TAIWANESE JOURNAL OF MATHEMATICS Vol. 7, No. 3, pp. 493-501, September 2003 This paper is available online at http://www.math.nthu.edu.tw/tjm/

MULTIPLIERS AND TENSOR PRODUCTS OF VECTOR VALUED $L^p(G, A)$ SPACES

Birsen Sağir

Abstract. In this paper we define a normed space $A_p^q(G, A)$ and prove some properties of this space. In particular, we show that the space $\mathcal{L}^{\vee}(\mathcal{G}, \mathcal{A}) \xrightarrow{\mathcal{L}^{\infty}(\mathcal{G}, \mathcal{A})} \mathcal{L}^{\Pi}(\mathcal{G}, \mathcal{A})$ is isometrically isomorphic to the space $A_q^p(G, A)$ and the space of multipliers from $L^p(G, A)$ to $L^{q'}(G, A^*)$ is isometrically isomorphic to the dual of the space $A_p^p(G, A)$ if G satisfies a property P_p^q .

1. INTRODUCTION AND PRELIMINARIES

Throughout this paper, we let G be a locally compact Abelian group with Haar measure dt, A be a commutative Banach algebra with identity of norm 1 and X be a Banach space. $C_0(G, X)$ denotes the Banach space of X-valued continuous functions on G vanish at infinity, under the supremum norm

$$\|f\|_{\infty X} = \sup_{t \in G} \|f(t)\|_X \text{ for } f \in \mathcal{C}_0(\mathcal{G},\mathcal{X})$$

Let $C_C(G, X)$ be the space of all continuous and X-valued functions on G with compact support. and

$$L^{P}(G, X) = \{f: G \to X; f \text{ is measurable and } \|f(.)\|_{X} \in L^{P}(G)\}$$

with the norm given by

$$\|f\|_{pX} = \left(\int\limits_G \|f(t)\|_X^p dt\right)^{1/p}, 1 \le p < \infty.$$

Received November 28, 2001; revised May 16, 2002.

Communicated by S. B. Hsu.

2000 Mathematics Subject Classification: 43.

Key words and phrases: Vector valued $L^{p}(G, A)$ spaces, multipliers, tensor products.

Birsen Sağir

It follows that $L^p(G, X)$ is a Banach space for $1 \le p < \infty$. If $X = \mathbb{C}$, the set of complex numbers, then we write that $L^p(G, X) = L^P(G)$. If A is a commutative Banach algebra with identity of norm 1, then the space $L^1(G, A)$ is a commutative Banach algebra under convolution

$$f * g(t) = \int_{G} f(t-s) g(s) ds = \int_{G} f(s) g(t-s) ds$$

and the norm

$$\|f\|_{1A} = \int_{G} \|f(t)\|_{A} dt$$

for $f, g \in L^1(G.A), ([4], [6])$.

For $1 , the dual space <math>L^{P}(G, X)^{*}$ is isometrically isomorphic to $L^{q}(G, X^{*})$ if and only if X^{*} has the Radon-Nikodym property (RNP for brevity) in the wide sense (Lai [9]). (See Theorem 1.2 in [8]). Thus for $f \in L^{p}(G, X), g \in L^{q}(G, X^{*})$, the dual pair $< f(.), g(.) > \in L^{1}(G)$ and Hölder inequality implies

$$\int\limits_{G} | < f(.), g(.) > | dt \le \left\| f
ight\|_{pX} \cdot \left\| g
ight\|_{qX^*}.$$

In [8], Lai proved the following theorems.

Theorem A ([8;Theorem2.2]). Let $1 and <math>g \in L^{q}(G, A)$. Then $f * g \in C_{0}(G, A)$ and

$$\|f_*g\|_{\infty A} \leq \|f\|_{pA} \cdot \|g\|_{qA}$$

Analogy to the scalar function case ([4] 20.18. Theorem) we can easily obtain the following;

Theorem B Let $\frac{1}{p} + \frac{1}{q} > 1$ and $\frac{1}{p} + \frac{1}{q} - 1 = \frac{1}{r}$. If $f \in L^{p}(G, A)$, $g \in L^{q}(G, A)$ then $f * g \in L^{r}(G, A)$ and

$$\|f_*g\|_{rA} \leq \|f\|_{pA} \cdot \|g\|_{qA}$$

A Banach space V is called a left (right) Banach A-module over a Banach algebra A if V is a left (right) module over A in the algebraic sense for some multiplication, $(a, v) \rightarrow a.v$, and satisfies $||av|| \leq ||a|| \cdot ||v||$ for all $a \in A, v \in V$. Again, we can assume that V is a Banach A-module. Then the closed linear subspace of V spanned by

$$AV = \{av \mid a \in A, v \in V\}$$

is called the essential part of V and is denoted by V_e . If $V = V_e$, then V is said to be an essential Banach A-module. In [8], Lai proved the following theorem.

Proposition C ([8; Proposition 2.3]). Let X^* have the wide RNP. Then the Banach space $L^p(G, X)$ is an essential $L^1(G, A)$ - module under convolution such that for $f \in L^1(G, A)$ and $g \in L^p(G, X)$ we have

$$||f_*g||_{pX} \leq ||f||_{1A} \cdot ||g||_{pX}.$$

Let V and W be a left and right Banach A-module respectively. Let $V _{\gamma} W$ denote the projective tensor product (Bonsall-Duncan,[1]) of V and W, and let K be the closed linear subspace of $V _{\gamma} W$ which is spanned by all the elements of the form

$$av \quad \omega - \nu \quad a\omega$$
, for every $a \in A, v \in V, \omega \in W$.

Then the A-module tensor product $V_A W$ is defined to be the quotient Banach space $(V_\gamma W)/K$. It is known that every element t of $V_A W$ is defined by

(1.1)
$$t = \sum_{i=1}^{\infty} \nu_i \quad w_i, \ \nu_i \in V, W_i \in W, \sum_{i=1}^{\infty} \|\nu_i\| \|w_i\| < \infty.$$

It is a normed space under the norm

$$||t|| = \inf \left\{ \sum_{i=1}^{\infty} ||v_i|| \, ||w_i|| < \infty \right\}$$

where the infimum is taken over all possible representations for t.

If V and W are left (right) Banach A-modules, then a multiplier (or module homomorphism) from V to W is a bounded linear operator T from V to W, which commutes with module multiplication i.e. $T(a\nu) = aT(\nu)$ for $a \in A$ and $\nu \in V$. We denote $Hom_A(V, W)$ or M(V, W) as the space of multipliers from V to W.

Now let V and W be a left and right Banach A-module respectively. It is known that W^* , the dual of W, is a left Banach A-module. Rieffel in [11] proved that there is a natural isometric isomorphism

(1.2)
$$Hom_A(V, W^*) \cong (V \land A W)^*$$

under which the linear functional t on $V_A W$, which corresponds to an operator $T \in Hom_A(V, W^*)$ has the value $\langle \omega, T(v) \rangle = t(v \ \omega)$ for $v \ \omega \in V_A W$ and the ultra weak*-topology on $Hom_A(V, W^*)$ corresponds to the weak*- topology on $(V_A W)^*$ (see Rieffel [11] and also Lai [6], [7]).

Birsen Sağir

Rieffel [11,5.5.Theorem] proved that if G satisfies property P_p^q (see Def. 2, §3) then $L^p(G) = _G L^q(G) \cong A_p^q$, for $1 \le p, q < \infty$. By using the before-mentioned Rieffel's technique, in this study we will show that $L^p(G, A) = _{L^1(G,A)} L^q(G, A^*) \cong A_p^q(G, A)$.

2. The Space
$$A_p^q(G, A)$$

Throughout this section we let G be a locally compact Abelian group, A be a commutative Banach algebra with identity of norm 1.

In view of Theorem *B*, we can define a bilinear map *b* from $L^{p}(G, A) \ge L^{q}(G, A)$ into $L^{r}(G, A)$ by

$$b(f,g) = \tilde{f} * g, f \in L^{p}(G,A), g \in L^{q}(G,A)$$

where $\tilde{f}(x) = f(-x)$. It is easy to see that $||b|| \leq 1$. Then, b lifts to a linear map B from $L^{p}(G, A) \xrightarrow{\gamma} L^{q}(G, A)$ into $L^{r}(G, A), B(f = g) = \tilde{f} * g$, where $f \in L^{p}(G, A), g \in L^{q}(G, A)$ and $||B|| \leq 1$ by the Theorem 6 in (Bonsall-Duncan, [1]).

Definition 1. The range of B with the quotient norm will be denoted by $A_p^q(G, A)$.

Thus $A_p^q(G, A)$ is a Banach space of functions defined on G, which can be viewed as a linear submanifold in $L^r(G, A)$. In view of the fact that every element of $L^p(G, A) \xrightarrow{\gamma} L^q(G, A)$ has an expansion of the form (1.1), we can see that (see [8]) $A_p^q(G, A)$ consists of exactly those functions h on G, which has at least one expansion of the form

$$h = \sum_{i=1}^{\infty} f_{i} * g_{i}, f_{i} \in L^{p}(G, A), g_{i} \in L^{q}(G, A)$$

such that $\sum_{i=1}^{\infty}\|f_i\|_{pA}$. $\|g_i\|_{qA}<\infty$. $A_p^q\left(G,A
ight)$ is equipped with the norm

$$\||h|\| = \inf\left\{\sum_{i=1}^{\infty} \|f_i\|_{pA} \|g_i\|_{qA} : f_i \in L^p(G, A), g_i \in L^q(G, A)\right\}$$

Applying relation (1.2) to the spaces $V = L^{p}(G, A)$ and $W = L^{q}(G, A)$ yields

$$Hom_{L^{1}(G,A)}\left(L^{p}(G,A), L^{q'}(G,A^{*})\right) \cong \left(L^{p}(G,A) \quad {}_{L^{1}(G,A)}L^{q}(G,A)\right)^{*}$$

for $1 \le p < \infty$ and $1 \le q < \infty$. We now turn to the problem of representing the dual space of $L^p(G, A) \xrightarrow{L^1(G, A)} L^q(G, A)$ as a function space. Lai [8] has shown that

$$Hom_{L^{1}(G,A)}\left(L^{1}\left(G,A\right),L^{p}\left(G,X^{*}\right)\right)\cong\left(L^{1}\left(G,A\right)\quad_{L^{1}(G,A)}L^{q}\left(G,X\right)\right)^{*}$$
$$\cong L^{p}\left(G,X^{*}\right)$$

where $1 , <math>\frac{1}{p} + \frac{1}{q} = 1$. Thus we can assume that p > 1 and q > 1.

3. Multipliers from $L^{p}(G, A)$ to $L^{q'}(G, A^{*})$

In this section, we assume that G is not a compact Abelian group. Let K be the closed linear subspace of $L^{p}(G, A) \xrightarrow{\gamma} L^{q}(G, A)$, which is spanned by all the elements of the form

$$(\varphi * f) \quad g - g \quad (\tilde{\varphi} * f)$$

where $f \in L^{p}(G, A)$, $g \in L^{q}(G, A)$ and $\varphi \in L^{1}(G, A)$. Then, the $L^{1}(G, A)$ -module tensor product $L^{p}(G, A) \xrightarrow{L^{1}(G, A)} L^{q}(G, A)$ is defined to be the quotient Banach space

$$L^{p}(G, A) \xrightarrow{\gamma} L^{q}(G, A) / K.$$

We denote by $L_s f$ the s-translation of f on G, that is,

$$L_s f(t) = f(t-s)$$
 for $t, s \in G$.

A bounded linear operator T from $L^{p}(G, A)$ to $L^{q'}(G, A^{*})$ is invariant if T commutes with the translation operators $L_{s}(s \in G)$. That is, $L_{s}T = TL_{s}, s \in G$.

Lemma 1. ([12; lemma 1]. Let G be a non-compact locally compact Abelian group. Then

$$\lim_{s \to +\infty} \|f + L_s f\|_{pX} = 2^{1/p} \cdot \|f\|_{pX}$$

for $f \in L^{p}(G, X), 1 \leq p < \infty$.

Theorem 1. If T is a bounded invariant operator from $L^p(G, A)$ to $L^{q'}(G, A^*)$ and p > q' then $T \equiv 0$.

Proof. Assume that $T \neq 0$. Since T is a linear bounded operator, there exists c > 0, such that

(3.1)
$$||Tf||_{q'A^*} \le c. ||f||_{pA}, f \in L^p(G, A)$$

Since T is an invariant linear operator, we write

$$||Tf + L_s Tf||_{q'A^*} \le c. ||f + L_s f||_{pA}.$$

Also by Lemma 1 we have

$$2^{1/q'} \left\|Tf
ight\|_{q'A^*} \ \leq c. 2^{1/p} \left\|f
ight\|_{pA}.$$

Hence, we find

$$||Tf||_{q'A^*} \le c.2^{\frac{1}{p} - \frac{1}{q'}} ||f||_{pA}$$

and $c.2^{1/p-1/q'} < c$ if p < q'. But, this is a contradiction because c is the smallest constant satisfying the inequality (3.1). Therefore, $T \equiv 0$.

Theorem 2. If
$$\frac{1}{p} + \frac{1}{q} < 1$$
 and $1 \le p, q < \infty$ then
 $L^{p}(G, A) = L^{1}(G, A) = \{0\}$

Proof. If $\frac{1}{p} + \frac{1}{q} < 1$ then, p > q', where $\frac{1}{q} + \frac{1}{q'} = 1$. Moreover, we have

(3.2)
$$\left(L^{p}(G,A) \mid L^{1}(G,A) L^{q}(G,A)\right) * \equiv Hom_{L^{1}(G,A)} \left(L^{p}(G,A), L^{q'}(G,A*)\right)$$

(see Theorem 1.4 in Rieffel, [11]). From (3.2), Theorem 1 and the Hahn-Banach theorem, we obtain

$$L^{p}(G,A) \quad {}_{L^{1}(G,A)} L^{q}(G,A) = \{0\}.$$

This completes the proof.

It is known that the X-valued space $C_c(G, X)$ of continuous functions with compact support in G is dense in $L^p(G, X)$, $1 \le p < \infty$. The following lemma is easily proved.

Lemma 2. Let $1 < p, q < \infty, \frac{1}{p} + \frac{1}{q} \ge 1$ and q' = 2p. Given any $\varphi \in C_c(G, A)$, define T_{φ} by $T_{\varphi}(f) = f_*\varphi, f \in L^p(G, A)$. Then, $T_{\varphi} \in Hom_{L^1(G, A)}(L^p(G, A), L^{q'}(G, A^*))$ and the inequality

$$\left|\left\|T_{\varphi}\right\|\right|_{q',A}\left|\left\|\varphi\right\|\right|_{q,A}$$

holds.

Proof. For all $f \in L^{p}(G, A)$ and $g \in L^{1}(G, A)$ we have

$$T_{\varphi}\left(g_{*}f\right) = \left(g_{*}f\right)_{*}\varphi = g_{*}\left(f_{*}\varphi\right) = g_{*}T_{\varphi}\left(f\right).$$

That means T_{φ} is a $L^1(G, A)$ -homomorphism. Since q' = 2p, we have $\frac{1}{q'} = \frac{1}{p} + \frac{1}{q} - 1$ and $\frac{1}{p} + \frac{1}{q} \ge 1$. Hence, if we apply Theorem B, we have

$$f * \varphi \in L^{q'}(G, A) \text{ and } \|T_{\varphi}(f)\|_{q', A} \leq \|f\|_{p, A} |\|\varphi\||_{q, A}$$

for $f \in L^{p}(G, A)$ and $\varphi \in C_{c}(G, A) \subset L^{q}(G, A)$. Therefore, we find

$$|||T_{\varphi}|||_{q',A} \cdot |||\varphi|||_{q,A},$$

where $\||.|\|_{q',A}$ and $\||.|\|_{q,A}$ are operator norms on $L^{q'}(G,A)$ and $L^{q}(G,A)$, respectively. Thus T_{φ} is continuous. Consequently,

$$T_{\varphi} \in Hom_{L^{1}(G,A)}\left(L^{p}\left(G,A\right),L^{q'}\left(G,A^{*}\right)\right).$$

Definition 2. A locally compact Abelian group G is said to satisfy property P_p^q if every element of $Hom_{L^1(G,A)}\left(L^p(G,A), L^{q'}(G,A^*)\right)$ can be approximated in the ultraweak operator topology by operators of the form $T_{\varphi}, \varphi \in C_c(G,A)$.

Theorem 3. Let G be a locally compact Abelian group. If q' = 2p, $\frac{1}{p} + \frac{1}{q} - 1 = \frac{1}{r}$ and $\frac{1}{p} + \frac{1}{q} \ge 1$ then the following statements are equivalent:

(a) G satisfies property P_p^q .

(b) The kernel of B is K and

$$L^{p}\left(G,A
ight) \quad {}_{L^{1}\left(G,A
ight)}L^{q}\left(G,A
ight)\equiv A_{p}^{q}\left(G,A
ight).$$

Proof. Assume that G satisfies property P_p^q . It is obvious that $K \subset KerB$. To show $KerB \subset K$, it suffices to show $K^{\perp} \subset (KerB)^{\perp}$. Let $F \in K^{\perp}$. From the isometric isomorphism

$$K^{\perp} \cong \left(L^{p}\left(G,A\right) \quad {}_{L^{1}\left(G,A\right)} L^{q}\left(G,A\right) \right)^{*} \cong Hom_{L^{1}\left(G,A\right)} \left(L^{p}\left(G,A\right), L^{q'}\left(G,A^{*}\right) \right),$$

there is a multiplier $T \in Hom_{L^{1}(G,A)}\left(L^{p}(G,A), L^{q'}(G,A^{*})\right)$ corresponding F such that

(3.3)
$$< t, F > = \sum_{i=1}^{\infty} < g_i, Tf_i >$$

where $t \in KerB$, $t = \sum_{i=1}^{\infty} f_i$ g_i and $\sum_{i=1}^{\infty} \|f_i\|_{pA} \cdot \|g_i\|_{qA} < \infty$. Furthermore, since G satisfies property P_p^q , there exist operators net (T_{φ_j}) , $\varphi_j \in C_c(G, A)$ such that

Birsen Sağir

(3.4)
$$\lim_{j} \sum_{i=1}^{\infty} \langle g_i, T_{\varphi_j} f_i \rangle = \lim_{j} \sum_{i=1}^{\infty} \langle g_i, f_i * \varphi_j \rangle = \sum_{i=1}^{\infty} \langle g_i, Tf_i \rangle.$$

We also note that

(3.5)
$$\sum_{i=1}^{\infty} \langle g_i, f_{i*}\varphi_j \rangle = \sum_{i=1}^{\infty} \langle \tilde{f}_i * g_i, \varphi_j \rangle.$$

Again, if we use the Hölder inequality and the equality (3.5) then we obtain

(3.6)
$$\left|\sum_{i=1}^{\infty} \langle g_i, f_{i*}\varphi_j \rangle\right| = \left|\sum_{i=1}^{\infty} \langle f_{i*}g_i, \varphi_j \rangle\right| \le \left\|\sum_{i=1}^{\infty} f_{i*}g_i\right\|_{rA} \cdot \|\varphi_j\|_{r'A*} = 0.$$

Hence, if we combine (3.4) and (3.6) then

$$< t, F > = \sum_{i=1}^{\infty} < g_i, T_{f_i} > = 0.$$

Therefore, $\langle t, F \rangle = 0$ for all $t \in KerB$. That means $F \in (KerB)^{\perp}$. Hence K = KerB. This proves that

$$L^{p}(G,A) \quad {}_{L^{1}(G,A)} L^{q}(G,A) \cong A^{q}_{p}(G,A).$$

Suppose conversely that KerB = K. We will illustrate that the set $N = \{T_{\varphi} | \varphi \in C_c(G, A)\}$ is everywhere dense in $Hom_{L^1(G, A)} \left(L^p(G, A), L^{q'}(G, A^*)\right)$ in the ultraweak* operator topology. Let M be the set of all linear functionals which corresponds to the operators T_{φ} . If we prove that M is everywhere dense in $\left(L^p(G, A) - L^{1}(G, A)\right)^*$ in the weak*-topology then we complete the proof. Since

$$\begin{pmatrix} L^p\left(G,A\right) & {}_{L^1\left(G,A\right)}L^q\left(G,A\right) \end{pmatrix}^* \cong (KerB)^{\perp},$$

 $\langle t, F \rangle = 0$ for all $t \in KerB$ and $F \in M$ i.e., $t \in M^{\perp}$. That means $KerB \subset M^{\perp}$. Conversely, if we use (3.5) to obtain that

(3.7)
$$< \sum_{i=1}^{\infty} \tilde{f}_i * g_i, \varphi > = < t, F > = 0.$$

Also, by using the equality (3.7) and the Hahn-Banach theorem, we find that $\sum_{i=1}^{\infty} \tilde{f}_i * g_i = 0$. Therefore, $M^{\perp} \subset KerB$. Consequently, $M^{\perp} = KerB$. This proves the assertion.

Corollary 1. Let G be a locally compact Abelian group and q' = 2p, $\frac{1}{p} + \frac{1}{q} \ge 1$, $\frac{1}{p} + \frac{1}{q} - 1 = \frac{1}{r}$, $\frac{1}{q} + \frac{1}{q'} = 1$. If G satisfies the property P_p^q , then we have the identification

$$Hom_{L^{1}(G,A)}\left(L^{p}(G,A),L^{q'}(G,A^{*})\right) \cong \left(A_{p}^{q}\left(G,A\right)\right)^{*}$$

Proof. By Theorem 3 and the isometric isomorphism (1.2), one can obtain that

$$Hom_{L^{1}(G,A)}\left(L^{p}\left(G,A\right),L^{q'}\left(G,A^{*}\right)\right)\cong\left(L^{p}\left(G,A\right)\quad_{L^{1}(G,A)}L^{q}\left(G,A\right)\right)^{*}$$

REFERENCES

- F. F. Bonsall and J. Duncan, *Complete Normed Algebras*. Springer-Verlag, Berlig Heidelberg New York (1973).
- R. S. Doran and J. Wichman, Approximate Identities and Factorization in Banach Modules. *Lecture Notes in Mathematics*, 768, Springer Verlag, (1979).
- 3. A. Hausner, Group algebras of vector valued functions. *Bull. Amer. Math. Soc.* 62 (1956), 383.
- 4. E. Hewit and K. A. Ross, Abstract Harmonic Analysis I. Springer Verlag (1963).
- G. P. Johnson, Spaces of functions with values in a Banach algebra. Trans. Amer. Math. Soc. 92 (1959), 411-429.
- H. C. Lai, Multipliers for some spaces of Banach algebra valued functions. *Rocky Mountain J. Math.* 15 (1985), 157-166.
- H. C. Lai, Multipliers of Banach-valued functions spaces. J. Austral. Math. Soc. 39 (Seri A) (1985), 51-62.
- 8. H. C. Lai, Multipliers of Banach valued function spaces. *Lecture Notes Series* No.23 (1984). Department of Math. National Univ. of Singapore.
- 9. H. C. Lai, Duality of Banach function spaces and the Radon-Nikodyum property. *Acta Math. Hung.* 47 (1986), 45-52.
- M. A. Rieffel, Induces Banach representions of Banach algebras and locally compact group. J. Fun. Analy. 1 (1967), 443-491.
- M. A. Rieffel, Multipliers and tensor products on Lp-spaces of locally compact groups. *Studia Math.* 33 (1969), 71-82.
- 12. B. Sagir, Multipliers of $L^1(G, A) \cap L^p(G, A)$ to $L^1(G, A)$ Honam Mathematical Journal. Volume 21, Number 1, July 1999.

Ondokuz Mayis Üniversitesi Fen-Edebiyat Fakültesi Matematik Bölümü, Samsun 55139 Kurupelit Turkey E-mail: bduyar@samsun.omu.edu.tr