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ON THE JENSEN’S INEQUALITY FOR CONVEX FUNCTIONS
ON THE CO-ORDINATES IN A RECTANGLE FROM THE PLANE

M. Klaričić Bakula and J. Pečarić

Abstract. Several inequalities of Jensen’s type for functions convex on the
co-ordinates are given. Obtained results generalize the coresponding results of
S. S. Dragomir given in [2].

1. INTRODUCTION

Let I = [a, b] , a < b, be an interval in R and f : I −→ R a convex function.
The following double inequality

(1.1) f

(
a+ b

2

)
≤ 1
b− a

∫ b

a

f (x) dx ≤ f (a) + f (b)
2

is known in the literature as Hadamard’s inequality for convex functions (see for
example [4, p. 10] or [4, p. 137]).

In paper [2] Dragomir considered an inequality of Hadamard’s type for convex
functions on the co-ordinates on a rectangle from the plane R

2. A function f :
[a, b]×[c, d] → R, [a, b]×[c, d] ⊂ R

2 with a < b and c < d, is called convex on the
co-ordinates if the partial mappings fy : [a, b] → R defined as fy (u) := f (u, y) ,
and fx : [c, d] → R defined as fx (v) := f (x, v) , are convex where defined for all
y ∈ [c, d] and x ∈ [a, b].

In [2] Dragomir has proved the following theorem:
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Theorem A. Suppose that f : [a, b]×[c, d] ⊂ R
2 → R, where a < b and c < d,

is convex on the co-ordinates on [a, b]× [c, d]. Then one has the inequalities:

(1.2)

f

(
a+ b

2
,
c+ d

2

)
≤ 1

2

[
1

b− a

∫ b

a

f

(
x,
c+ d

2

)
dx+

1
d− c

∫ d

c

f

(
a+ b

2
, y

)
dy

]
≤ 1

(b− a) (d− c)

∫ b

a

∫ d

c
f (x, y) dxdy

≤ 1
4

[
1

b− a

∫ b

a

f (x, c)dx+
1

b− a

∫ b

a

f (x, d)dx

1
d− c

∫ d

c
f (a, y)dy +

1
d− c

∫ d

c
f (b, y)dy

]
≤ f (a, c) + f (a, d) + f (b, c) + f (b, d)

4

The above inequalities are sharp.

The goal of this paper is to give a generalization of the above result and few
other results from [2]. In Section 2 we give a generalization of Theorem A which
involves weight functions and also nonlinear transformations of the base intervals.
Using the obtained results, in Section 3 we establish some other interesting Jensen-
type inequalities for convex functions on the co-ordinates. In Section 4 we introduce
two functions which are closely connected with the integral Jensen’s inequality. And
in the end, in Section 5, we give some results related to those given in Section 2, but
now for functions whose second partial derivatives are convex on the co-ordinates.

2. JENSEN’S INEQUALITY

Let (Ω,A, µ) be a measure space, let g : Ω → I, I ⊂ R, be a function
from L∞ (µ) and let p : Ω → R be a nonnegative function from L1 (µ) such that∫
Ω pdµ �= 0. Then for any convex function ϕ : I → R inequality

(2.1) ϕ

(
1∫

Ω pdµ

∫
Ω
pgdµ

)
≤ 1∫

Ω pdµ

∫
Ω
pϕ (g) dµ

holds. This inequality is a variant of the well known integral Jensen’s inequality (see
[4, p. 45] or [3, p. 10]). Of course, if set I is bounded, then function g need only
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to be measurable. If µ is the standard Lebesgue measure and Ω = [a, b], then from
(2.1) we obtain

(2.2) ϕ

 1∫ b

a
p (x) dx

∫ b

a
p (x) g (x) dx

 ≤ 1∫ b

a
p (x) dx

∫ b

a
p (x)ϕ (g (x)) dx.

Discrete version of Jensen’s inequality (see [3, p. 6] or [4, p. 43]) can be
obtained from (2.1) if we choose Ω = {1, 2, ..., n} , g (i) = xi, p (i) = 1 and
µ({i}) = pi for i = 1, 2, ..., n. In that case (2.1) becomes

(2.3) ϕ

 1
n∑

k=1

pk

n∑
k=1

pkxk

 ≤ 1
n∑

k=1

pk

n∑
k=1

pkϕ (xk) .

If I = [c, d], where −∞ < c < d < +∞, and function ϕ is continuous, then
the converse of the integral Jensen’s inequality states

(2.4)
1∫

Ω
pdµ

∫
Ω
pϕ (g) dµ ≤ d− g

d− c
ϕ (c) +

g − c

d− c
ϕ (d) ,

where g = 1∫
Ω

pdµ

∫
Ω pgdµ (see [4, p. 98] or [3, p. 9]).

Before we use (2.1) to obtain a generalization of Theorem A, we introduce some
notation. Throughout the rest of the paper we assume that:

(i) (Ω1,A, µ) and (Ω2,B, ν) are measure spaces;
(ii) p : Ω1 → R, p ∈ L1 (µ) , and w : Ω2 → R, w ∈ L1 (ν) , are nonnegative

functions such that
∫
Ω1
pdµ �= 0 and

∫
Ω2
wdν �= 0;

(iii) g : Ω1 → I, g ∈ L∞ (µ) , and h : Ω2 → J, h ∈ L∞ (ν) , I, J ⊂ R;

(iv) ϕ : I × J → R is convex on the coordinates on I × J.

Theorem 1. Let ϕ, g, h, p and w be as the above. Then we have the following
inequalities:

(2.5)
ϕ
(
g, h
) ≤ 1

2

{
1
P

∫
Ω1

pϕ
(
g, h
)
dµ+

1
W

∫
Ω2

wϕ (g, h) dν
}

≤ 1
PW

∫
Ω1

∫
Ω2

pwϕ (g, h)dµdν,
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where

P =
∫

Ω1

pdµ, W =
∫

Ω2

wdν

g =
1
P

∫
Ω1

pgdµ, h =
1
W

∫
Ω2

whdν.

The above inequalities are sharp.

Proof. One-dimensional Jensen’s inequality (2.1) gives us

(2.6) ϕ
(
g, h
) ≤ 1

W

∫
Ω2

wϕ (g, h)dν,

(2.7) ϕ (g, h) ≤ 1
P

∫
Ω1

pϕ (g, h)dµ.

Multiplying (2.6) and (2.7) respectively by p and w and integrating over correspond-
ing sets we obtain

1
P

∫
Ω1

pϕ
(
g, h
)
dµ ≤ 1

PW

∫
Ω1

∫
Ω2

pwϕ (g, h)dµdν,

1
W

∫
Ω2

wϕ (g, h)dν ≤ 1
PW

∫
Ω1

∫
Ω2

pwϕ (g, h)dµdν,

from which we can get the right hand inequality in (2.5).
The left hand inequality in (2.5) is a simple consequence of Jensen’s one-

dimensional inequality (2.1), that is

ϕ
(
g, h
) ≤ 1

P

∫
Ω1

pϕ
(
g, h
)
dµ,

ϕ
(
g, h
) ≤ 1

W

∫
Ω2

wϕ (g, h) dν.

If in (2.5) we choose g (x) = h (x) = x for all x ∈ Ω1 = Ω2, p (x) = w (x) = 1
for all x ∈ Ω1 = Ω2 and ϕ (x, y) = xy, then (2.5) becomes an equality, which shows
that inequalities (2.5) are sharp.

This completes the proof.

Remark 1. If µ and ν are Lebesgue measures, Ω1 = [a, b], Ω2 = [c, d] ,
g (x) = x for all x ∈ [a, b] , h (x) = x for all x ∈ [c, d] , p (x) = 1 for all x ∈ [a, b]
and w (x) = 1 for all x ∈ [c, d], then Theorem 1 gives us the first and the second
inequality in Dragomir’s result (1.2).
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Theorem 2. Let ϕ be convex on the co-ordinates on I×J ⊆R
2. If x is

an n−tuple in I , y an m−tuple in J , p a nonnegative n−tuple such that P n =∑n
i=1 pi �= 0 and w a nonnegative m−tuple such that Wm =

∑m
j=1 wj �= 0, then

(2.8)

ϕ

 1
Pn

n∑
i=1

pixi,
1
Wm

m∑
j=1

wjyj


≤ 1

2

 1
Pn

n∑
i=1

piϕ (xi, y) +
1
Wm

m∑
j=1

wjϕ (x, yj)


≤ 1
PnWm

n∑
i=1

m∑
j=1

piwjϕ (xi, yj) ,

where

x =
1
Pn

n∑
i=1

pixi, y =
1
Wm

m∑
j=1

wjyj.

Proof. Directly from Theorem 1. We simply choose Ω1 = {1, 2, ..., n} , g (i) =
xi, p (i) = 1, µ ({i}) = pi for i = 1, 2, ..., n and Ω2 = {1, 2, ...,m} , h (j) =
yj , w (j) = 1 and ν ({j}) = wj for j = 1, 2, ...,m.

Assume now that I = [m,M ] and J = [n,N ], where −∞ < m < M < ∞
and −∞ < n < N <∞. The following result is valid.

Theorem 3. Let functions p and w be as the above and let functions g : Ω 1 →
I, h : Ω2 → J be measurable. If function ϕ : I×J → R is continuous and convex
on the co-ordinates on I × J, then we have the following inequalities:

(2.9)

1
PW

∫
Ω1

∫
Ω2

pwϕ (g, h)dµdν

≤ 1
2

{
N − h

N − n

1
P

∫
Ω1

pϕ (g, n)dµ+
h− n

N − n

1
P

∫
Ω1

pϕ (g, N )dµ

+
M − g

M −m

1
W

∫
Ω2

wϕ (m, h)dν +
g −m

M −m

1
W

∫
Ω2

wϕ (M, h) dν
}

≤ M − g

M −m

N − h

N − n
ϕ (m, n) +

g −m

M −m

N − h

N − n
ϕ (M, n)

+
M − g

M −m

h− n

N − n
ϕ (m,N ) +

g −m

M −m

h− n

N − n
ϕ (M,N ) .
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These inequalities are sharp.

Proof. We can write g (x) and h (y) as

g (x) =
M − g (x)
M −m

m+
g (x) −m

M −m
M,

h (y) =
N − h (y)
N − n

n +
h (y)− n

N − n
N,

so using the convexity of the function ϕ on the co-ordinates we get

ϕ (g (x) , h (y)) = ϕ

(
M − g (x)
M −m

m+
g (x) −m

M −m
M, h (y)

)
≤ M − g (x)

M −m
ϕ (m, h (y)) +

g (x) −m

M −m
ϕ (M, h (y)) ,

ϕ (g (x) , h (y)) = ϕ

(
g (x) ,

N − h (y)
N − n

n+
h (y) − n

N − n
N

)
≤ N − h (y)

N − n
ϕ (g (x) , n) +

h (y) − n

N − n
ϕ (g (x) , N ) .

A simple calculation shows us that

(2.10)
ϕ (g (x) , h (y)) ≤ 1

2

[
M−g (x)
M −m

ϕ (m, h (y))+
g (x)−m
M−m ϕ (M, h (y))

+
N−h (y)
N−n ϕ (g (x) , n)+

h (y)−n
N−n ϕ (g (x) , N )

]
.

Multiplying (2.10) by pw, dividing by PW and integrating over Ω1×Ω2 we obtain

1
PW

∫
Ω1

∫
Ω2

pwϕ (g, h)dµdν

≤ 1
2

[
N − h

N − n

1
P

∫
Ω1

pϕ (g, n)dµ +
h− n

N − n

1
P

∫
Ω1

pϕ (g, N )dµ

M − g

M −m

1
W

∫
Ω2

wϕ (m, h) dν +
g −m

M −m

1
W

∫
Ω2

wϕ (M, h) dν
]
,

which is the left hand side of (2.9).
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Now we can use again the convexity of the function ϕ on the co-ordinates, so
we get for instance

M − g

M −m

1
W

∫
Ω2

wϕ (m, h)dν

=
M − g

M −m

1
W

∫
Ω2

wϕ

(
m,

N − h

N − n
n+

h− n

N − n
N

)
dν

≤ M − g

M −m

[
N − h

N − n
ϕ (m, n) +

h− n

N − n
ϕ (m,N )

]
.

If we sum all inequalities obtained in this way, a simple calculation gives us the
right hand side of (2.9).

The sharpness can be proved similarly as in Theorem 1.

Remark 2. If µ and ν are Lebesgue measures, Ω1 = [a, b], Ω2 = [c, d] ,
g (x) = x for all x ∈ [a, b] , h (x) = x for all x ∈ [c, d] , p (x) = 1 for all x ∈ [a, b]
and w (x) = 1 for all x ∈ [c, d], then Theorem 3 gives us the third and the fourth
inequality in Dragomir’s result (1.2).

Theorem 4. Let ϕ be convex on the co-ordinates on I×J = [m,M ]×[n,N ] ⊆
R

2. If x is a k−tuple in I , y an l−tuple in J , p a nonnegative k−tuple such that∑k
i=1 pi �= 0 and w a nonnegative l−tuple such that

∑l
j=1 wj �= 0, then

(2.11)

1
PkWl

k∑
i=1

l∑
j=1

piwjϕ (xi, yj)

≤ 1
2

[
N − y

N − n

1
Pk

k∑
i=1

piϕ (xi, n) +
y − n

N − n

1
Pk

k∑
i=1

piϕ (xi, N )

+
M − x

M −M

1
Wl

l∑
j=1

wjϕ (m, yj) +
x−m

M −m

1
Wl

l∑
j=1

wjϕ (M, yj)


≤ M − x

M −m

N − y

N − n
ϕ (m, n) +

x −m

M −m

N − y

N − n
ϕ (M, n)

+
M − x

M −m

y − n

N − n
ϕ (m,N ) +

x−m

M −m

y − n

N − n
ϕ (M,N ) .

Proof. Similarly as in Theorem 2.

To prove our next result, we shall need the following theorem (see [4, p. 101]
or [3, p. 10]).
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Theorem B. Let ϕ : [m,M ] → R be a continuous convex function on
[m,M ] , g : Ω → [m,M ] a measurable function and p : Ω → R, p ∈ L1 (µ) , a
nonnegative function such that P =

∫
Ω pdµ �= 0. Let F : T 2 → R be a nondecreas-

ing function on its first coordinate, where ϕ ([m,M ]) ⊂ T. Then the inequality

F

(
1
P

∫
Ω
pϕ (g)dµ, ϕ

(
1
P

∫
Ω
pgdµ

))
≤ max

x∈[m,M ]
F

(
M − x

M −m
ϕ (m) +

x−m

M −m
ϕ (M) , ϕ (x)

)
holds. The right side of the above inequality is nondecreasing function of M and
nonincreasing function of m.

Theorem 5. Let ϕ, g, h, p and w be defined as in Theorem 3, and let F :
T 2 → R be a function nondecreasing in its first variable (T is an interval in R

such that ϕ (I × J) ⊆ T ). Then

(2.12)

F

(
1

PW

∫
Ω1

∫
Ω2

pwϕ (g, h)dµdν, ϕ
(

1
P

∫
Ω1

pgdµ,
1
W

∫
Ω2

whdν

))
≤ max

(x,y)∈I×J
F

(
M − x

M −m

N − y

N − n
ϕ (m, n) +

x−m

M −m

N − y

N − n
ϕ (M, n)

+
M − x

M −m

y − n

N − n
ϕ (m,N ) +

x−m

M −m

y − n

N − n
ϕ (M,N ) , ϕ (x, y)

)
,

The right hand side of (2.12) is nondecreasing function of M and N and nonin-
creasing function of m and n.

Proof. By Theorem 3 and the monotonicity of F in the first variable we have

F

(
1

PW

∫
Ω1

∫
Ω2

pwϕ (g, h)dµdν, ϕ
(

1
P

∫
Ω1

pgdµ,
1
W

∫
Ω2

whdν

))
≤ F

(
M − g

M −m

N − h

N − n
ϕ (m, n) +

g −m

M −m

N − h

N − n
ϕ (M, n)

+
M − g

M −m

h− n

N − n
ϕ (m,N ) +

g −m

M −m

h− n

N − n
ϕ (M,N ) , ϕ

(
g, h
))

≤ max
(x,y)∈I×J

F

(
M − x

M −m

N − y

N − n
ϕ (m, n) +

x−m

M −m

N − y

N − n
ϕ (M, n)

+
M − x

M −m

y − n

N − n
ϕ (m,N ) +

x−m

M −m

y − n

N − n
ϕ (M,N ) , ϕ (x, y)

)
.



On the Jensen’s Inequality 1279

Let x,M ′ ∈ I, m < M ′ < M, and y, N ′ ∈ J, n < N ′ < N. Since the function
ϕ is convex on the co-ordinates and N−y

N−n ≥ 0 for any y ∈ [n,N ] , we can deduce
that for any y ∈ [n,N ] function ψy : [m,M ] → R defined as

ψy (x) =
N − y

N − n
ϕ (x, n)

is convex on [m,M ] . In that case we know from Theorem B that for any x ∈ I

M ′ − x

M ′ −m
ψy (m) +

x−m

M ′ −m
ψy

(
M ′)

≤ M − x

M −m
ψy (m) +

x−m

M −m
ψy (M) ,

i.e., for any x ∈ I and y ∈ J

(2.13)

M ′ − x

M ′ −m

N − y

N − n
ϕ (m, n) +

x−m

M ′ −m

N − y

N − n
ϕ
(
M ′, n

)
≤ M − x

M −m

N − y

N − n
ϕ (m, n) +

x−m

M −m

N − y

N − n
ϕ (M, n) .

Analogously, for any y ∈ [n,N ] function ηy : [m,M ] → R defined as

ηy (x) =
y − n

N − n
ϕ (x,N )

is convex on [m,M ] . Again, for any x ∈ I and y ∈ J we obtain

(2.14)

M ′ − x

M ′ −m

y − n

N − n
ϕ (m, n) +

x−m

M ′ −m

y − n

N − n
ϕ
(
M ′, n

)
≤ M − x

M −m

y − n

N − n
ϕ (m, n) +

x−m

M −m

y − n

N − n
ϕ (M, n) .

For the simplicity, let us denote

D {(x, y) , (m,M) , (n,N ) ;ϕ}
= F

(
M − x

M −m

N − y

N − n
ϕ (m, n) +

x−m

M −m

N − y

N − n
ϕ (M, n)

+
M − x

M −m

y − n

N − n
ϕ (m,N ) +

x−m

M −m

y − n

N − n
ϕ (M,N ) ,

ϕ (g (x) , h (y))

)
.
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We know that the function F is nondecreasing in its first variable, so using that fact
and the inequalities (2.13), (2.14) we can deduce

D
{
(x, y) ,

(
m,M ′) , (n,N ) ;ϕ

}
≤ D {(x, y) , (m,M) , (n,N ) ;ϕ} .

In a similar way we can obtain

D
{
(x, y) , (m,M) ,

(
n,N ′) ;ϕ

}
≤ D {(x, y) , (m,M) , (n,N ) ;ϕ} .

It can be easily seen that if we change first M into M ′, and than N into N ′, we
can obtain

(2.15)

D {(x, y) , (m,M ′) , (n,N ′) ;ϕ}
≤ D {(x, y) , (m,M ′) , (n,N ) ;ϕ}
≤ D {(x, y) , (m,M) , (n,N ) ;ϕ} .

Since m < M ′ < M and n < N ′ < N , we have [m,M ′] × [n,N ′] ⊂ [m,M ] ×
[n,N ], so from the inequality (2.15) we obtain

max
(x,y)∈[m,M ]×[n,N ]

D {(x, y) , (m,M) , (n,N ) ;ϕ}

≥ max
(x,y)∈[m,M ]×[n,N ]

D
{
(x, y) ,

(
m,M ′) , (n,N ′) ;ϕ

}
≥ max

(x,y)∈[m,M ′]×[n,N ′]
D
{
(x, y) ,

(
m,M ′) , (n,N ′) ;ϕ

}
,

from which we can deduce that the right side of (2.12) is nondecreasing function
of M and N .

Similarly, for m < m′ < M and n < n′ < N we have

max
(x,y)∈[m,M ]×[n,N ]

D {(x, y) , (m,M) , (n,N ) ;ϕ}

≥ max
(x,y)∈[m′,M ]×[n′,N ]

D
{
(x, y) ,

(
m′,M

)
,
(
n′, N

)
;ϕ
}
,

which shows that the right side of (2.12) is nonincreasing function of m and n.
This completes the proof.
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3. GIACCARDI’S AND PETROVIĆ’S INEQUALITIES

In this section we will use the conversion of Jensen’s inequality in its discrete
case in order to obtain a generalization of the Giaccardi’s inequality (see for example
[3, p. 11]).

Theorem 6. Let p be a nonnegative n-tuple, w an nonnegative m-tuple,
x ∈ In, y ∈ Jm, x0, x̂ =

∑n
i=1 pixi ∈ I and y0, ŷ =

∑m
j=1 wjyj ,∈ J such that

(3.1)

(xi − x0) (x̂− xi) ≥ 0 (i = 1, ..., n)

x̂ �= x0

(yj − y0) (ŷ − yj) ≥ 0 (j = 1, ..., m)

ŷ �= y0.

If function ϕ is convex on the co-ordinates on I × J , then

(3.2)

n∑
i=1

m∑
j=1

piwjϕ (xi, yj)

≤ AC (Pn − 1) (Wm − 1)ϕ (x0, y0) + BC (Wm − 1)ϕ (x̂, y0)

+AD (Pn − 1)ϕ (x0, ŷ) + BDϕ (x̂, ŷ)

where

A =
x̂

x̂− x0
, B =

n∑
i=1

pi (xi − x0)

x̂− x0
,

C =
ŷ

ŷ − y0
, D =

m∑
j=1

wj (yj − y0)

ŷ − y0
.

Proof. Since we know that x0, x̂ ∈ I and y0, ŷ ∈ J holds, we can consider
restriction of the function ϕ on [x0, x̂]× [y0, ŷ] (for x0 < x̂ and y0 < ŷ) or [x̂, x0]×
[ŷ, y0] (for x̂ < x0 and ŷ < y0) or similarly on [x0, x̂] × [ŷ, y0] or [x̂, x0] × [y0, ŷ].
Let us consider the first case. The conditions (3.1) provide us

xi ∈ [x0, x̂] ( i = 1, 2, ..., n) ,
yj ∈ [y0, ŷ] (j = 1, 2, ...,m) ,
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so in case

m = x0, M = x̂,

n = y0, N = ŷ,

all conditions of Theorem 4 are satisfied. From the inequality (2.11), after multi-
plying by PnWm, we get

n∑
i=1

m∑
j=1

piwjϕ (xi, yj)

≤ 1
2

(
Wmŷ − ŷ

ŷ − y0

n∑
i=1

piϕ (xi, y0) +
ŷ −Wmy0
ŷ − y0

n∑
i=1

piϕ (xi, ŷ)

+
Pnx̂ − x̂

x̂− x0

m∑
j=1

wjϕ (x0, yj) +
x̂− Pnx0

x̂− x0

m∑
j=1

wjϕ (x̂, yj)


≤ Pnx̂− x̂

x̂− x0

Wmŷ − ŷ

ŷ − y0
ϕ (x0, y0) +

x̂− Pnx0

x̂− x0

Wmŷ − ŷ

ŷ − y0
ϕ (x̂, y0)

+
Pnx̂− x̂

x̂− x0

ŷ −Wmy0
ŷ − y0

ϕ (x0, ŷ) +
x̂− Pnx0

x̂− x0

ŷ −Wmy0
ŷ − y0

ϕ (x̂, ŷ) .

For A,B, C,D defined as the above, a simple calculus gives us

n∑
i=1

m∑
j=1

piwjϕ (xi, yj)

≤ 1
2

[
(Wm − 1)C

n∑
i=1

piϕ (xi, y0) +D

n∑
i=1

piϕ (xi, ŷ)

+ (Pn − 1)A
m∑

j=1

wjϕ (x0, yj) +B

m∑
j=1

wjϕ (x̂, yj)


≤ AC (Pn − 1) (Wm − 1)ϕ (x0, y0) + BC (Wm − 1)ϕ (x̂, y0)

+AD (Pn − 1)ϕ (x0, ŷ) + BDϕ (x̂, ŷ)

which is the desired inequality (3.2). In the second case x̂ < x0 and ŷ < y0 we
define

m = x̂, M = x0,

n = ŷ, N = y0,
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and the rest of the proof is similar.

From the Giaccardi’s type inequality (3.2) we can obtain a Petrović’s type in-
equality if we choose

x0 = 0, y0 = 0,

which implies
A = B = C = D = 1.

In this case, the conditions (3.1) become

0 ≤ xi ≤ x̂, i = 1, ..., n,

0 ≤ yj ≤ ŷ, j = 1, ..., m,

and from (3.2) we obtain

n∑
i=1

m∑
j=1

piwjϕ (xi, yj)

≤ 1
2

[
(Wm − 1)

n∑
i=1

piϕ (xi, 0) +
n∑

i=1

piϕ (xi, ŷ)

(Pn − 1)
m∑

j=1

wjϕ (0, yj) +
m∑

j=1

wjϕ (x̂, yj)


≤ (Pn−1) (Wm−1)ϕ (0, 0)+(Wm−1)ϕ (x̂, 0)+(Pn−1)ϕ (0, ŷ)+ϕ (x̂, ŷ) .

Remark 3. The above results show that a number of one-dimensional results
can be similarly extended on bidimensional functions.

4. SOME FUNCTIONS IN CONNECTION TO JENSEN’S INEQUALITY

For a function ϕ defined as in Section 2, we can define a new function H :
[0, 1]2 → R as

H (t, s) =
1

PW

∫
Ω1

∫
Ω2

pwϕ
(
tg + (1 − t) g, sh+ (1− s)h

)
dµdν.

This function, which is strongly connected to the integral Jensen’s inequality (2.2)
has the following properties:

Theorem 7. Let ϕ, p, w, g, h be as in Theorem 1. Then:
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(i) The functionH defined as the above is convex on the co-ordinates on [0, 1] 2;

(ii) We have the bounds:

sup
(t,s)∈[0,1]2

H (t, s) = H (1, 1) =
1

PW

∫
Ω1

∫
Ω2

pwϕ (g, h)dµdν,

inf
(t,s)∈[0,1]2

H (t, s) = H (0, 0) = ϕ
(
g, h
)
,

where P,W, g and h are defined as in Theorem 1;
(iii) The function H is nondecreasing on the co-ordinates.

Proof. (i) Fix s ∈ [0, 1]. Then for all λ, λ ≥ 0 such that λ + λ = 1 and
t1, t2 ∈ [0, 1] we have

H
(
λt1 + λt2, s

)
=

1
PW

∫
Ω1

∫
Ω2

pwϕ
((
λt1 + λt2

)
g +

[
1− (λt1 + λt2

)]
g, sh+ (1 − s) h

)
dµdν

=
1

PW

∫
Ω1

∫
Ω2

pw

×ϕ (λ [t1g + (1 − t1) g] + λ [t2g + (1 − t2) g] , sh+ (1 − s) h
)
dµdν

≤ λ

PW

∫
Ω1

∫
Ω2

pwϕ
(
t1g + (1 − t1) g, sh+ (1 − s)h

)
dµdν

+
λ

PW

∫
Ω1

∫
Ω2

pwϕ
(
t2g + (1 − t2) g, sh+ (1− s)h

)
dµdν

= λH (t1, s) + λH (t2, s) .

In the same way we can prove that for t ∈ [0, 1] fixed, λ, λ ≥ 0 such that λ+λ = 1
and any s1, s2 ∈ [0, 1]

H
(
t, λs1 + λs2

)
= λH (t, s1) + λH (t, s2) ,

which means that the function H is convex on the co-ordinates
(ii) Let (t, s) ∈ [0, 1]2. Using the integral Jensen’s inequality (2.1) on the

co-ordinates, we obtain

H (t, s) =
1
P

∫
Ω1

p

[
1
W

∫
Ω2

wϕ
(
tg + (1− t) g, sh+ (1 − s) h

)
dν

]
dµ

≥ 1
P

∫
Ω1

pϕ

(
tg + (1 − t) g,

1
W

∫
Ω2

w
[
sh+ (1 − s)h

]
dν

)
dµ

=
1
P

∫
Ω1

pϕ
(
tg + (1 − t) g, h

)
dµ
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≥ ϕ

(
1
P

∫
Ω1

p (gt+ (1 − t) g) dµ, h
)

= ϕ
(
g, h
)

= H (0, 0) ,

which means that
inf

(t,s)∈[0,1]2
H (t, s) = H (0, 0) .

On the other hand, since ϕ is convex on the co-ordinates, for all (t, s) ∈ [0, 1]2 we
have

H (t, s) ≤ 1
P

∫
Ω1

p

[
s

W

∫
Ω2

wϕ (tg + (1 − t) g, h) dν

+
1 − s

W

∫
Ω2

wϕ
(
tg + (1 − t) g, h

)
dν

]
dµ

≤ s

W

∫
Ω2

w

[
t

P

∫
Ω1

pϕ (g, h)dµ+
1 − t

P

∫
Ω1

pϕ (g, h) dµ
]
dν

+
1 − s

W

∫
Ω2

w

[
t

P

∫
Ω1

pϕ
(
g, h
)
dµ+

1 − t

P

∫
Ω1

pϕ
(
g, h
)
dµ

]
dν.

Jensen’s inequality (2.1) gives us

ϕ (g, h) ≤ 1
P

∫
Ω1

pϕ (g, h)dµ,

ϕ
(
g, h
) ≤ 1

W

∫
Ω2

wϕ (g, h)dν,

thus, by integration, we obtain

1
W

∫
Ω2

wϕ (g, h) dν ≤ 1
PW

∫
Ω1

∫
Ω2

pwϕ (g, h)dµdν,

1
P

∫
Ω1

pϕ
(
g, h
)
dµ ≤ 1

PW

∫
Ω1

∫
Ω2

pwϕ (g, h)dµdν.

From this, we can easily deduce that

H (t, s) ≤ [st+ s (1 − t) + (1 − s) t+ (1− s) (1 − t)]

× 1
PW

∫
Ω1

∫
Ω2

pwϕ (g, h)dµdν

=
1

PW

∫
Ω1

∫
Ω2

pwϕ (g, h)dµdν = H (1, 1) ,
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and this gives us
sup

(t,s)∈[0,1]2
H (t, s) = H (1, 1) .

(iii) By the Jensen’s inequality (2.1) we have

H (t, s) ≥ 1
W

∫
Ω2

wϕ

(
1
P

∫
Ω1

p [tg + (1 − t) g] dµ, sh+ (1− s)h
)
dν

=
1
W

∫
Ω2

wϕ
(
g, sh+ (1 − s) h

)
dν = H (0, s) ,

for all (t, s) ∈ [0, 1]2.
Now let 0 < t1 < t2 ≤ 1. Since H is convex on the co-ordinates and the above

inequality holds, for all s ∈ [0, 1] we have

H (t2, s) −H (t1, s)
t2 − t1

≥ H (t1, s)−H (0, s)
t1

≥ 0,

which implicates

(4.1) H (t1, s) ≤ H (t2, s) .

If t1 = 0, then H (t1, s)−H (0, s) = 0, so (4.1) remains true.
In the same way, for t ∈ [0, 1] and 0 ≤ s1 < s2 ≤ 1 we obtain

H (t, s1) ≤ H (t, s2) ,

so the function H is nondecreasing on the co-ordinates.
The proof is complete.

Theorem 8. Let function ϕ : I × J → R be convex on I × J and let functions
g, h, p and w be as in Theorem 7. Then:

(i) Function H is convex on [0, 1]2 ;

(ii) Define the function G : [0, 1] → R with G (t) = H (t, t). Then G is convex,
monotonic nondecreasing on [0, 1] and one has the bounds:

sup
t∈[0,1]

G (t) = G (1) =
1

PW

∫
Ω1

∫
Ω2

pwϕ (g, h)dµdν,

inf
t∈[0,1]

G (t) = G (0) = ϕ
(
g, h
)
.
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Proof. (i) Let (t1, s1) , (t2, s2) ∈ [0, 1]2 and λ, λ ≥ 0 with λ+ λ = 1. Since
ϕ is convex on I × J we have

H
(
λ (t1, s1) + λ (t2, s2)

)
= H

(
λt1 + λt2, λs1 + λs2

)
=

1
PW

∫
Ω1

∫
Ω2

pwϕ
[
λ
(
t1u+ (1 − t1)u, s1h+ (1 − s1) h

)
+λ
(
t2u+ (1− t2)u, s2h+ (1 − s2)h

)]
dµdν

≤ λ

PW

∫
Ω1

∫
Ω2

pwϕ
[
t1u+ (1 − t1) u, s1h+ (1 − s1)h

]
+

λ

PW

∫
Ω1

∫
Ω2

pwϕ
[
t1u+ (1 − t1)u, s1h+ (1− s1)h

]
= λH (t1, s1) + λH (t2, s2) ,

so H is convex on [0, 1]2.
(ii) Let t1, t2 ∈ [0, 1] and λ, λ ≥ 0 with λ+ λ = 1. Then, using the convexity

of the function H , we obtain

G
(
λt1 + λt2

)
= H

(
λt1 + λt2, λt1 + λt2

)
H
(
λ (t1, t1) + λ (t2, t2)

)
≤ λH (t1, t1) + λH (t2, t2)
= λG (t1) + λG (t2)

which shows the convexity of G on [0, 1].
By Theorem 7, for t ∈ [0, 1] we have

G (t) = H (t, t) ≤ H (1, 1) ,
G (t) = H (t, t) ≥ H (0, 0) ,

from which we deduce

sup
t∈[0,1]

G (t) = G (1) =
1

PW

∫
Ω1

∫
Ω2

pwϕ (g, h)dµdν,

inf
t∈[0,1]

G (t) = G (0) = ϕ
(
g, h
)
.

In the end, for 0 ≤ t1 < t2 ≤ 1 similarly as in Theorem 7 we can deduce

G (t1) ≤ G (t2) ,

which means that the function G is nondecreasing on [0, 1].
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This completes the proof.

Some results related to those given in this section can be found in [1].

5. SOME RELATED RESULTS

Let us consider functions ϕ, p, w, g and h defined as in Section 2. If we change
the condition on the function ϕ in the way that we demand that the second derivative
ϕxx is convex on the second co-ordinate, or that the second derivative ϕyy is convex
on the first co-ordinate, we obtain some other inequalities of Jensen’s type related
to those given in Section 2.

Theorem 9. Let ϕ : I × J → R be a function, and let p, w, g and h be as in
Theorem 1. If ϕxx is convex on the second co-ordinate, or if ϕ yy is convex on the
first co-ordinate, then ∫

Ω1

∫
Ω2

pwϕ (g, h)dµdν + PWϕ
(
g, h
)

(5.1)

≥ P

∫
Ω2

wϕ (g, h) dν +W

∫
Ω1

pϕ
(
g, h
)
dµ.(5.1)

Proof. Let ϕxx be convex on the second co-ordinate. We define function
Fh : I → R as

Fh (x) =
∫

Ω2

wϕ (x, h) dν −Wϕ
(
x, h

)
.

We have
F ′′

h
(x) =

∫
Ω2

wϕxx (x, h)dν −Wϕxx

(
x, h

)
,

so by the convexity of ϕxx and the integral Jensen’s inequality (2.1) we may conclude
that F ′′

h
(x) ≥ 0 for all x ∈ I. In other words, if the function ϕxx is convex on the

second co-ordinate, then the function Fh is convex on I . This means that we can
apply the integral Jensen’s inequality (2.1) on the function Fh to obtain

PFh (g) ≤
∫

Ω1

pFh (g) dµ.

This can be rewritten as

P

[∫
Ω2

wϕ (g, h) dν −Wϕ
(
g, h
)]

≤
∫

Ω1

p

[∫
Ω2

wϕ (g, h)dν −Wϕ
(
g, h
)]
dµ,
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from which we can easily obtain (5.1). If the function ϕyy is convex on the first
co-ordinate, we proceed analogously.

Theorem 10. Let ϕ : [m,M ]× [n,N ] → R be a function, and let x, y, p and
w be as in Theorem 2. If ϕxx is convex on the second co-ordinate, or if ϕ yy is
convex on the first co-ordinate, then

n∑
i=1

m∑
j=1

piwjϕ (xi, yj) + PnWmϕ (x, y)

≥ Pn

m∑
j=1

wjϕ (x, yj) +Wm

n∑
i=1

piϕ (xi, y) .

Proof. Directly from Theorem 9.

Theorem 11. Let ϕ : [m,M ]× [n,N ] → R be a function, and let p, w, g and
h be as in Theorem 1. If ϕxx is convex on the second co-ordinate, or if ϕ yy is
convex on the first co-ordinate, then

(5.2)

M − g

M −m

N − h

N − n
ϕ (m, n) +

g −m

M −m

N − h

N − n
ϕ (M, n)

+
M − g

M −m

h− n

N − n
ϕ (m,N ) +

g −m

M −m

h− n

N − n
ϕ (M,N )

+
1

PW

∫
Ω1

∫
Ω2

pwϕ (g, h)dµdν

≥ 1
W

[
M − g

M −m

∫
Ω2

wϕ (m, h) dν +
g −m

M −m

∫
Ω2

wϕ (M, h) dν
]

+
1
P

[
N − h

N − n

∫
Ω1

pϕ (g, n)dµ+
h− n

N − n

∫
Ω1

pϕ (g, N )dµ
]
.

Proof. Let ϕxx be convex on the second co-ordinate. We define function
Fh : [m,M ] → R as

Fh (x) =
N − h

N − n
ϕ (x, n) +

h − n

N − n
ϕ (x,N )− 1

W

∫
Ω2

wϕ (x, h) dν.

We have

F ′′
h

(x) =
N − h

N − n
ϕxx (x, n) +

h− n

N − n
ϕxx (x,N )− 1

W

∫
Ω2

wϕxx (x, h) dν,
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so by the convexity of ϕxx and the converse integral Jensen’s inequality (2.4) we
may conclude that F ′′

h
(x) ≥ 0 for all x ∈ I . This means that we can apply the

inequality (2.4) on the function Fh to obtain

M − g

M −m
Fh (m) +

g −m

M −m
Fh (M) ≥ 1

P

∫
Ω1

pFh (g)dµ,

and from this we can easily obtain (5.2). If the function ϕyy is convex on the first
co-ordinate, we proceed analogously.

Theorem 12. Let ϕ : [m,M ]× [n,N ] → R be a function, and let x, y, p and
w be as in Theorem 2. If ϕxx is convex on the second co-ordinate, or if ϕ yy is
convex on the first co-ordinate, then

M − x

M −m

N − y

N − n
ϕ (m, n) +

x−m

M −m

N − y

N − n
ϕ (M, n) +

M − x

M −m

y − n

N − n
ϕ (m,N )

+
x−m

M −m

y − n

N − n
ϕ (M,N ) +

1
PnWm

n∑
i=1

m∑
j=1

piwjϕ (xi, yj)

≥ 1
Wm

M − x

M −m

m∑
j=1

wjϕ (m, yj) +
x−m

M −m

m∑
j=1

wjϕ (M, yj)


+

1
Pn

[
N − y

N − n

n∑
i=1

piϕ (xi, n) +
y − n

N − n

n∑
i=1

piϕ (xi, N )

]
.

Proof. Directly from Theorem 11.

Let g : [a, b] → (m,M) , where −∞ < a < b < ∞ and −∞ ≤ m < M ≤ ∞,
be a continuous and monotonic function and let λ : [a, b] → R, where λ (a) ≤
λ (t) ≤ λ (b) , ∀t ∈ [a, b] and λ (b) − λ (a) > 0, be a continuous function or a
function of bounded variation on [a, b]. If function ϕ : (m,M) → R is convex on
(m,M) , then the inequality

(5.3) ϕ

(∫ b
a g (u) dλ (u)∫ b

a dλ (u)

)
≤ 1∫ b

a dλ (u)

∫ b

a
ϕ (g (u)) dλ (u) ,

holds. Inequality (5.3) is the well-known Jensen-Steffensen’s inequality (see for
example [4, p. 59]).

In the following theorem we show that a similar result to the one given in
Theorem 9 can be obtained if we, instead of the integral Jensen’s inequality, consider
the integral Jensen-Steffensen’s inequality.
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Theorem 13. Let ϕ : (m,M) × (n,N ) → R be a function, let g : [a, b] →
(m,M) and h : [c, d] → (n,N ), where −∞ < a < b <∞, −∞ ≤ m < M ≤ ∞,
−∞ < c < d < ∞ and −∞ ≤ n < N ≤ ∞, be continuous and monotonic
functions, and let λ : [a, b] → R and ρ : [c, d] → R be continuous functions or
functions of bounded variation such that

λ (a) ≤ λ (s) ≤ λ (b) , ∀s ∈ [a, b] ; λ (b)− λ (a) > 0,

ρ (c) ≤ ρ (t) ≤ ρ (d) , ∀t ∈ [c, d] ; ρ (d) − ρ (c) > 0.

If ϕxx is convex on the second co-ordinate, or if ϕ yy is convex on the first co-
ordinate, then the inequality∫ b

a

∫ d

c
ϕ (g (u) , h (v)) dλ (u) dρ (v) + LRϕ

(
g, h
)

≥ R

∫ b

a

ϕ
(
g (u) , h

)
dλ (u) + L

∫ d

c

ϕ (g, h (v)) dρ (v)

holds, where

L =
∫ b

a
dλ (u) , R =

∫ d

c
dρ (v)

g =
1
L

∫ b

a
g (u) dλ (u) , h =

1
R

∫ d

c
h (v) dρ (v)

Proof. Let ϕxx be convex on the second co-ordinate. We define function
Fh : (m,M) → R as

Fh (x) =
∫ d

c

ϕ (x, h (v)) dρ (v) −Rϕ
(
x, h

)
.

Afte this we proceed analogously as in Theorem 9, but using (5.3) instead of
(2.1).

Remark 4. A discrete version of Theorem 13 can be obtained in a similar
way if instead of inequality (5.3) we use discrete version of Jensen-Steffensen’s
inequality ( see for example [3, p. 6] or [4, p. 57]).

Analogous results to those given in Theorem 9 and Theorem 13 can be obtained
if we (instead of Jensen’s or Jensen-Steffensen’s inequality) use the Majorization
theorem (see for example [4, p. 319, 325]) or the Popoviciu’s inequality (see [4, p.
171]).
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Faculty of Textile Technology,
University of Zagreb,
Pierottijeva 6, 10000 Zagreb,
Croatia
E-mail: pecaric@hazu.hr


