1X

i=1

< gi; fi¤'j >=

1X

i=1

< ~fi ¤ gi; 'j >:(3.5)

Again, if we use the Hölder inequality and the equality (3.5) then we obtain
¯̄
¯̄
¯
1X

i=1

< gi; fi¤'j >

¯̄
¯̄
¯ =

¯̄
¯̄
¯
1X

i=1

< fi¤gi; 'j >

¯̄
¯̄
¯ –<

°°°°°
1X

i=1

fi¤gi

°°°°°
rA

: k'jkr0A¤ = 0:(3.6)

Hence, if we combine (3.4) and (3.6) then

< t; F >=

1X

i=1

< gi; Tfi >= 0:

Therefore, < t; F >= 0 for all t 2 KerB: That means F 2 (KerB)?. Hence
K = KerB. This proves that

Lp (G;A)L1(G;A) L
q (G;A) »= Aqp (G;A) :

Suppose conversely that KerB = K. We will illustrate that the set N =

fT' j' 2 Cc (G;A)g is everywhere dense inHomL1(G;A)

³
Lp (G;A) ; Lq

0
(G;A¤)

´

in the ultraweak* operator topology. Let M be the set of all linear functionals
which corresponds to the operators T'. If we prove that M is everywhere dense
in
¡
Lp (G;A)L1(G;A) L

q (G;A)
¢¤ in the weak*-topology then we complete the

proof. Since
¡
Lp (G;A)L1(G;A) L

q (G;A)
¢¤ »= (KerB)? ;

< t; F >= 0 for all t 2 KerB and F 2 M i.e., t 2 M?. That means KerB ½
M?. Conversely, if we use (3.5) to obtain that

<
1X

i=1

~fi ¤ gi; ' > =< t; F >= 0:(3.7)

Also, by using the equality (3.7) and the Hahn-Banach theorem, we find that
1P
i=1

~fi ¤ gi = 0. Therefore, M? ½ KerB. Consequently, M? = KerB. This

proves the assertion.
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Corollary 1. Let G be a locally compact Abelian group and q0 = 2p; 1
p+ 1

q ¸ 1;
1
p + 1

q ¡ 1 = 1
r ;

1
q + 1

q0 = 1. If G satisfies the property P qp , then we have the
identification

HomL1(G;A)

³
Lp(G;A); Lq

0
(G;A¤)

´
»=
¡
Aqp (G;A)

¢¤

Proof. By Theorem 3 and the isometric isomorphism (1.2), one can obtain that

HomL1(G;A)

³
Lp (G;A) ; Lq

0
(G;A¤)

´
»=
¡
Lp (G;A)L1(G;A) L

q (G;A)
¢¤
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