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SEMICONTINUITY OF METRIC PROJECTIONS
IN c0-DIRECT SUMS

S. Lalithambigai and Darapaneni Narayana

Abstract. Let {Xi : i ∈ N} be a family of Banach space and let Yi ⊆ Xi be a
closed subspace in Xi for each i ∈ N such that at least two Y ′

i s are non-trivial.
Consider X = (⊕c0Xi)i∈N and Y = (⊕c0Yi)i∈N. We show that Y is strongly
proximinal in X if and only if PY is upper Hausdorff semi-continuous on X
if and only if Yi is strongly proximinal subspace in Xi for each i ∈ N. This
shows that in [9, Theorem 3.4], strong proximinality of Yi’s is a necessary
assumption. We also show that lower semi-continuity of metric projections
is stable in c0-direct sums.

1. INTRODUCTION

We work only with real Banach spaces. For a Banach space X , we denote by
BX , SX and NA(X) the closed unit ball of X , unit sphere of X and the set of
norm attaining functionals on X . For x in X and r > 0, we denote by BX (x, r)
and BX [x, r] resp. the open ball of X centered at x with radius r and the closed
ball of X centered at x with radius r. Let X be a Banach space and Y be a closed
subspace of X . Let x ∈ X and δ > 0. Consider the maps PY (·) : X ⇒ Y and
PY (·, δ) : X ⇒ Y defined by

PY (x) = {y ∈ Y : ‖x − y‖ = d(x, Y )}
PY (x, δ) = {y ∈ Y : ‖x − y‖ < d(x, Y ) + δ}

The set PY (x) is the set of all best approximations of x in Y . This defines a
set-valued mapping and PY is called the metric projection onto Y . Y is said to be
a proximinal subspace of X if for every x ∈ X , PY (x) is nonempty. A proximinal
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subspace Y of X is said to be strongly proximinal if for all x ∈ X and ε > 0, there
exists δ > 0 such that for all y ∈ PY (x, δ), d(y, PY (x)) < ε([5] and [4]).

The following is shown in [9] :

Theorem 1.1. Let X1 and X2 be two Banach spaces and let Y1 and Y2 be
closed subspaces in X1 and X2 resp. Then

(i) If PY1 and PY2 are lower Hausdorff semi-continuous , then PY1⊕�∞Y2 is lower
Hausdorff semi-continuous on X 1 ⊕�∞ X2.

(ii) If PY1 and PY2 are upper Hausdorff semi-continuous, and Y 1 and Y2 are
strongly proximinal in X1 and X2 resp. then PY1⊕�∞Y2 is upper Hausdorff
semi-continuous on X1 ⊕�∞ X2.

And also it is proved that if Y is a finite codimensional proximinal subspace of
c0, then Y is proximinal in �∞ and PY is Hausdorff metric continuous.

In this note we prove that strong proximinality of Y1 and Y2 in Theorem 1.1(ii) is
necessary and sufficient for upper Hausdorff semi-continuous of PY1⊕�∞Y2 and the
above result holds true for infinite c0-direct sums. Indeed we prove the following.
Our techniques are different from [9].

Let {Xi : i ∈ N} be a family of Banach spaces and Yi be a subspace in Xi for
each i ∈ N. Assume that at least two Yis are nontrivial. Consider the following
direct sums X = (⊕c0Xi)i∈N and Y = (⊕c0Yi)i∈N.

Theorem 1.2. Then:
(i) The following are equivalent :

(a) Yi is strongly proximinal in Xi for each i ∈ N

(b) Y is strongly proximinal in X .
(c) PY is upper Hausdorff semi-continuous in X .

(ii) The following are equivalent :
(a) PYi is lower semi-continuous (resp. lower Hausdorff semi-continuous )

in Xi for each i ∈ N

(b) PY is lower semi-continuous (resp. lower Hausdorff semi-continuous )
in X .

We also prove that if Y is a factor reflexive proximinal subspace of a Banach
space X , where X is a c0-direct sum of a family of reflexive Banach spaces, then
Y is proximinal in all duals of even order of X . If PY is lower semicontinuous
(lower Hausdorff semicontinuous or upper Hausdorff semicontinuous or Hausdorff
metric continuous resp.) on X , then PY also has the same continuity properties on
all its duals of even order.

Now a few definitions are in order :
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Let X be a Banach space and let Y be a proximinal subspace of X . Let PY be
the metric projection of X onto Y . PY is said to be lower semicontinuous (l.s.c) at
x ∈ X if for each open set V ⊂ Y with PY (x)∩V �= φ, there exists a neighborhood
U of x such that PY (z) ∩ V �= φ for all z ∈ U . This is equivalent to saying :

For x in X , ε > 0 and y in PY (x), there exists δ > 0 such that PY (z) ∩
BY (y, ε) �= ∅ for all z in BX(x, δ). If the choice of δ is independent of the choice
of y ∈ PY (x), equivalently

(1) PY (z) ∩ BY (y, ε) �= ∅, ∀ y ∈ PY (x) and ∀ z ∈ BX(x, δ)

then we say PY is lower Hausdorff semi continuous (l.H.s.c) at x.
The metric projection PY is said to be upper semicontinuous(u.s.c.) at x if for

every open set V ⊆ Y such that PY (x) ⊆ V , there exists an open neighborhood U
of x such that PY (z) ⊆ V for all z ∈ U . And PY is said to be upper Hausdorff
semicontinuous(u.H.s.c.) at x, if for every ε > 0, there exists an open neighborhood
U of x in X such that PY (z) ⊆ PY (x) + εBY for all z ∈ U .

Remark 1.3. If the metric projection is single valued, then all the above semi
continuities are equivalent to continuity of a single valued map. Let Y be a closed
subspace of a Banach space X and x ∈ X . If Y is strongly proximinal at x it is
easy to see that PY is u.H.s.c at x.

We present a few examples of metric projections which have(or do not have)
the above semi continuities.

Examples :
(i) Let Y be a finite dimensional subspace of a Banach space X . Then PY is

u.s.c. and u.H.s.c. on X . If X is polyhedral, then PY is l.s.c and l.H.s.c.
A. L. Brown has constructed an example of three dimensional non-polyhedral
normed linear space which has one dimensional subspace such that metric
projection onto this subspace is not l.s.c.

(ii) Let Y be a finite co-dimensional proximinal subspace of c0. Then PY is
l.H.s.c. and u.H.s.c. on c0 ([9]).

(iii) Let Y be a proximinal hyperplane in a Banach space X . Then PY is l.s.c.,
l.H.s.c. and u.H.s.c. resp. on X (Proposition 2.1). In particular if we take
X = c0 and Y = ker f where f = (1, 0, 0, · · ·) ∈ �1, then Y is proximinal
and PY is not u.s.c. on X \ Y as PY has non-compact images for all points
in X \ Y ([2]).

Let Y be a subspace of a Banach space X . Let C(Y ) denote the class of all
bounded, closed and convex subsets of Y . The Hausdorff metric on C(Y ) is given
by

h(A, B) = max{sup
x∈A

d(x, B), sup
y∈B

d(y, A)}
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for all A and B in C(Y ).
We say that PY is Hausdorff metric continuous(H.m.c.) at x if PY is continuous

from X into C(Y ). Observe that if Y is proximinal in X , then PY is H.m.c at x in
X if and only if PY is both l.H.s.c and u.H.s.c at x ([9, Remark 2.8]). It follows
by observing that if A and B are in C(Y ), then h(A, B) < ε ⇔ A ⊆ B + εBY

and A ∩ BY (z, ε) �= ∅ for all z ∈ B. Now by Example (ii), if Y is a finite co-
dimensional proximinal subspace of c0, then PY is H.m.c. Indeed, it will be shown
that (Corollary 3.6) if Y is finite co-dimensional proximinal subspace of c0, then Y
is strongly proximinal in all even duals of c0 and PY is H.m.c. on each of them.

2. CONTINUITY AND STRONG PROXIMINALITY IN �∞-DIRECT SUM OF FINITE FAMILY OF

BANACH SPACES

It would be interesting to see whether there is any connection between continuity
of metric projection and strong proximinality. If Y is strongly proximinal then by
simple observation we can show that PY is u.H.s.c. In general converse is not
true i.e., continuity of the metric projection does not imply strong proximinality of
the subspace. In the positive note we prove that if Y is proximinal subspace of a
Banach space X , then Y is strongly proximinal in X if and only if P(Y ⊕�∞Y ) is
u.H.s.c. in X ⊕�∞ X .

It was shown in [2] that if Y is a proximinal subspace of X and x ∈ X , then

• PY is u.s.c. at x if and only if PY is u.H.s.c. at x and PY (x) is compact in
Y (Theorem 1).

• If PY is l.H.s.c. at x, then PY is l.s.c. at x (Lemma 2).

If PY (x) is compact, then

• PY is l.H.s.c. at x if and only if PY is l.s.c. at x.

We do not have an example of a metric projection which is l.s.c. but not l.H.s.c.
In [12], it was shown that, for any proximinal hyperplane Y in X , PY is both
u.H.s.c. and l.H.s.c. By [2, Lemma 2], PY is l.s.c. In [16, Theorem 4], it was
shown that PY is l.s.c on X when Y is a proximinal hyperplane in X . It was also
noted in [13, Theorem 5] that if X is reflexive and Y is hyperplane in X , PY is
u.H.s.c. Now we give a simple proof for all the above facts :

Proposition 2.1. Let X be a Banach space and Y be a proximinal hyperplane
in X. Then

(i) PY is u.H.s.c. on X .
(ii) PY is l.s.c. on X
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(iii) PY is l.H.s.c. on X .

If PY has only compact images in Y , then

(iv) PY is u.s.c. on X .

Proof. Let x ∈ X and ε > 0. Let {xn} be in X such that xn→x. Let f ∈SX∗

such that f ∈NA(X) and consider Y =ker f . Then Y is proximinal in X .
(i) : To prove (i) we show that there exists n0 such that PY (xn) ⊆ PY (x) + εBY

for all n ≥ n0.
With out loss of generality, assume that d(xn, Y ) = d(x, Y ) = 1 = f(x) for all

n ≥ 1. Now there exists n1 > 0 such that f(xn) = f(x) for all n ≥ n1. Now we
have for all n ≥ n1

xn − PY (xn) = {z ∈ SX : f(z) = f(xn)}
= {z ∈ SX : f(z) = f(x)}
= x − PY (x)

Then PY (xn) = (xn − x) + PY (x). Since xn → x, there exists n2 > 0 such that
‖xn−x‖ < ε for all n ≥ n2. Let n0 = max{n1, n2}. Then PY (xn) ⊆ PY (x)+εBY

for all n ≥ n0 which proves (i). It is easy to see that remaining part of the
Proposition by the above discussion.

By the above Proposition and [4, Proposition 2.6], u.H.s.c of PY need not imply
that Y is strongly proximinal. Now we study some cases when the converse is
true. Let {Xi : i ∈ I} be a finite family of Banach spaces, where I ⊆ N and
|I | = n < ∞. Let Yi be a proximinal subspace in Xi for each i ∈ I and consider
X = (⊕�pXi)i∈I and Y = (⊕�pYi)i∈I where 1 ≤ p < ∞. By simple calculations,
it can be seen that PYi is l.s.c(l.H.s.c or u.H.s.c or Hausdorff metric continuous
resp.) for each i ∈ I , if and only if PY is l.s.c(l.H.s.c or u.H.s.c or Hausdorff
metric continuous resp.) on X . Similar result holds true for strong proximinality.
When p = +∞, situation is different. First we start with finite family of Banach
spaces and show the semi-continuity results for �∞-direct sum of these spaces. We
apply these results to show that [9, Theorem 3.4] holds true for c0-direct sum of
infinite family of Banach spaces. For this we need to introduce some notations :

We consider �∞-direct sum of finite family of Banach spaces {Xi : i ∈ I}, i.e.,
X = (⊕�∞Xi)i∈I where I is a finite subset of N. For x = (xi) ∈ X , we have
‖x‖�∞ = supi∈I{‖xi‖}. Let Yi be a proximinal subspace of Xi for each i ∈ I .
Now consider �∞-direct sum of Yi i.e., Y = (⊕�∞Yi)i∈I . For x = (xi)i∈I , we set

di(x) = d(xi, Yi) for i ∈ I
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Note that d(x) = supi∈I{di(x)} and also for any x′ = (x′
i) ∈ X , we have

|di(x) − di(x′)| ≤ ‖xi − x′
i‖. In particular d and di’s are 1-Lipschitz functions on

X and Xi for each i ∈ I resp.
The following Remark is easy to verify :

Remark 2.2. Let Yi be a proximinal subspace of Xi for i ∈ I and consider
X = (⊕�∞Xi)i∈I and Y = (⊕�∞Yi)i∈I . Then Y is proximinal in X and

PY (x) = (⊕�∞BXi [xi, d(x)]∩ Yi)i∈I

Observe that if di(x) = d(x), we have BXi [xi, d(x)]∩ Yi = PYi(xi).

We need the following result([9, Fact 3.2]), in the sequel :

Lemma 2.3. ([9]) Let X be a Banach space, Y be a proximinal subspace of
X and x be in X\Y . Let α > d(x, Y ) = dx. Then given ε > 0, there exists
δ > 0 such that for any z in BX(x, δ) and β satisfying |β − α| < δ, we have

h(BX [x, α] ∩ Y, BX [z, β] ∩ Y ) ≤ ε.

Before going further, we first introduce some more notations :
As usual, let {Xi : i ∈ I} be a finite family of Banach spaces, Yi be a proximinal

subspace of Xi for each i ∈ I and consider their �∞-direct sums X = (⊕�∞Xi)i∈I

and Y = (⊕�∞Yi)i∈I , where I ⊂ N with |I | = n < ∞. Let us define a map I0

from X into 2I by
I0(x) = {i ∈ I : di(x) = d(x)}

Observe that I0 is upper semi-continuous on X . Indeed for given x0 ∈ X , there
exists η > 0 such that if ‖x− x0‖ < η, then I0(x) ⊆ I0(x0). Let us define another
map QYi from X into 2Yi for fixed i ∈ I by

(2) QYi(x) = BXi [xi, d(x)]∩ Yi for i ∈ I

Then we have PY (x) = (⊕�∞QYi(x))i∈I.

Lemma 2.4. Let {Xi : i ∈ I} be a finite family of Banach spaces and let Y i

be a proximinal subspace of X i for each i ∈ I , where I ⊂ N and |I | = n < ∞.
Consider X = (⊕�∞Xi)I and Y = (⊕�∞Yi)I . Let QYi be defined as above. If
QYi is l.s.c(l.H.s.c or u.H.s.c resp.) at x = (xi) ∈ X for each i ∈ I then PY (x) is
l.s.c(l.H.s.c or u.H.s.c resp.) at x.

Proof. Suppose QYi is l.s.c at x = (xi) ∈ X for each i ∈ I . Let ε > 0 and
y = (yi) ∈ PY (x). We have to show that there exists δ > 0 such that

(3) PY (z) ∩ BY (y, ε) �= ∅∀ z ∈ BX(x, δ)
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By l.s.c of QYi at x, there exists δi > 0 such that

(4) QYi(z) ∩ BYi(yi, ε) �= ∅∀ z ∈ BX(x, δ)

Let δ = mini∈I{δi}. Then it is easy to see that

(5) PY (z) ∩ BY (y, ε) �= ∅∀ z ∈ BX(x, δ)

This implies that PY is l.s.c at x. Similar arguments show that PY is l.H.s.c at x
if QYi is l.H.s.c at x for each i ∈ I .

Now suppose QYi is u.H.s.c at x = (xi) ∈ X for each i ∈ I and ε > 0. By
u.H.s.c of QYi at x, there exists δi > 0 such that

(6) QYi(z) ⊆ QYi(x) + εBYi∀ z ∈ BX(x, δi)

Let δ = mini∈I{δi}. Then it is easy to see that

(7) PY (z) ⊆ PY (x) + εBY ∀ z ∈ BX (x, δ)

Indeed, let z ∈ BX(x, δ) and y = (yi) ∈ PY (z). Then there exists y′
i ∈ QYi(xi)

such that ‖yi − y′i‖ < ε for each i ∈ I . We have y′ = (y′i) ∈ PY (x) and
‖y − y′‖�∞ < ε. Then (7) holds true and this implies u.H.s.c of PY at x.

In the following, we show that l.s.c. and l.H.s.c. will be preserved in �∞-direct
sum of finite family of Banach spaces. Observe that our techniques are different
from [9].

Proposition 2.5. Let {Xi : i ∈ I} be a finite family of Banach spaces, where
I ⊂ N and |I | = n < ∞. Let Yi be a proximinal subspace of X i and each PYi is
l.s.c (l.H.s.c resp.) on respective Xi for i ∈ I . Consider X = (⊕�∞Xi)i∈I and
Y = (⊕�∞Yi)i∈I . Then Y is proximinal in X and PY is l.s.c(l.H.s.c resp.) on X.

Proof. Suppose Yi is proximinal in Xi and PYi is l.s.c for each i ∈ I . Prox-
iminality of Y is obvious. Fix x = (xi) ∈ X and ε > 0 be given. Consider
PY (x) = (⊕�∞B[xi, d(x)] ∩ Yi)i∈I . In order to prove that PY is l.s.c at x, by
Lemma 2.4, it is enough if we prove that QYi is l.s.c at x for every i ∈ I . This is
done in two cases :

Case 1. Let i ∈ I0(x). Then we have PYi(xi) = QYi(x). Select any yi ∈
PYi(xi). Using the l.s.c of the map PYi at xi, we can get δ > 0 such that

(8) zi ∈ Xi, ‖xi − zi‖ < δ ⇒ BYi(yi, ε) ∩ PYi(zi) �= ∅
Since PYi(zi) ⊆ B[zi, d(z)]∩ Yi, (8) holds for QYi also. This implies that QYi

is l.s.c at x.
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Case 2. Let i ∈ I \ I0(x). Replacing α be d(x) and dx by di(x) in Lemma
2.3, we can get δ > 0 such that if ‖x − z‖ < δ, then

h(BXi [xi, d(x)], BXi[zi, d(z)]) < ε

i.e.,
h(QYi(x), QYi(z)) < ε

Choose any z ∈ BX(x, δ). If ti ∈ QYi(x), using Lemma 2.3, we can select ri

in QYi(z) satisfying ‖ti − ri‖ < ε which implies l.s.c of QYi at x. Indeed, QYi is
l.H.s.c at x in this case.

Let x = (xi) ∈ X and ε > 0 be given. Now suppose i ∈ I0(x) and PYi is
l.H.s.c at xi. Then there exists δ > 0 such that

BYi(yi, ε) ∩ PYi(zi) �= ∅ ∀zi ∈ BXi(xi, δ) and ∀yi ∈ PYi(xi)

To show that QYi is l.H.s.c at x, let z′ = (z′i) ∈ BX(x, δ). Then z′i ∈ BXi(xi, δ).
Since PYi(z

′
i) ⊆ B[z′i, d(z′)] ∩ Yi = QYi(z

′), we have BYi(yi, ε) ∩ QYi(z
′) �= ∅ for

all yi ∈ QYi(xi). Since z′ ∈ BX(x, δ) is arbitrary, we have

BYi(yi, ε) ∩ QYi(z
′) �= ∅ ∀z′ ∈ BX(x, δ) and ∀yi ∈ QYi(xi) = PYi(xi)

This implies that QYi is l.H.s.c at x.

The following theorem shows that strong proximinality of Yi can not be weak-
ened in the hypothesis of [9, Theorem 3.4].

Theorem 2.6. Let {Xi : i ∈ I} be a finite family of Banach spaces and Y i be
a closed subspace of Xi for each i ∈ I resp., where I ⊂ N and 1 < |I | = n < ∞.
Assume that at least two Y is are nontrivial. Consider its �∞-direct sum i.e., X =
(⊕�∞Xi)i∈I and Y = (⊕�∞Yi)i∈I . Then TFAE :

(i) Yi is strongly proximinal subspace in Xi for each i ∈ I

(ii) Y is strongly proximinal in X

(iii) PY is u.H.s.c on X

Proof. (i) ⇒ (ii) : Proximinality of Y follows easily. Let x ∈ X such that
d(x, Y ) = 1 and ε > 0 be given. We have that PY (x) = (⊕�∞B[xi, 1] ∩ Yi). For
i ∈ I0(x), by strong proximinality of Yi at xi, there exists δi > 0 such that

PYi(xi, δi) ⊆ PYi(xi) + εBYi

For i ∈ I \ I0(x), replacing α by d(x) and dx by di(x) in the Lemma 2.3, we
can get δi > 0 such that if ‖x − z‖ < δ, then

h(BXi [xi, d(x)]∩ Yi, BXi [zi, d(z)]∩ Yi) < ε
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In particular, we have

BXi [xi, d(x) + δi] ∩ Yi ⊆ BXi [xi, d(x)] + εBYi

Now, let δ = mini∈I{di}. Then we have that

⊕�∞BXi [xi, d(x) + δ] ∩ Y ⊆ ⊕�∞BXi [xi, d(x)]∩ Y + εBY

which implies (ii).
(ii) ⇒ (iii): Follows easily by definition of strong proximinality.
(iii) ⇒ (i): Fix i0 ∈ I and let xi0 ∈ Xi0 . Let xi ∈ Xi such that d(xi, Yi) =

d(xi0, Yi0) for all i ∈ N \ {i0}. Suppose Yj is a non-trivial subspace in Xj and
j �= i0. Let xj in Xj such that d(xj, Yj) = d(xi0, Yi0) and consider x = (xi) where

xi =




xi if i ∈ N \ {i0, j}
xi0 if i = i0

xj if i = j

By u.H.s.c. of PY at x, there exists δ > 0 such that

PY (z) ⊆ PY (x) + εBY for every z ∈ BX(x, δ)

i.e.,

PYi0
(zi0) ⊆ BXi0

[zi0, d(z)]∩Yi0 ⊆ PYi0
(xi0)+εBYi0

for all z = (zi) ∈ BX(x, δ)

Let z ∈ BX(x, δ) such that di0(z) < d(z) and d(x) < mini∈I {di(z)}. So there
exists η > 0 with δ > η > 0 such that di0(z)+η < d(z). Let zi0 ∈ BXi0

(xi0, δ/3).

Denote z′ = (z′i), where zi =

{
zi if i ∈ N \ {i0}
z′i0 if i = i0

Then

di0(z
′, Y ) = d(z′i0, Yi0)

= inf
yi0∈Yi0

‖z′i0 − yi0‖

≤ ‖z′i0 − xi0‖+ inf
yi0∈Yi0

‖xi0 − yi0‖

< η/2 + d(x)

< d(z)

By u.H.s.c. of PY at x, we have that

BXi0
[z′i0, d(z′)] ∩ Yi0 ⊆ PYi0

(xi0) + εBYi0
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Let yi0 ∈ PYi0
(xi0, η/2). Then

‖z′i0 − yi0‖ ≤ ‖z′i0 − xi0‖ + ‖xi0 − yi0‖
< η/2 + d(x) + η/2

< d(z′) = d(z)

i.e.,
PYi0

(xi0, η/2) ⊆ PYi0
(xi0) + εBYi0

which implies that Yi0 is strongly proximinal in Xi0 .

Immediate Corollary of Proposition 2.5 and Theorem 2.6 is

Corollary 2.7. Let {Xi : i ∈ I} be a finite family of Banach spaces and
Yi be a proximinal subspace in X i, for each i ∈ I where I ⊂ N. Consider their
�∞-direct sums i.e., X = (⊕�∞Xi)i∈I and Y = (⊕�∞Yi)i∈I . Then Yi is strongly
proximinal and PYi is l.H.s.c. in Xi for each i ∈ I if and only if PY is H.m.c.

Now by Theorem 2.6, we can deduce the following:

Corollary 2.8. Let Y be a proximinal subspace in a Banach space X . Then
Y is strongly proximinal in X if and only if P (Y ⊕�∞Y ) is u.H.s.c. on X ⊕�∞ X .

3. SEMICONTINUITY AND STRONG PROXIMINALITY IN c0-DIRECT SUM SPACES

In the following theorem we show that l.s.c. is stable under general c0-direct
sums since same arguments will work for l.H.s.c. also, we avoid presenting later
one.

Theorem 3.1. Let {Xi : i ∈ N} be a family of Banach spaces and Y i be a
proximinal subspace in X i for each i ∈ N. Consider the following direct sums
X = (⊕c0Xi)i∈N and Y = (⊕c0Yi)i∈N. Then PYi is l.s.c.(resp. l.H.s.c.) in Xi for
each i ∈ N if and only if PY is l.s.c.(resp. l.H.s.c.) in X .

Proof. It is easy to see that Y is proximinal in X . Indeed for x = (xi) ∈ X ,
we have

PY (x) = (⊕c0(BXi [xi, d(x)]∩ Yi))i∈N

Suppose that PYi is l.s.c. in Xi for each i ∈ N. We claim that PY is l.s.c. in
X . Let x = (xi) ∈ X and ε > 0. Since x ∈ X , we have d(xi, Yi) = di(x) → 0
as i → ∞. So there exists n0 ∈ N such that di(x) < d(x) for all i > n0. Let
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N1 = {i : 1 ≤ i ≤ n0} and N2 = N \ N1. Now consider X ′ = (⊕�∞Xi)i∈N1,
X ′′ = (⊕c0Xi)i∈N2, Y ′ = (⊕�∞Yi)i∈N1 and Y ′′ = (⊕c0Yi)i∈N2 . Since N1 is finite,
PY ′ is l.s.c. at x′ = (x1, · · · , xn0) i.e., for each y′ ∈ PY ′(x′), there exists δ1 > 0
such that PY ′(z′) ∩ BY ′(y′, ε) �= ∅ for all z′ ∈ BX ′(x′, δ1).

Let x′′ = (xn0+1, xn0+2, · · ·) and ηx = supi∈N2{di(x)}. We have d(x′′, Y ′′) =
ηx < d(x). Let 2γ = d(x) − ηx. Replacing x by x′′ and α by d(x) in [9, Fact
3.2], we can get δ2 > 0 such that if ‖x − z‖ < δ2, then d(z) − ηz > γ and
h(BX ′′ [x′′, d(x)] ∩ Y ′′, BX ′′[z′′, d(z)] ∩ Y ′′) < ε. Let δ = min{δ1, δ2}. We have
PY (w) = (BX ′ [w′, d(w)]∩ Y ′) ⊕�∞ (BX ′′ [w′′, d(w)]∩ Y ′′) for all w ∈ BX(x, δ).
Let z ∈ BX(x, δ). If y′ ∈ BX ′ [x′, d(x)] ∩ Y ′ and y′′ ∈ BX ′′ [x′′, d(x)] ∩ Y ′′, by
using l.s.c. of PY ′ at x′ and [9, Fact 3.2]., we select r ′ ∈ BX ′ [z′, d(z)] ∩ Y ′ and
r′′ ∈ BX ′′ [z′′, d(z)] ∩ Y ′′ such that ‖y ′ − r′‖ < ε and ‖y′′ − r′′‖ < ε. We clearly
have that r = (r′, r′′) ∈ PY (z) and this implies l.s.c. of PY at x.

Converse follows easily.

Theorem 3.2. Let {Xi : i ∈ N} be a family of Banach spaces and Y i be
a subspace in Xi for each i ∈ N. Consider the following direct sums X =
(⊕c0Xi)i∈N and Y = (⊕c0Yi)i∈N. Then TFAE:

(i) Yi is strongly proximinal in Xi for each i ∈ N

(ii) Y is strongly proximinal in X .
(iii) PY is u.H.s.c. in X .

Proof. (i) ⇒ (ii), : Suppose each PYi is strongly proximinal in Xi for each
i ∈ N. It is easy to see that Y is proximinal in X . Indeed for x = (xi) ∈ X , we
have

PY (x) = (⊕c0(BXi [xi, d(x)]∩ Yi))i∈N

Let x = (xi) ∈ X and ε > 0. Since x ∈ X , we have d(xi, Yi) = di(x) → 0
as i → ∞. So there exists n0 ∈ N such that di(x) < d(x) for all i > n0. Let
N1 = {i : 1 ≤ i ≤ n0} and N2 = N \ N1. Now consider X ′ = (⊕�∞Xi)i∈N1,
X ′′ = (⊕c0Xi)i∈N2, Y ′ = (⊕�∞Yi)i∈N1 and Y ′′ = (⊕c0Yi)i∈N2 . Since N1 is finite,
Y ′ is strongly proximinal at x′ = (x1, · · · , xn0) i.e., there exists δ1 > 0 such that
PY ′(x′, δ1) ⊆ PY ′(x′) + εBY ′ .

Let x′′ = (xn0+1, xn0+2, · · ·) and ηx = supi∈N2{di(x)}. We have d(x′′, Y ′′) =
ηx < d(x). Let 2γ = d(x) − ηx. Replacing x by x′′ and α by d(x) in [9, Fact
3.2], we can get δ2 > 0 such that if ‖x − z‖ < δ2, then d(z) − ηz > γ and
h(BX ′′ [x′′, d(x)]∩ Y ′′, BX ′′[z′′, d(z)]∩ Y ′′) < ε. In particular, we have that

BX ′′ [x′′, d(x) + δ2] ∩ Y ′′ ⊆ BX ′′ [x′′, d(x)] + εBY ′′

Let δ = min{δ1, δ2}. With this δ, now the result follows.
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(ii) ⇒ (iii) : Follows by definition of strong proximinality.
(iii) ⇒ (i) : Follows by Theorem 2.6.

In the rest of this section, we consider mainly c0-direct sum of reflexive spaces.
Let us recall that a closed subspace Y of a Banach space X is called factor reflexive
if X/Y is reflexive. We show that factor reflexive proximinal subspaces in c0-direct
sum of reflexive spaces are proximinal in all duals of even order of c0-direct sum.
First let us recall some facts about M -embedded spaces from [6] and [15]:

Let X be a Banach space and P be a linear projection from X into X .

(i) P is said to be an M -projection if

‖x‖ = max{‖Px‖, ‖x− Px‖} for all x ∈ X

(ii) P is said to be an L-projection if

‖x‖ = ‖Px‖ + ‖x− Px‖ for all x ∈ X

A closed subspace Y of a Banach space X is called an L-summand if it is the
rang of an L-projection. Similarly M -summand will be defined. A closed subspace
Y of a Banach space X is called an M -ideal if Y ⊥ is an L-summand in X ∗,
where Y ⊥ = {f ∈ X∗ : f(y) = 0 ∀ y ∈ Y }. A Banach space X is called
an M -embedded if X is an M -ideal in X ∗∗ and X is called an L-embedded if X
is an L-summand in X ∗∗. Standard examples of M -embedded spaces are c0, and
K(�2), compact operators on �2. By Theorem III.1.6 of [6], c0 direct sum of M -
embedded spaces is M -embedded. In particular c0-direct sum of reflexive spaces is
M -embedded. If X is an M -embedded space, then X∗ is an L-embedded.

We consider a Banach space as canonically embedded in its bidual. We denote
by iX , the canonical injection. For a Banach space X and for n ≥ 0, we denote by
X (n), the nth dual of X where X (0) = X . In [15], it is proved that if X is M -
embedded, then X is an M -ideal in all duals of even order of X . It is also proved
in [15] that if X is M -embedded, then X ∗ is L-embedded in all duals of odd order
of X . By Proposition II.1.1 and Proposition II.1.8 from [6], if Y is an M -ideal in
a Banach space X , then Y is strongly proximinal in X and PY is Hausdorff metric
continuous (see also Proposition 2.1, [9]).

Let Y be a closed subspace of an M -embedded space X . By Theorem 5 from
[11] and Theorem 2 from [15], if Y has n-ball property in X , where n ≥ 1 1

2 , then
Y has n-ball property in all duals of even order of X(since we are not using ball
properties here, we have not given definitions of these). In the following, we prove
that if Y is a factor reflexive proximinal subspace of X = (⊕c0Xi)i∈N, where Xi

is reflexive for each i ∈ N, then Y is proximinal in all duals of even order of X .
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Remark 3.3. Let {Xi : i ∈ N} be a family of reflexive spaces and consider its
c0-direct sum i.e., X = (⊕c0Xi)N. We observe that

NA(X) = {f = (fi) ∈ X∗ = (⊕�1X
∗
i )i∈N : only finitely many fi’s are non-zero }

Let M be a norm closed subspace of NA(X). It is proved in [10, Lemma 2.3]
that, there exists n0 such that if f = (fi) ∈ M , then fi = 0 for all i > n0. In
otherwords, number of the non-zero coordinates of elements of M are uniformly
bounded. Indeed, M is norm closed subspace in NA(X) if and only if M is
reflexive in NA(X).

Let Y be a factor reflexive proximinal subspace of X = (⊕c0Xi)N. It is easy
to see that Y ⊥ ⊆ NA(X) (Proposition 2.14, [10]). Let n0 be in N such that
if f = (fi) ∈ Y ⊥, then fi = 0 for all i > n0. Let I = {i : 1 ≤ i ≤ n0}.
Now consider Z1 = (⊕�∞Xi)I and Z2 = (⊕c0Xi)N\I . Let us take Y1 = {x =
(xi) ∈ Z1 :

∑n0
i=1 fi(xi) = 0 : ∀f = (fi) ∈ Y ⊥} and Y2 = Z2. Observe that

Y = Y1 ⊕�∞ Y2.
For the following Proposition, we adopt notations from Remark 3.3.

Lemma 3.4. Let {Xi : i ∈ N} be a family of reflexive spaces and consider its
c0-direct sum i.e., X = (⊕c0Xi)N. Let Y be factor reflexive proximinal subspace
in X . Then TFAE :

(a) Y1 is strongly proximinal in Z 1.
(b) PY is u.H.s.c. on X (2n) for some n > 0.
(c) PY is u.H.s.c. on X (2n) for all n ≥ 0.

Proof. Follows by Theorem 2.6 and observing that Z2 is an M -summand, so
it is strongly proximinal in its all duals even order.

The following Lemma follows from Proposition 2.5 and Lemma 3.4.

Lemma 3.5. Let {Xi : i ∈ N} be a family of reflexive spaces and consider its
c0-direct sum i.e., X = (⊕c0Xi)N. Let Y be factor reflexive proximinal subspace
in X . Then TFAE :

(a) PY is l.s.c.(l.H.s.c. or H.m.c. resp.) on X .
(b) PY is l.s.c.(l.H.s.c. or H.m.c. resp.) on X(2n) for some n ≥ 0.
(c) PY is l.s.c.(l.H.s.c. or H.m.c. resp.) on X(2n) for all n ≥ 0.

If each Xi = R, we have more to say i.e., when X = c0. Let X be a finite
dimensional polyhedral space and Y be a subspace of X . Then it was proved in
[7] that the metric projection PY from X onto Y is l.s.c. on X . By compactness
arguments we can in fact show that PY is l.H.s.c.
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Now by Lemma 3.4 and Lemma 3,.5 we have :

Corollary 3.6. Let Y be a proximinal subspace of finite codimension in c 0.
Then Y is strongly proximinal in c

(2n)
0 and the metric projection from c

(2n)
0 onto Y

is Hausdorff metric continuous for every n ≥ 0.
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