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ON THE RECURSIVE SEQUENCE z,, 1 = z,—1/9(zr)

Stevo Stevit

Abstract. In [5] the following problem was posed. Is there a solution of the
following difference equation

ﬂxnfl

Gtz x_ 1,590 >0, >0, n=0,1,2,..

Tpt+1 = 3

such that z,, - 0 asn — cc.
We prove a result which, as a special case solves the above problem.

1. INTRODUCTION

Recently there has been alot of interest in sudying the globd atractivity, the
boundedness character and the periodic nature of nonlinear difference equaions.
For some recent results concemning, among other problems, the periodic nature of
scdar nonlinear difference equations see, for example, [1-6] and [8]. In [3] and
[7] two dosdy rdated global convergence results were established which can be
goplied to nonlinear difference equations in proving tha every solution of these
difference equations converges to a period-two solution (which is not the same for

dl solutions).
The following question is posed in [5].

Open problem. Is there a solution of the following difference equation

ﬂxn—l

, x-1,z0>0, >0, n=0,1,2,...
E. 1,70 B

@) Tnt1 =

such that x, — 0 as n — oo.
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Note that we can assume that 3 = 1, i.e we can consider the equation
Tp—
@ Tt =7

We independently arrived a a problem which was smilar to a problem studied
by the authors in [4]. They examined the behaviour of the following sequence:

r_1,20 >0, n=0,1,2,... .

Tn

Tn+l = Tp—1€ ™, z_1,20>0, n=0,1,2,....
This similarity motivated us to congder a class of sequences which generdize ther
sequence and the sequence of Eq. (1).

In this paper we give an a@firmative ansver to the Open problem. Moreover, we
generdize this result to the equation of the following form:

3 Tpgl = ;{;1), x_1,20 >0, n=0,1,2....
n

2. ON THe RECURSIVE SEQUENCE Zp11 = Zn—1/(1 + zp)
In this section we consider Eq. (2).

Theorem 1. Consider the difference equation (2). Then the following statements
are true.

(8 The sequences (x2y) and (x2n+1) are decreasing and there exist p,q > 0
such that

lim xop, =p and lim zony1 =q.
n—oo n—oo

() (¢,p,q,p,...) is a solution of Eq. (2) of period two.

(©) pg =0.
(d) Ifthere exists ng € N such that x,, > xpn+1 for all n > ng, then limy, o0 Ty, =
0.

(&) The following formulae

n 2j—1

Ton = I 1_96121_[1:33-
(3

j=1 i=1

o n Y 1
T = x_ 1-—
2t ! 1+x0 ];71;[1 14 z;

hold.
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) ]fxo+m(2) r_1 then xon, — p # 0 and 2,41 — 0 as n — .

(9) If a solution of Eq. (2) converges to zero it must be decreasing.

Proof. (8-(c) Since zp+1 < zp—1,n € N, we obtain that there exist lim,,
xon, = p ad limy, o0 T2n4+1 = q. Hence p = p/(1+¢q) or ¢ = q/(1 + p), and
conseguently pg = 0, as desred.

(d) If there exists ng € N such that z,, > x,4+1 for al n > ng, then0 p
g p. Since pg = 0 we obtain the result.

(e) Subtracting x,,—1 from the left and right-hand sides in Eq. (2) we obtain

Tn—1Tn
Tnpl —Tn-1 ==
n
Since
Tp +Tp—1Tp = Tn—2
we get
1
In+l — Tp—-1 = 1+ 2 (xn - $n72)-
n

From that we have that the sgnum of x,, — z,,—» remansthe same for dl n > 2.
Also the following formula

n
1
4 — =(z1 —
4) Tpy1l — Tno1 = (71 $1)i1_[1 1 Fa,
holds.
Replacing n by 25 in (4) and summing from j = 0 to j = n we obtan
n 2 1
Ton+l —T—-1 = (:Ul — ZU_l) z;]illz 1 T .Ti.
J=01i=

From that the second formula in () follows. Proof of the first formula is smilar
and will be omitted.

(f) Suppose that p = ¢ = 0. By (e) we have

e | 14z X2 1
5 — = and = .
©) 1 2111 14 z; 0 ZOH1+£B¢
7=1 1= 7=01=
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we arrive a a contradiction.

(9) By shifting we obtain that if z,,,,1 + “/’7210 41 Zp, fOr Omeny € N then
p=0adg#0,0rqg=0adp #0. Theefore z,, < x,,.1 + 22, for ech
n € N which is equivalent to

Tn,

— < x,4, fordl neN.

Lpyo =

Remark 1. By Theorem 1 we see that showing whether or not a solution of
EqQ. (2) converges to zero is equivdent to showing that (5) holds

It is dear that we have to consider the following functiona sequence (z,,(u, v)),
u, v € (0,00), where z,, (u,v) denotes the n-th term of the solution of Eq. (2) with
initial conditions z_; = u and xp = v. For our purpose we can consider xp(u, v)
as a function of the argument v, i.e, wewill takeu > 0 to be fixed, and use simply
the notation z,,(v).

According to Theorem 1 (e) and (f), the following sets play a fundamentd role
in solving the open problem (see dso [4]).

{ 2k (v) < Tpy1 (V) (1 +2p41(v)) for k=-1,0,1,...,n—1
Gp=<v € (0,+00) : and
2n () 2 Zp41(0) (1+ 2nt1(v))

and

H={ve(0,+0): zk(v) < 2p+1(v)(1 + 241(v)) foral k=-1,0,1,...}

3. ON THE RECURSIVE SEQUENCE Zp+1 = Tn—1/9(xn)

In this section we consider Eq. (3) where the function g(z) sdisfiesthefollowing
conditions

@ g € CY(Ry);
(b) g(0)=1;
© ¢(z) >0, for =xecRy.

Hence, g(x) > 1 for z € R4 \ {0} and consequently the equation = = x /g(z)
has only solution z = 0. Therefore x = 0 is the only non-negative equilibrium
solution of EQ. (3).

Note that for the case of Eq. (2), g(z) = 1+ .
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It is dear that if x_1 = 29 = 0, then z,, = 0 for all n € N. On the other
hend, if z_; = 0 and z¢ # 0, or z_; # 0 and zp = 0, we obtan that (z,,) isa
two-periodic solution

(.7}_1, L0y, L—1, L0y L—1,T0Q, )

Findly if z_1,29 > 0, then z,, > 0 for all n € N.

Let (xn(v)), with v € (0,00), denote the solution of Eq. (3) with initid condi-
tionsz_1 = v and zg = v.

Motivated by the previous section we introduce the following sets

{ 26(v) < 21 (0)g(zKr1(v)) for k=—-1,0,1,...,n—1
Gn =< v €(0,+00): and
£0(0) > T2 (0)g(@ns1(0)

and
H={ve (0,+00) : 23(v) < zpi1(v)g(zp1(v)) foral k=-1,01,..}.

It isclear that the following statements are true.

1. GingG; =0fordli,je{-1,0,..} withi# j.
2. GiNH=0fordlie{-1,0,..}.

3. (U2 G2n) U (Us2yG2n—1) UH = (0,00).

Let
U= gGon—1 and V=U;2;Gon.

One can eadly prove the following theorem.

Theorem 2. Suppose that (x,,) is a solution of Eq. (3) with x_1,xq > 0. Then
the following statements are true.

(&) The sequences (x2n) and (zon+1) are decreasing and there exist p,q > 0
suchthat
lim zo, =p ad lim xo2,+1 = q.
n—oo n—o0

) (¢,p,¢,p,...) isaolution of Eg. (3) of period two.

(c) pg= 0.

(d) If thereexistsng € N suchthat z,, > x,41 for al n > ng, then lim,,_,o0 z, =
0.
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Theorem 3. Suppose that (zy,) is a solution of Eq. (3) with x_1,z¢9 > 0.
Assume that there exists ng € N such that

(6) xnofl Z xmg(xno)'
Then for all n > 0,
Tng+2n < Tno+2n+19 (mng+2n+1)

and
Tng+2n+1 > wno+2n+2,g($no+2n+2)-

Proof. It suffices to show that
Tny < $n0+1g($n0+1)
and
Tng 1 > Tng+29(Tng12).
From (3), (6) and the fact thet g(z) is increasing, we obtan

Tnogt19(Tnot1) = g2 11)
g(xno)

mnog(xno+1)

v

> wnog(o) = Tng,

and consequently

() ZTno+1 > Tng+2-
Applying (7), (3) and (6), consecutively, we obtain

Tng—1 = Tng t1,
g(fL’nO)

.’En0+gg($n0+2) < In0+29(-’13n0+1) = Tn,

as desired.

Theorem 4. Let n € {0,1,...}. Then the following statements are true.
(@ Suppose v € Gop—1. Then limy,_,00 T2, (v) = 0.
(b) Suppose v € Gay,. Then limy,—yo0 T2n+1(v) = 0.

(©) Suppose v € H. Then x_1 = u, xgg(xg) > u,Tg > T4 > Ty > ... and
limy, o0 2, (v) = 0.

(d) U #0.



On the Recursive Sequence zn+1 = Zn—1/g(zn) 411

(e vV #0.
(f) U and V are open subset of (0,00).

Proof. (8) Suppoe v € Gap—1. We know that z2,—1(v) > 22, (v)g(x2n(v)).
By Theorem 3 it follows that

Tok+1(0) 2 Top42(V)9(T2p12(v)) > Topi2(v) foral k=n-—1.

By Theorem 2 (c) the result follows
(b) Suppose v € Gap,. We know that xo,(v) > xop+1(v)g(22n+1(v)). By The
orem 3 it follows that

Zo(v) > Top+1(v)g(x2k+1(v)) > xopy1(v) foral k >n.

By Theorem 2 (c) the result follows
(c) Suppose v € H. We know that z,,(v) < xp41(v)g(Tn+1(v)) fordl n=
—1,0,1,... and therefore
Tn+2(v) < Tpy1(v) fordl n=-1,0,1,...

By Theorem 2 (d) the reault follows.

(d) We need to find ¢ € (0, 00) such that u = cg(c). For afixed u € (0, ),
snce the function w(z) = xg(x) is continuous and increasing and w(0) = 0 and
w(oco) = oo, we obtain that there is a unique solution = = ¢ of the equation
u=w(z). Let z_; =wand zg = c. Since z_1 = u = cg(c) = zog(xo), We have
ce Q.

(e) We need to find d € (0,00) such that dg(d) = ug(u/g(d)). For a fixed
u € (0,00), consider the function

wy (z) = xg(z) — ug(u/g(z)).

This function is continuous and increasing and w1 (0) = —ug(u) < 0 and w(oo) =
oo. Hence we obtain that thereis auniquesolution z = d of the equation w (z) = 0.
Let z_1 =u and zog = d. Then

z0g(wo) = dg(d) = ug(u/g(d)) >u =2z_1.
On the other hand
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Henced € G;.

(f) Let us prove tha U/ is open. The proof that V isopen is amilar and will be
omitted.

Choosev € U. It sufficesto show that there existse > 0 such that if w € (0, co)
and |w—v| <e, thenw € U.

There exists nyg > 0 such that v € Gapy—1, and so

zp(v) < Tpr1(v)g(Tg41(v)) for k= -1,0,1,... ,2n9 —2
and
) Tong—1(V) = Tane (0)9(Tan, (V).
It follows by Theorem 3 that for n > 0,

Tong+2n(V) < T2ng+2n+1(0)g (X200 +2041(V)).

and
Tongt+2n+1 (V) > Tongranta (V) 9(Zan +2n42(V))-
Forn=-1,0,...,le f, : (0,00) = (0,00) be defined as follows:
foilw)=u for we(0,00)
folw)=w for we(0,00)
andforn >1 @)
_ fn—2(w
folw) = —g(fnq(w)) for  w e (0,00).

Then for each n > 1, f,(w) € C*(R4), and
Tp(w) = fo(w), for n=-1,0,....
Note that for w € (0, o)
faw =u ad fLw)=0 0

fow)=w ad filw)=1>0

and forn > 1,

(W)9(fon—2W)) — ¢ (fon—2(w)) for—o (W) fon—3(w)
9%(fon—2(w)

P2 (w) = L3 <0
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and

_ Fona(@)g(fon-1(w)) — ¢ (fan-1(w)) fon_1 (@) fon—2 ()
92(f2n—1 (w)

Forn=—1,0,..., l&t hy: (0,00) — (0, 00) bea C* function given by
hn(w) = fr(Ww) = far1(@)g(frr1(w))  for  we (0,00).

> 0.

fon (@)

Tha is
hn(w) = Zp(w) — Tpi1 (W) g(@ni1(w)).

By (8), we have the following two cases to congder.

Case 1. Suppose that x2,,,—1(v) > T2, (v)g(22n, (v)).
Then it follows by the continuity of h_1, ho, ... , hon,—1 that thereexidse > 0
such that if w € (0,00) and |w —v| < €, then

hi(w) <0 for i=-1,0,...,2n5—2

while
hzno_l(w) > 0,

and so if w € (0,00) and |w — v| < &, we seethat w € Gap,—1 C U.

Case 2. Suppose that x2,,,—1(v) = T2, (v)g(22n, (v)).
Note that for w € (0, c0),

hong—1@) = fong—1(w) = 9(fano (@) f2ng (©) = & (fono (@) fone (@) fone (W) <O,

and so it follows by the continuity of h_1, hg, ..., han,—2, the differentiability of
hano—1, and continuity of ho,, and hop,+1, that there exigs ¢ > 0 such that if
w € (0,00) and |w — v| < ¢, then

hi(w)<0 for i=-1,0,..,2ny —2,
hong—1(w) >0if v —e < w < v and hgpe—1(w) < 0 if v <w<wv+e,
hon, (w) <0 and h2n0+1(w) > 0.

It follows that w € Gopp—1 CUIfv—ec <w <vadw € Gopyy1 C U if
v<w<V+E.
We are now in a pogtion to formulate and prove the main result.

Theorem 5. Let u € (0,00). Then there exists a solution (xy) of Eq. (3) with
x—1 =wu and xog(xo) > u such that xo > xr1 > T2 > ... and limy_, oo T, = 0.
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Proof. Since
(UnZ0G2n) U (UnZoGan—1) UH = (0,00),
U and V are open subsets of (0, co0), and (0, o) is connected, we must have H = ().
The following corollary solves the open problem.

Corollary 1. Let u € (0, 00). Then there exists a solution (x,) of Eq. (2) with
xo(1 4+ o) > x_1, such that xo > x1 > x2 > ... and limy, o0 T, = 0.

In particular, we have the following.

Corollary 2. Let u € (0,00). Then there exists a solution (z,,) of Eq. (2) such
that (5) holds.
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