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LINEAR FUNCTIONAL EQUATIONS IN A HILBERT MODULE

Sei-Qwon Oh and Chun-Gil Park

Abstract. We prove the generalized Hyers-Ulam-Rassias stability of the in-
vertible mapping in a Banach module over a unital Banach algebra in the spirit
of Gavruta, and prove the generalized Hyers-Ulam-Rassias stability of linear
functional equations in a Hilbert module over a unital C¤-algebra in the spirit
of Gavruta.

INTRODUCTION

In 1940, S.M. Ulam [9] raised the following question: Under what conditions
does there exist an additive mapping near an approximately additive mapping?

Let E1 and E2 be Banach spaces. Consider f : E1 ! E2 to be a mapping such
that f(tx) is continuous in t 2 R for each fixed x 2 E1. Assume that there exist
constants ² ¸ 0 and p 2 [0; 1) such that

kf(x+ y)¡ f(x)¡ f(y)k · ²(jjxjjp + jjyjjp)

for all x; y 2 E1. Th.M. Rassias [7] showed that there exists a unique R-linear
mapping T : E1 ! E2 such that

kf(x)¡ T (x)k · 2²

2¡ 2p
jjxjjp

for all x 2 E1.
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In 1994, Gavruta showed in [3] that the following: Let G be an abelian group
and X a Banach space. Denote by ' : G£G! [0;1) a function such that

e'(x; y) =

1X

j=1

2¡j'(2j¡1x; 2j¡1y) <1

for all x; y 2 G. If f : G! X is a mapping satisfying

kf(x+ y)¡ f(x)¡ f(y)k · '(x; y)

for all x; y 2 G, then there exists a unique additive mapping T : G! X such that

kf(x)¡ T (x)k · ~'(x; x)

for all x 2 G.
In this paper, let A be a unital Banach algebra with norm j ¢ j, A1 = fa 2

A j jaj = 1g, and AH a left Banach A-module with norm k ¢ k. Throughout this
paper, assume that F;G : AH ! AH are mappings such that F (tx) and G(tx) are
continuous in t 2 R for each fixed x 2 AH.

We are going to prove the generalized Hyers-Ulam-Rassias stability of the in-
vertible mapping in a Banach module over a unital Banach algebra in the spirit of
Gavruta.

Lemma 1. Let F : AH ! AH be a mapping for which there exists a function
' : AH£ AH ! [0; 1) such that

~'(x; y) :=
P1

k=0 2¡k'(2kx; 2ky) <1;(i)

kF (ax+ ay)¡ aF (x)¡ aF (y)k · '(x; y)

for all a 2 A1 and all x; y 2 AH. Then there exists a unique A-linear mapping
T : AH ! AH such that

kF (x)¡ T (x)k · 1

2
~'(x; x)(ii)

for all x 2 AH.

Proof. Put a = 1 2 A1. By the Gavruta result [3], there exists a unique
additive mapping T : AH ! AH satisfying (ii). The mapping T : AH ! AH was
given by T (x) = limn!1

F (2nx)
2n for all x 2 AH. By the same reasoning as the

proof of [7, Theorem], the additive mapping T : AH ! AH is R-linear.
By the assumption, for each a 2 A1,

kF (2nax)¡ 2aF (2n¡1x)k · '(2n¡1x; 2n¡1x)
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for all x 2 AH. Using the fact that for each a 2 A and each z 2 AH kazk ·
Kjaj ¢ kzk for some K > 0, one can show that

kaF (2nx)¡2aF (2n¡1x)k · Kjaj ¢ kF (2nx)¡2F (2n¡1x)k · K'(2n¡1x; 2n¡1x)

for all a 2 A1 and all x 2 AH. So

kF (2nax)¡ aF (2nx)k· kF (2nax)¡ 2aF (2n¡1x)k+k2aF (2n¡1x)¡ aF(2nx)k
· '(2n¡1x; 2n¡1x)+K'(2n¡1x; 2n¡1x)

for all a 2 A1 and all x 2 AH. Thus 2¡nkF (2nax)¡ aF (2nx)k ! 0 as n ! 1
for all a 2 A1 and all x 2 AH. Hence

T (ax) = lim
n!1

F (2nax)

2n
= lim

n!1
aF (2nx)

2n
= aT (x)

for each a 2 A1. So

T (ax) = jajT (
a

jajx) = jaj ajajT (x) = aT (x)

for all a 2 A(a 6= 0) and all x 2 AH. Hence

T (ax+ by) = T (ax) + T (by) = aT (x) + bT (y)

for all a; b 2 A and all x; y 2 AH. So the unique R-linear mapping T : AH ! AH
is an A-linear mapping, as desired.

Theorem 2. Let F;G : AH ! AH be mappings for which there exists a
function ' : AH£ AH ! [0; 1) satisfying (i) such that

kF (ax+ ay)¡ aF (x)¡ aF (y)k · '(x; y);

G(ax+ ay)¡ aG(x)¡ aG(y)k · '(x; y)k

for all a 2 A1 and all x; y 2 AH. Assume that F (2nx) = 2nF (x) and G(2nx) =
2nG(x) for all positive integers n and all x 2 AH. Then the mappings F;G :

AH ! AH are A-linear mappings. Furthermore, if the mappings F;G : AH ! AH
satisfy the inequalities

kF ±G(x)¡ xk · '(x; x);

kG ± F (x)¡ xk · '(x; x)

for all x 2 AH, then the mapping G is the inverse of the mapping F .
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Proof. By the same method as the proof of Lemma 1, one can show that there
exists a unique A-linear mapping L : AH ! AH such that

kG(x)¡ L(x)k · 1

2
e'(x; x)

for all x 2 AH.
By the assumption,

T (x) = limn!1
F (2nx)

2n
= F (x);

L(x) = limn!1
G(2nx)

2n
= G(x)

for all x 2 AH, where the mapping T : AH ! AH is given in the proof of Lemma
1. Hence the A-linear mappings T and L are the mappings F and G, respectively.
So the mappings F;G : AH ! AH are A-linear mappings.

Now by the assumption,

kF ±G(2nx)¡ 2nxk · '(2nx; 2nx);

kG ± F (2nx)¡ 2nxk · '(2nx; 2nx)

for all positive integers n and all x 2 AH. Thus

2¡nkF ±G(2nx)¡ 2nxk ! 0;

2¡nkG ± F (2nx)¡ 2nxk ! 0

as n!1 for all x 2 AH. Hence

F ±G(x) = limn!1
F ±G(2nx)

2n
= x;

G ± F (x) = limn!1
G ± F (2nx)

2n
= x

for all x 2 AH. So the mapping G is the inverse of the mapping F .

From now on, let A be a unital C¤-algebra with norm j ¢ j, A+
1 the set of positive

elements in A1, and AH a left Hilbert A-module with norm k ¢ k.
Now we are going to prove the generalized Hyers-Ulam-Rassias stability of

linear functional equations in a Hilbert module over a unital C¤-algebra in the spirit
of Gavruta.

Lemma 3. Let F : AH ! AH be a mapping for which there exists a function
' : AH£ AH ! [0; 1) satisfying (i) such that

kF (ax+ ay)¡ aF (x)¡ aF (y)k · '(x; y)
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for all a 2 A+
1 [ fig and all x; y 2 AH. Then there exists a unique A-linear

operator T : AH ! AH satisfying (ii).

Proof. By the same reasoning as the proof of Lemma 1, there exists a unique
R-linear mapping T : AH ! AH satisfying (ii).

By the same method as the proof of Lemma 1, one can obtain that

T (ax) = lim
n!1

F (2nax)

2n
= lim

n!1
aF (2nx)

2n
= aT (x)

for each a 2 A+
1 [ fig. So

T (ax) = jajT (
a

jajx) = jaj ajajT (x) = aT (x); 8a 2 A+(a 6= 0); 8x 2 AH;
T (ix) = iT (x); 8x 2 AH:

For any element a 2 A, a =
a+ a¤

2
+ i

a¡ a¤
2i

, and a+a¤
2 and a¡a¤

2i are self-adjoint

elements, furthermore, a = (a+a
¤

2 )+ ¡ (a+a
¤

2 )¡ + i(a¡a
¤

2i )+ ¡ i(a¡a
¤

2i )¡, where
(a+a

¤
2 )+, (a+a

¤
2 )¡, (a¡a

¤
2i )+, and (a¡a

¤
2i )¡ are positive elements (see [2, Lemma

38.8]). So

T (ax) = T ((
a+ a¤

2
)+x¡ (

a+ a¤

2
)¡x+ i(

a¡ a¤
2i

)+x¡ i(a¡ a
¤

2i
)¡x)

= (
a+ a¤

2
)+T (x)+(

a+ a¤

2
)¡T (¡x)+(

a¡ a¤
2i

)+T (ix)+(
a¡ a¤

2i
)¡T (¡ix)

= (
a+ a¤

2
)+T (x)¡(

a+ a¤

2
)¡T (x)+i(

a¡ a¤
2i

)+T (x)¡ i(a¡ a
¤

2i
)¡T (x)

= ((
a+ a¤

2
)+ ¡ (

a+ a¤

2
)¡ + i(

a¡ a¤
2i

)+ ¡ i(a¡ a
¤

2i
)¡)T (x) = aT (x)

for all a 2 A and all x 2 AH. Hence

T (ax+ by) = T (ax) + T (by) = aT (x) + bT (y)

for all a; b 2 A and all x; y 2 AH. So the unique R-linear mapping T : AH ! AH
is an A-linear operator, as desired.

Theorem 4. Let F : AH ! AH be a mapping for which there exists a
function ' : AH£ AH ! [0; 1) satisfying (i) such that

kF (ax+ ay)¡ aF (x)¡ aF (y)k · '(x; y)

for all a 2 A+
1 [ fig and all x; y 2 AH. Assume that F (2nx) = 2nF (x) for all

positive integers n and all x 2 AH. Then the mapping F : AH ! AH is an
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A-linear operator. Furthermore, (1) if the mapping F : AH ! AH satisfies the
inequality

kF (x)¡ F ¤(x)k · '(x; x)

for all x 2 AH, then the mapping F : AH ! AH is a self-adjoint operator, if the
mapping F : AH ! AH satisfies the inequality

kF ± F ¤(x)¡ F ¤ ± F (x)k · '(x; x)

for all x 2 AH, then the mapping F : AH ! AH is a normal operator, if the
mapping F : AH ! AH satisfies the inequalities

kF ± F ¤(x)¡ xk · '(x; x);

kF ¤ ± F (x)¡ xk · '(x; x)

for all x 2 AH, then the mapping F : AH ! AH is a unitary operator, and if the
mapping F : AH ! AH satisfies the inequalities

kF ± F (x)¡ F (x)k · '(x; x);

kF ¤(x)¡ F (x)k · '(x; x)

for all x 2 AH, then the mapping F : AH ! AH is a projection.

Proof. By the assumption,

T (x) = lim
n!1

F (2nx)

2n
= F (x)

for all x 2 AH, where the operator T : AH ! AH is given in the proof of Lemma
3. So the A-linear operator T : AH ! AH is the mapping F : AH ! AH.

(1) By the assumption,

kF (2nx)¡ F ¤(2nx)k · '(2nx; 2nx)

for all positive integers n and all x 2 AH. Thus 2¡nkF (2nx)¡ F ¤(2nx)k ! 0 as
n!1 for all x 2 AH. Hence

F (x) = lim
n!1

F (2nx)

2n
= lim

n!1
F ¤(2nx)

2n
= F ¤(x)

for all x 2 AH. So the A-linear mapping F is a self-adjoint operator.
(2) By the assumption,

kF ± F ¤(2nx)¡ F ¤ ± F (2nx)k · '(2nx; 2nx)
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for all positive integers n and all x 2 AH. Thus 2¡nkF ±F ¤(2nx)¡F ¤±F (2nx)k !
0 as n!1 for all x 2 AH. Hence

F ± F ¤(x) = lim
n!1

F ± F ¤(2nx)
2n

= lim
n!1

F ¤ ± F (2nx)

2n
= F ¤ ± F (x)

for all x 2 AH. So the A-linear mapping F is a normal operator.
(3) By the assumption,

kF ± F ¤(2nx)¡ 2nxk · '(2nx; 2nx);

kF ¤ ± F (2nx)¡ 2nxk · '(2nx; 2nx)

for all positive integers n and all x 2 AH. Thus

2¡nkF ± F ¤(2nx)¡ 2nxk ! 0;

2¡nkF ¤ ± F (2nx)¡ 2nxk ! 0

as n!1 for all x 2 AH. Hence

F ± F ¤(x) = limn!1
F ± F ¤(2nx)

2n
= x;

F ¤ ± F (x) = limn!1
F ¤ ± F (2nx)

2n
= x

for all x 2 AH. So the A-linear mapping F is a unitary operator.
(4) By the assumption,

kF ± F (2nx)¡ F (2nx)k · '(2nx; 2nx);

kF ¤(2nx)¡ F (2nx)k · '(2nx; 2nx)

for all positive integers n and all x 2 AH. Thus

2¡nkF ± F (2nx)¡ F (2nx)k ! 0;

2¡nkF ¤(2nx)¡ F (2nx)k ! 0

as n!1 for all x 2A H. Hence

F ± F (x) = limn!1
F ± F (2nx)

2n
= lim

n!1
F (2nx)

2n
= F (x);

F ¤(x) = limn!1
F ¤(2nx)

2n
= lim

n!1
F (2nx)

2n

= F (x)

for all x 2 AH. So the A-linear mapping F is a projection.
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Remark. When the inequalities

kF (ax+ ay)¡ aF (x)¡ aF (y)k · '(x; y)

in the statements of the above results are replaced by the inequalities

kaF (x+ y)¡ F (ax)¡ F (ay)k · '(x; y)

or the inequalities

kF (x+ y)¡ F (x)¡ F (y)k · '(x; y);

kF (ax)¡ aF (x)k · '(x; x)

the results do also hold. The proofs are similar to the proofs of the results.
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Variables, Birkhäuser, Berlin, Basel and Boston, 1998.

5. P. S. Muhly and B. Solel, Hilbert modules over operator algebras, Memoirs Amer.
Math. Soc. 117 No. 559 (1995), 1-53.

6. C. Park and W. Park On the stability of the Jensen’s equation in Banach modules
over a Banach algebra, Taiwanese J. Math. 6(4), (to appear).

7. Th. M. Rassias, On the stability of the linear mapping in Banach spaces, Proc. Amer.
Math. Soc. 72 (1978), 297-300.
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