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NULL BOUNDARY CONTROLLABILITY FOR A FOURTH ORDER
PARABOLIC EQUATION

Yung-Jen Lin Guo

Abstract. We study the null boundary controllability for a one-dimensional
fourth order parabolic equation. We show that if the initial data is continuous
then the fourth order parabolic equation is controllable.

1. INTRODUCTION

The aim of this work is to study the null boundary controllability problem for an
one-dimensional fourth order parabolic equation. We consider the following initial
boundary value problem for a fourth order equation

(1.1) wt + wxxxx = 0 on (0; 1) £ (0;1)

(1.2) w(0; t) = 0; wx(0; t) = 0 for t ¸ 0;

(1.3) w(x; 0) = w0(x) for x 2 [0; 1];

(1.4) w(1; t) = g(t); wx(1; t) = h(t) for t ¸ 0;

The problem of null boundary controllability for (1.1)–(1.4) can be stated as follows.
Given T > 0, is it possible to find corresponding controllers g(t) and h(t) so that
the solution of the resulting problem (1.1)-(1.4) satisfies w(x; T) ´ 0 for x 2 [0; 1]

for every initial data w0(x) in an appropriate space?
The method we use here is based on the work of Y.-J. L. Guo and W. Littman

[6] in which the control problem is converted to two well-posed problems. For our
case, the method proceeds roughly as follows:
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(1) Extend the domain of the initial data w0 to be [0; 2] so that the property of
w0 is maintained and w0(x) ´ 0 in a neighborhood of 2.

(2) With the new modified initial data w0(x), solve the initial-boundary value
problem:

(1.5) vt + vxxxx = 0 on (0;2) £ (0;1);

(1.6) v(0; t) = 0; vx(0; t) = 0 for t ¸ 0;

(1.7) v(2; t) = 0; vx(2; t) = 0 for t ¸ 0;

(1.8) v(x; 0) = w0(x) for x 2 (0;2);

(3) Let Ã be a cut-off function satisfying Ã (t) = 1 for t · T=2 and Ã (t) = 0 for
t ¸ T . Let

»(t) = vxx(0; t) ¢Ã (t); ³(t) = vxxx(0; t)¢Ã (t)

where v is the solution in (2).

(4) Solve the Cauchy problem

uxxxx = ¡ ut for t ¸ T0; x > 0;(1.9)

u(0; t) = 0; ux(0; t) = 0; uxx(0; t) = »(t);uxxx(0; t) = ³(t) for t ¸ T0;(1.10)

in the x-direction to get a solution which vanishes for t ¸ T and equals the solution
v for t · T=2 where T0 is a positive constant.

(5) The boundary functions are obtained by setting g(t) = u(1; t) and h(t) =
ux(1; t).

The initial-boundary value problem (1.5)-(1.8) can be solved by the standard
method. To solve the cauchy problem (1.9)-(1.10), we use the nonlinear Cauchy-
Kowalevski Theorem. If the solution u(x; t) of (1.9)-(1.10) exists beyond x = 1,
we obtain controllers by reading the values of the derivatives of v(x; t) and u(x; t)
at x = 1 where v(x; t) and u(x; t) are solutions of (1.5)-(1.8) and (1.9)-(1.10)
respectively. To estimate the length of the maximal x-interval of existence for the
solution u(x; t), we shall check the constants in the proof of the nonlinear Cauchy-
Kowalevski Theorem. In [6], the authors consider the control problem for semilinear
heat equations and the result of the null boundary controllability for semilinear heat
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equations is obtained for continuously differentiable and sufficiently small initial
data. The smallness condition on initial data is imposed to ensure that the maximal
interval of existence for the problem similar to problem (1.9)-(1.10) is greater than
1. In [5], the author consider linear heat equations with time dependent coefficients
and assume that the initial data are continuous without imposing the smallness
condition. The linearity of differential equation and the Gevrey class 2 property
for the coefficients of the equation will give us clues to show that the x-interval
of existence for the problem similar to problem (1.9)-(1.10) is greater than 1. In
this work, we consider a linear fourth order parabolic equation. The linearity and
the simplicity of the coefficients of the equation will guarantee that the maximal
interval of existence of the solution of (1.9)-(1.10) is greater than 1. We will show
that the equation is controllable if the initial data is continuous.

A great deal of developments in the controllability theory of the linear heat
equation were initiated by Fattorini and Russell. These results have been presented
in numerous articles (see, e.g. [1], [2]). Most of the results obtained are for parabolic
equations. For the controllability of second order semilinear parabolic equation, the
readers may consult [5]. Here we consider the case for fourth order equation.

The paper is organized as follows. In Section 2, we use the nonlinear Cauchy-
Kowalevski Theorem to solve the Cauchy problem (1.9)-(1.10). Since we need
to estimate the interval of existence, we state the nonlinear Cauchy-Kowalevski
Theorem in detail in this section. In Section 3, we obtain the result for the null
boundary controllability.

2. SOLUTIONS OF THE CAUCHY PROBLEM IN THE x-DIRECTION

In this section, we shall apply the nonlinear Cauchy-Kowalevski Theorem to
solve the following Cauchy problem:

(2.1) uxxxx = ¡ ut for x > 0; t ¸ T0;

(2.2) u(0; t) = 0; ux(0; t) = 0;uxx(0; t) = »(t); uxxx(0; t) = ³(t); for t ¸ T0;

where »(t) and ³(t) are Gevrey class 2 functions in t and T0 is a positive constant.
We shall prove that the solution of (2.1), (2.2) exists and the x-inteval of existence
is greater than 1.

The nonlinear Cauchy-Kowalevski Theorem originally due to Ovcyannikov is
exploited in a number of ways to obtain existence results for the nonlinear abstract
Cauchy problem

du

dx
= F(u;x); jxj < ´; ´ > 0;

u(0) = u0:
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Here the solutions are in the form, as functions of the variablex, in a scale of Banach
space fXsg. The nonlinear Cauchy-Kowalevski Theorem is a generalization of the
well-known Cauchy-Kowalevski Theorem and is reduced to the Cauchy-Kowalevski
Theorem when all data are real analytic.

We shall use the same method as used in [6] to solve problem (2.1)-(2.2). Since
we shall estimate the parameters in the nonlinear Cauchy-Kowalevski Theorem to
obtain the interval of existence, we shall restate the theorem here. We begin by
considering a 1-parameter family of Banach spaces fXsg where the parameter s is
allowed to vary in [0, 1].

Definition 2.1 fXsg0· s· 1 is a scale of Banach spaces if for any s 2 [0; 1]; Xs

is a linear subspace of X0 and if s0 · s then Xs ½ Xs0 and the natural injection of
Xs into Xs0 has norm less than or equal to 1.

We denote by k ¢ks the norm of Xs.
For each i, i = 1;¢¢¢ ; m, let fXi

sg0· s· 1 be a scale of Banach spaces with norm
k ¢kis. Consider the system of differential equations

(2.3)
dui
dx

= Fi(u1; u2;¢¢¢ ;um; x); jxj < ´; ´ > 0; i = 1; ¢¢¢; m;

(2.4) ui(0) = ui;0 i = 1;¢¢¢ ; m;

where the ui, as functions of the variable x, are in Xi
s, i = 1; ¢¢¢ ;m.

We need the following assumptions.

(H1) ui;0 2 Xi
s for every s 2 [0;1] and satisfies

kui;0ks · Ri;0;

for some Ri;0 <1 for i = 1; ¢¢¢; m.

(H2) There are Ri > Ri;0 > 0, i = 1;¢¢¢ ;m, ´ > 0, such that for every pair
of numbers s;s0 with 0 · s0 < s · 1 the mapping Fi(u1; ¢¢¢ ;um; x),
i = 1;¢¢¢ ; m, is continuous from the set

fu1 2 X1
s j ku1ks <R1g £ ¢¢¢£ fum 2Xm

s j kumks <Rmg

£ fx j jxj < ´g

into X i
s0.
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(H3) There are constants Ci, i = 1; ¢¢¢ ; m, such that for every pair of numbers
s;s0 with 0 · s0 < s · 1, for all kujks < Rj , kvjks < Rj, j = 1;¢¢¢ ;m,
and for all x, jxj < ´, we have

kFi(u1; u2; ¢¢¢ ;um; x) ¡ Fi(v1; v2;¢¢¢ ; vm; x)ks0

· Ci

(s ¡ s0)® i
[#1

iku1 ¡ v1ks + ¢¢¢+ #mi kum ¡ vmks];

i = 1;¢¢¢ ;m;

where the number #ji is set to be zero if Fi is independent of uj and to be
one otherwise, for some parameters ® i ¸ 0, i = 1;¢¢¢ ;m, such that for any
collection of m2 numbers cji, the degree of P (¸;¹) with respect to ¸;¹ is at
most m, where the expression P(¸; ¹) of two variables ¸; ¹ is defined by

P (¸;¹) = det(¸I ¡ [¹® i#ji c
j
i ]);

with I the m £ m identity matrix and the degree is defined to be the highest
degree among all monomials in P(¸; ¹).

(H4) Fi(0;¢¢¢ ;0;x) is a continuous function of x, jxj < ´, with values in X i
s for

every s < 1 and satisfies

kFi(0; ¢¢¢ ; 0; x)ks · Ki

(1 ¡ s)® i
; 0 · s < 1;

for some constants Ki, i = 1; ¢¢¢ ;m, with ® i defined in (H3).

Then we have the following existence and uniqueness theorem for solutions of
(2.3)-(2.4).

Theorem 2.1 [6]. Under the preceding hypotheses (H1)–(H4), there is a
positive constant ½ such that the Cauchy problem (2.3)-(2.4) has a unique solu-
tion fui(x); i = 1;¢¢¢ ; mg; which are continuously differentiable functions of x;
jxj < ½(1 ¡ s), with values in Xi

s; kui(x)ks < Ri; for every s < 1=2.

In order to apply Theorem 2.1 to solve the Cauchy problem (2.1)-(2.2), we
choose the following scale of Banach spaces.

Definition 2.2. Let K be a compact interval and let µ0 and µ1 be two positive
constants such that µ0 < µ1 < 1. Given s 2 [0; 1], we define the space Bs(K) to
be the set of all C1(K) functions Á satisfying

kÁks ´ sup
n¸ 0

max
t2K

~n4µ(s)n

¸(2n)!
jÁ (n)(t)j <1;
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where 1=µ(s) = (1 ¡ s)=µ0 + s=µ1 , ~n = max(n;1), and ¸ is any positive constant
satisfying

¸ · 1=

"
2 + 24

1X

k=1

(1=k)4

#
:

It is easy to check that fBs(K)g0· s· 1 is a scale of Banach spaces.
The Gevrey class 2 functions which play an important role in this paper are

defined as follows.

Definition 2.3. Let  be a subset of Rn and ± > 0. A C1 function f in 
is said to be of Gevrey class ± in  (in short, f 2 °±( )) if there exist positive
constants C and H such that

jD®
xf(x)j · CHj® j(±j® j)!;

for all multi-indices ® and for all x 2  where ® ! = ¡(® +1) and ¡ is the usual
gamma function.

It is clear that any function which is of Gevrey class ± in  is bounded.
The following relationship between the spaces Bs(K) and the Gevrey class 2

functions can be found in [6, Proposition 4.4].

(a) The space Bs(K) is contained in °2 for all s 2 [0; 1].

(b) Suppose Á : R! R is an infinitely differentiable function defined in K and
there are positive constants C and H such that

jÁ (j)(t)j · CHj(2j)!;

for all t and for all j = 1;2; ¢¢¢. If the constant µ1 in defining Bs(K)
satisfying µ1 < 1=H, then Á 2 Bs(K) for all s 2 [0; 1].

Furthermore, by [6, Proposition 4.2], the partial differentiation @=@t defines a
bounded linear operator from Bs(K) into Bs0(K) for 0 · s0 < s · 1 with norm
less than or equal to C=(s ¡ s0)2, where C is a positive constant which can be
taken as (4=e)2µ0=(µ1 ¡ µ0)2 . We note that the constant C can be made as small
as we wish by taking the constant µ0 sufficiently small while keeping the constant
µ1 fixed in the definition of Bs(K).

Now, we are ready to prove the main result of this section as follows.

Theorem 2.2. Suppose that »(t); ³(t) 2 °2([T0;1)) with support [T0; T],
T > T0. Then a classical solution u(x; t) of (2.1), (2.2) exists and the x-interval
of existence is greater than 1.
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Proof. In order to apply Theorem 2.1, we convert the problem (2.1)–(2.2) to
a first order system of differential equations by introducing the variables u1 = u,
u2 = ux, u3 = uxx, u4 = uxxx and u5 = ut. Then (2.1)–(2.2) can be rewritten as

du1

dx
(x; ¢) = u2(x; ¢);

du2

dx
(x; ¢) = u3(x; ¢);

du3

dx
(x; ¢) = u4(x; ¢);

du4

dx
(x; ¢) = ¡ u5(x;¢);

du5

dx
(x; ¢) =

@

@t
u2(x; ¢);

with the Cauchy data

u1(0; ¢) = 0; u2(0; ¢) = 0; u3(0;¢) = »(¢);u4(0;¢) = ³(¢);u5(0;¢) = 0:

Let K = [T0;T + ²] and D = [0; 2] £ K where ² is any finite positive number.
Since »(t); ³(t) 2 °2(D), there exist positive constants Mi, Hi, i = 1;2 such that

j@jt»(t)j · M1H
j
1(2j)!;

and

j@jt³(t)j · M2H
j
2(2j)!;

for all t 2K and any nonnegative integers j. Let µ0, µ1 be two constants satisfing
0 < µ0 < µ1 < min(1=H1;1=H2) and fBsg0· s· 1 be the scale of Banach spaces
as defined in Definition 2.2 with constants µ0 and µ1. Then it is easy to check that
»(t); ³(t) 2 Bs(K) for all s 2 [0;1] and all hypotheses (H1)-(H4) of Theorem 2.1
are satisfied with Ci = 1, for i = 1; 2; 3;4, and C5 = (4=e)2µ0=(µ1 ¡ µ0)2 which
can be made as small as we wish by taking the constant µ0 sufficiently small while
keeping the constant µ1 fixed in the definition of Bs(K). By Theorem 2.1, there
exists a constant ½ > 0 such that (2.1)-(2.2) has a solution u(x; ¢) 2B0 for jxj < ½.

According to the proof of the nonlinear Cauchy-Kowalevski Theorem in [6], the
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length of the x-interval of existence ½ is any constant satisfying

123(2½)3

1 ¡ r
[R3;0 +16½R4;0] <

R1

2
;

16(2½)2

1 ¡ r
[R3;0 + 16½R4;0] <

R2

2
;

8192(2½)5C5

1 ¡ r
[R3;0 +16½R4;0] <

R3 ¡ R3;0

2
;

2048(2½)4C5

1 ¡ r
[R3;0 +16½R4;0] <

R4 ¡ R4;0

2
;

2048(2½)2C5

1 ¡ 16r
[R3;0 +16½R4;0] <

R5

2
;

where r = 4096(2½)2C5 and Ri;0 is the bound for the k ¢ks-norm of the Cauchy
data for every s 2 [0; 1] and Ri is any constant greater than Ri;0 for i = 1;2; ¢¢¢ ;5.

By choosing Ri large enough for i = 1;2; ¢¢¢ ;5 and taking the constant C5

small enough, the x-interval of existence ½ can be greater than 1.

3. EXISTENCE OF BOUNDARY CONTROLLER

In this section, we shall prove the existence of the boundary controllers g(t) and
h(t) that steer a prescribed initial data w0 to the zero for the problem (1.1)–(1.4).
The controllers g(t) and h(t) will be continuously differentiable on a finite time
duration 0 · t · T with T > 0.

The proof of the following theorem is similar to that of Theorem 2.1 in the
paper of D. Kinderlehrer and L. Nirenberg[?] with some modification. We omit the
proof. Also see [10] for more details for a second order parabolic equation.

Theorem 3.1. Let v(x; t) 2 C1([0;1] £ [0; 1]) be a solution of the problem

vt + vxxxx = 0 on 0 < x < 1; t > 0;

v(0; t) = 0; vx(0; t) = 0 for t > 0:

Then for each ¾; 0 < ¾ < 1
2; v(x; t) is of Gevrey class 2 in x and t in

f(x; t) : 0 · x < 1 ¡ ¾;¾ < t < 1g;

that is; the derivatives of v satisfy

j@kx@jtvj · CH2k+2j(2k+ 2j)!;
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for some positive constants C; H and for all k = 0;1;2; ¢¢¢ ; and j = 0;1;2; : : : .

Now, we state the principal result of this section.

Theorem 3.2. Let the initial data w0(x) be a continuous function in [0; 1]
and vanish at 0. Then for any finite time T > 0; there exist controllers g(t);
h(t) 2C1((0;1))\C([0;1)) such that the solution w(x; t) of (1.1)–(1.4) satisfies
w(x; T) ´ 0 for x 2 [0;1].

Proof. We organize the proof in the following steps.

Step 1. Extend the domain of the initial data w0(x) to be [0; 2] so that w0(x)
is continuous and w0(x) ´ 0 in a neighborhood of 2.

Step 2. We solve the initial-boundary value problem with the new modified
initial condition:

(3.1) wt + wxxxx = 0 on (0; 2) £ (0;1);

(3.2) w(0; t) = 0; wx(0; t) = 0 for t ¸ 0;

(3.3) w(2; t) = 0; wx(2; t) = 0 for t ¸ 0;

(3.4) w(x; 0) = w0(x) for x 2 (0;2):

It is well-known that the solution w(x; t) exists [3, 9]. Let T > 0 be any given
finite time and ²< T be any small positive number. Then it is clear that the solution
w(x; t) is a C1 function for 0 · x · 1 and ² · t · T .

Step 3. We claim that wxx(0; t) and wxxx(0; t) belong to Gevrey class 2 in t
for ² · t · T where w(x; t) is the solution obtained in Step 2.

Let u0(x) = w(x; ²), where ²< T is any small positive number as in the Step
2. Since w(x; t) is a C1([0; 1] £ [²;T ]) solution of the problem

wt + wxxxx = 0 on (0;1) £ (²; T];

w(0; t) = 0 for ² · t · T;

w(x;²) = u0(x) for x 2 (0;1);

it follows from Theorem 3.1 that w(x; t) is of Gevrey class 2 in t for 0 · x · ²
and ² · t · T . Thus wxx(0; t) and wxxx(0; t) belong to the Gevrey class 2 in t
for ² · t · T .
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Step 4. Next, we modifywxx(0; t) and wxxx(0; t) to be functions wxx(0; t)Ã (t)
and wxxx(0; t)Ã (t) with support in [0;T ]. Here Ã (t) 2 C1[0;1) satisfying

0 · Ã (t) · 1;

Ã (t) = 0 for t ¸ T;

Ã (t) = 1 for 0 · t · T=2:

With some cares we choose Ã (t) to be of Gevrey class 2, cf. [7].
Let

»(t) =

½
wxx(0; t)Ã (t) for ²· t · T;
0 for t ¸ T;

and
³(t) =

½
wxxx(0; t)Ã (t) for ² · t · T;
0 for t ¸ T:

Since the Gevrey class of functions forms an algebra which is closed under multi-
plication, »(t); ³(t) 2 °2 in t for t ¸ ² and vanish for t ¸ T .

Step 5. In this step, we solve the Cauchy problem:

(3.5) uxxxx = ¡ ut on (0;2) £ (²;1);

(3.6) u(0; t) = 0; ux(0; t) = 0;uxx(0; t) = »(t); uxxx(0; t) = ³(t) for t ¸ ²:

It follows from Theorem 2.2 that there exist a constant ½ > 1 and a classical
solution u(x; t) of (3.5)–(3.6) for 0 < x < ½, t ¸ ². This solution vanishes for
t ¸ T by Nirenberg’s Theorem [11].

Step 6. By L. Nirenberg’s Theorem [11], it is easy to derive that w(x; t) and
u(x; t) are identical on [0; 1] £ [²;T=2]. Now, the required boundary controllers
g(t) and h(t) are defined as g(t) = w(1; t), h(t) = wx(1; t) for 0 · t · ² and
g(t) = u(1; t), h(t) = ux(1; t) for t ¸ ².

This proves the theorem.
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