GENERALIZED DERIVATIONS WITH NILPOTENT VALUES ON MULTILINEAR POLYNOMIALS

Jer-Shyong Lin and Cheng-Kai Liu

Abstract

Let R be a prime ring without nonzero nil one-sided ideals. Suppose that g is a generalized derivation of R and that $f\left(X_{1}, \cdots, X_{k}\right)$ is a multilinear polynomial not central-valued on R such that $g\left(f\left(x_{1}, \cdots, x_{k}\right)\right)$ is nilpotent for all x_{1}, \cdots, x_{k} in some nonzero ideal of R. Then $g=0$.

1. Introduction and Results

The study of derivations having values satisfying certain properties has been investigated in various papers. As to derivations having nilpotent values, Herstein and Giambruno [9] proved that if R is a semiprime ring and d is a derivation of R such that $d(x)^{n}=0$ for all x in some nonzero ideal I of R, where $n \geq 1$ is a fixed integer, then $d(I)=0$. In [7] Felzenszwalb and Lanski proved that if R is a ring with no nonzero nil one-sided ideals and d is a derivation such that $d(x)^{n}=0$ for all x in some nonzero ideal I of R, where $n=n(x) \geq 1$ is an integer depending on x, then $d(I)=0$. The extensions of this theorem to Lie ideals were obtained by Carini and Giambruno [3] in case char $R \neq 2$ and by Lanski [12] in case of arbitrary characteristic. A full generalization in this vein was proved by Wong [19]. She showed that if d is a derivation of a prime ring R such that $d\left(f\left(x_{1}, \cdots, x_{k}\right)\right)^{n}=0$ for all x_{i} in some nonzero ideal of R, where $n=n\left(x_{1}, \cdots, x_{k}\right) \geq 1$ is an integer depending on x_{i} and $f\left(X_{1}, \cdots, X_{k}\right)$ is a multilinear polynomial not central-valued on R, then $d=0$ provided that n is fixed or R contains no nonzero nil one-sided ideals.

Let R be a ring. An additive mapping $g: R \rightarrow R$ is called a generalized derivation of R if there exists a derivation d of R such that $g(x y)=g(x) y+x d(y)$

[^0]for all $x, y \in R$. In [10] Hvala proved a result concerning generalized derivations with nilpotent values of bounded index. In fact, he proved that if R is a prime ring of char $R>n$ and g is a generalized derivation of R satisfying $g(x)^{n}=0$ for all $x \in R$, then $g=0$. Later, Lee [15] extended this result to Lie ideals. Recently, [18] Wang showed that if g is a generalized derivation of a prime ring R such that $g\left(f\left(x_{1}, \cdots, x_{k}\right)\right)^{n}=0$ for all x_{i} in some nonzero ideal of R, where $n \geq 1$ is a fixed integer and $f\left(X_{1}, \cdots, X_{k}\right)$ is a multilinear polynomial not central-valued on R, then $g=0$. In this paper we shall prove the unbounded version of Wang's result. Precisely, we will prove the following

Theorem 1. Let K be a commutative ring with unity and let R be a prime K algebra without nonzero nil one-sided ideals. Let $f\left(X_{1}, \cdots, X_{k}\right)$ be a multilinear polynomial over K with at least one coefficient invertible in K. Suppose that g is a generalized derivation of R and $f\left(X_{1}, \cdots, X_{k}\right)$ is not central-valued on R such that $g\left(f\left(x_{1}, \cdots, x_{k}\right)\right)$ is nilpotent for all x_{1}, \cdots, x_{k} in some nonzero ideal I of R. Then $g=0$.

Let R be a ring. For $x, y \in R$, we denote $[x, y]=x y-y x$. An additive subgroup L of R is said to be a Lie ideal of R if $[u, r] \subseteq L$ for all $u \in L$ and $r \in R$. A Lie ideal L of R is called noncommutative if $[L, L] \neq 0$. It is well-known that if L is a noncommutative Lie ideal of a prime ring R, then $\left[x_{1}, x_{2}\right] \subset L$ for all x_{1}, x_{2} in some nonzero ideal I of R (see the proof of [8, Lemma 1.3]). So we immediately obtain the following result from Theorem 1.

Theorem 2. Let R be a prime ring without nonzero nil one-sided ideals and let L be a noncommutative Lie ideal of R. Suppose that g is a generalized derivation of R such that $g(u)$ is nilpotent for each $u \in L$. Then $g=0$.

Finally, we extend Wang's result to the case of semiprime rings.
Theorem 3. Let R be a semiprime K-algebra, where K is a commutative ring with unity. Let $f\left(X_{1}, \cdots, X_{k}\right)$ be a multilinear polynomial over K with at least one coefficient invertible in K. Suppose that g is a generalized derivation of R such that $g\left(f\left(x_{1}, \cdots, x_{k}\right)\right)^{n}=0$ for all $x_{1}, \cdots, x_{k} \in R$, where $n \geq 1$ a fixed integer. Then $\left[f\left(x_{1}, \cdots, x_{k}\right), x\right] g(y)=0$ for all $x_{1}, \cdots, x_{k}, x, y \in R$.

2. Preliminaries

Throughout, unless specially stated, let R be a prime K-algebra, where K is a commutative ring with unity and $f\left(X_{1}, \cdots, X_{k}\right)$ abbreviated by f or $f\left(X_{i}\right)$, will be a multilinear polynomial over K with at least one coefficient invertible in K.

An additive mapping $g: R \rightarrow R$ is called a generalized derivation of R if there exists a derivation d of R such that $g(x y)=g(x) y+x d(y)$ for all $x, y \in R$.

We let U be the maximal right ring of quotients of R and let Q stand for the two sided Martindale quotient ring of R. The center C of U (and Q) is called the extended centroid of R (see [1] for details). It is well-known that any derivation of R can be uniquely extended to a derivation of Q. Without loss of generality, we may write

$$
f\left(X_{1}, \cdots, X_{k}\right)=\alpha_{1} X_{1} \cdots X_{k}+\sum_{\sigma \neq i d} \alpha_{\sigma} X_{\sigma(1)} \cdots X_{\sigma(k)}
$$

where α_{1} is invertible in K and the sum is taken over all permutations σ except the identity $i d$ in the symmetric group S_{k}.

We include two preliminary lemmas.
Lemma 1.1. Let R be a prime ring with nonzero socle H. Suppose that R is not a domain and d is a derivation of R such that $d(e) e=0$ for all $e=e^{2} \in H$. Then $d=0$. By symmetry, if ed $(e)=0$ for all $e=e^{2} \in H$, then $d=0$.

Proof. Let $x \in R$. For $e=e^{2} \in H, e+(1-e) x e$ is still an idempotent in H. Assume first that d is X -inner, that is, $d(x)=a x-x a$ for some $a \in Q$. Then $(a e-e a) e=0$ for $e=e^{2} \in H$. Hence $a e=e a e$ for $e=e^{2} \in H$. Let $y \in H$ and $e=e^{2} \in H$. Then $(1-e) y \in H$. Note that H is a regular ring [6, Lemma 1]. So $(1-e) y H=h H$ for some $h=h^{2} \in H$. Hence $e h=0$. Since $a h=h a h$, we have $e a h=0$. Therefore $e a(1-e) y=0$ and then $e a(1-e) H=0$ implies that $e a(1-e)=0$. Thus $a e-e a=0$ for all $e^{2}=e \in H$. In particular, $a(e+(1-e) x e)=(e+(1-e) x e) a$. Then $a(1-e) x e=(1-e) x e a$ for all $x \in R$. Since R is not a domain, there exists $e=e^{2} \in H$ and $e \neq 0,1$. By Martindale's Lemma [17, Theorem 2 (a)], $a(1-e)=\lambda(1-e)$ and $e a=\lambda e$ for some $\lambda \in C$. So $a=\lambda$ and then $d=0$, as desired. Assume next that d is not X-inner. Let $x \in R$. Expanding $d(e+(1-e) x e)(e+(1-e) x e)=0$ and using $d(e) e=0$ to yield that

$$
d(e)(1-e) x e+d(1-e) x e+(1-e) d(x) e+(1-e) x d(e)(1-e) x e=0
$$

for all $x \in R$. Thus $(1-e) d(x) e+(1-e) x d(e) x e=0$. Applying Kharchenko's Theorem [11] by replacing $d(x), x$ with $y, 0$ respectively, we have that $(1-e) y e=0$ for all $y \in R$. Thus $e=0$ or 1 for $e=e^{2} \in H$, a contradiction. This proves the lemma.

The second lemma is implicit in the proof of [7, Theorem 5].
Lemma 1.2. Let R be a ring and $v \in R, v^{2}=0$. Suppose that for each $x \in R$ with $x^{2}=0$ we have either $x v=0$ or $v x=0$. Then $v h v=0$ for all nilpotent elements h in R.

Proof. Assume on the contrary that $v h v \neq 0$ for some nilpotent element h. Since h is nilpotent, there exists some $\ell \geq 1$ such that $v h^{k} v=0$ and $v h^{\ell} v \neq 0$ for all $k>\ell$. Note that $\left(\left(1+h^{\ell}\right) v\left(1+h^{\ell}\right)^{-1}\right)^{2}=0$. By assumption, either $v\left(1+h^{\ell}\right) v\left(1+h^{\ell}\right)^{-1}=0$ or $\left(1+h^{\ell}\right) v\left(1+h^{\ell}\right)^{-1} v=0$. Thus either $v\left(1+h^{\ell}\right) v=0$ or $v\left(1+h^{\ell}\right)^{-1} v=0$. So $0=v\left(1+h^{\ell}\right)^{-1} v=v\left(1-h^{\ell}+h^{2 \ell}-h^{3 \ell}+\cdots\right) v$. This implies that $v h^{\ell} v=0$, a contradiction.

2. Proof of Theorem 1 and Theorem 3

Before proving Theorem 1, we make the following remark. For each coefficient α of f, since α and $d(\alpha)$ are all contained in C, we may choose a nonzero ideal I_{α} of R such that $\alpha I_{\alpha} \cup d(\alpha) I_{\alpha} \subseteq R$. Replacing I by $I \cdot\left(\cap_{\alpha} I_{\alpha}\right)$, where the intersection runs over all coefficients of f, we may assume that $\alpha I \cup d(\alpha) I \subseteq R$ for each coefficient α of f. If $k=1$, then $f\left(X_{1}\right)=\alpha_{1} X_{1}$, where $\alpha_{1}^{-1} \in K$. Observe that $f\left(X_{1}\right) X_{2}=\alpha_{1} X_{1} X_{2}$ is not central-valued on R; otherwise R is commutative and then f is central-valued on R. Replacing f by $f X_{2}$, we may always assume that $k \geq 2$.

We divide the proof of Theorem 1 into several lemmas.
Lemma 2.1. Theorem 1 holds if R is a semisimple algebra.
Proof. Let ${ }_{R} M$ be an irreducible left R-module and $\operatorname{Ann}_{R}(M)=\{r \in R \mid$ $r m=0$ for all $m \in M\}$. Let $J=\alpha_{1} I^{2}$. Since $\alpha_{1}^{-1} \in K, J$ is a nonzero ideal of R contained in I. We claim that either $g\left(J^{2}\right) \subseteq \operatorname{Ann}_{R}(M)$ or $g\left(f\left(x_{i}\right)\right)^{k+1} \subseteq$ $\operatorname{Ann}_{R}(M)$ for $x_{i} \in I$. If $J \subseteq \operatorname{Ann}_{R}(M)$, then $g\left(J^{2}\right) \subseteq \operatorname{Ann}_{R}(M)$. So we may assume that $J M \neq 0$ and then M is also an irreducible left J-module. Let $D=\operatorname{End}\left({ }_{R} M\right)=\operatorname{End}\left({ }_{J} M\right)$. Suppose first that $\operatorname{dim} M_{D} \leq k+1$. Then $\bar{R}=$ $R / \operatorname{Ann}_{R}(M) \cong M_{m}(D)$, where $m \leq k+1$. Since $\overline{g\left(f\left(x_{i}\right)\right)}=g\left(f\left(x_{i}\right)\right)+\operatorname{Ann}_{R}(M)$ is nilpotent in \bar{R}, we must have ${\overline{g\left(f\left(x_{i}\right)\right)}}^{m}=\overline{0}$, that is, $g\left(f\left(x_{i}\right)\right)^{m} \in \operatorname{Ann}_{R}(M)$ for all $x_{i} \in I$.

Suppose now that $\operatorname{dim} M_{D}>k+1$. By [15, Theorem 4], we may write $g(x)=a x+d(x)$ for all $x \in R$, where $a \in U$ and d a derivation of R. Notice that $a R \subseteq g(R)-d(R) \subseteq R$. Define an additive map $\bar{d}: J \rightarrow \operatorname{End}\left(M_{D}\right)$ given by $\bar{d}(r)=L_{d(r)}$, where $L_{d(r)}(v)=d(r) \cdot v$ for $v \in M$ (see [2, p.326]). We divide the proof into two cases.

Case 1. Assume that \bar{d} is M-inner [2, Definition 4.1]. That is, there exists an additive endomorphism T of M such that $d(r) v=T(r v)-r T(v)$ for all $r \in J$ and $v \in M$. Suppose first that v and $T(v)$ are linear dependent over D for all $v \in M$. Then by [2, Lemma 7.1] there exists $\lambda \in D$ such that $T(v)=v \lambda$ for all $v \in M$. Hence $d(r) v=(r v) \lambda-r(v \lambda)=0$ for $r \in J, v \in M$, that is, $d(J) M=0$
and so $d(J) \subseteq \operatorname{Ann}_{R}(M)$. If $(a J) M=0$, then $g\left(J^{2}\right) \subseteq \operatorname{Ann}_{R}(M)$, as claimed. Hence we may assume that $\left(a\left(\alpha_{1} y\right)\right) v \neq 0$ for some $y \in I^{2}$ and $v \in M$. Let $w=\left(a\left(\alpha_{1} y\right)\right) v$ and $w=u_{1}, \cdots, u_{k}$ be $k D$-independent vectors in M. Since M is an irreducible left J-module, by the Jacobson Density Theorem, there exist $r_{1}, \cdots, r_{k} \in J$ such that $r_{k} u_{1}=u_{2}, r_{k-1} u_{2}=u_{3}, \cdots, r_{2} u_{k-1}=u_{k}, r_{1} u_{k}=v$ and $r_{i} u_{j}=0$ for all other possible choices of i and j. Then $a f\left(y r_{1}, \cdots, r_{k}\right) w=w$ and $d\left(f\left(y r_{1}, \cdots, r_{k}\right)\right) \in d(J)$. Hence $g\left(f\left(y r_{1}, \cdots, r_{k}\right)\right) w=\left(a f\left(y r_{1}, \ldots, r_{k}\right)\right) w=w$. In particular, $g\left(f\left(y r_{1}, \ldots, r_{k}\right)\right)^{n} w=w$ for all $n \geq 1$, a contradiction.

So we may assume that there exists $v \in M$ such that v and $T(v)$ are linear independent over D. Let $v=u_{0}, T(v)=u_{1}, \cdots, u_{k}$ be $k+1 D$-independent vectors in M. By the Jacobson Density Theorem, there exist $y \in I^{2}$ and $r_{1}, \cdots, r_{k} \in J$ such that $\left(\alpha_{1} y\right) v=v, r_{k} u_{1}=u_{2}, \cdots, r_{2} u_{k-1}=u_{k}, r_{1} u_{k}=-v$ and $r_{i} u_{j}=0$ for all other possible choices of i and j. Hence we have
$g\left(f\left(y r_{1}, \cdots, r_{k}\right)\right)^{n} v=\left(a f\left(y r_{1}, \cdots, r_{k}\right)+T f\left(y r_{1}, \cdots, r_{k}\right)-f\left(y r_{1}, \cdots, r_{k}\right) T\right)^{n} v=v$
for all $n \geq 1$, a contradiction.
Case 2. Assume that \bar{d} is not M-inner. We denote by $f^{d}\left(X_{1}, \cdots, X_{k}\right)$ the polynomial obtained from $f\left(X_{1}, \cdots, X_{k}\right)$ by replacing each coefficient α with $d(\alpha \cdot 1)$. Let v_{1}, \cdots, v_{k} be $k D$-independent vectors in M. By the Extended Jacobson Density Theorem [2, Theorem 4.6], there exist $r_{1}, \cdots, r_{k} \in J$ such that

$$
d\left(r_{k}\right) v_{k}=v_{k-1}, r_{k-1} v_{k-1}=v_{k-2}, \cdots, r_{2} v_{2}=v_{1}, r_{1} v_{1}=v_{k}
$$

and

$$
r_{i} v_{j}=0, d\left(r_{i}\right) v_{j}=0 \text { for all other possible choices of } i \text { and } j .
$$

Let $y \in I^{2}$ such that $\left(\alpha_{1} y\right) v_{k}=v_{k}$. Then $a f\left(y r_{1}, \cdots, r_{k}\right) v_{k}=0$, $f^{d}\left(y r_{1}, \cdots, r_{k}\right) v_{k}=0$,

$$
f\left(d\left(y r_{1}\right), r_{2}, \cdots, r_{k}\right) v_{k}=f\left(d(y) r_{1}+y d\left(r_{1}\right), r_{2}, \cdots, r_{k}\right) v_{k}=0
$$

and $f\left(y r_{1}, \cdots, d\left(r_{i}\right), \cdots, r_{k}\right) v_{k}=0$. But $f\left(y r_{1}, \cdots, r_{k-1}, d\left(r_{k}\right)\right) v_{k}=v_{k}$. So we have $g\left(f\left(y r_{1}, \cdots, r_{k}\right)\right) v_{k}=\left(a f\left(y r_{1}, \cdots, r_{k}\right)+d\left(f\left(y r_{1}, \cdots, r_{k}\right)\right)\right) v_{k}=v_{k}$. Hence $g\left(f\left(y r_{1}, \cdots, r_{k}\right)\right)^{n} v_{k}=v_{k}$ for all $n \geq 1$, a contradiction.

So now we have $g\left(J^{2}\right) R g\left(f\left(x_{i}\right)\right)^{k+1} \subseteq \cap_{M} \operatorname{Ann}_{R}(M)=0$, where the intersection runs over all irreducible left R-modules M. If $g\left(J^{2}\right)=0$, then $g=0$ by [15, Theorem 6]. Otherwise, by primeness of $R, g\left(f\left(x_{i}\right)\right)^{k+1}=0$ for all $x_{i} \in I$. Thus $g=0$ follows from [18, Theorem 1].

From now on we may assume that R is not a semisimple algebra, that is, $J(R)$, the Jacobson radical of R, is nonzero.

Lemma 2.2. Theorem 1 holds if there exist $b, c \in Q$ with $b c=0$ but $b d(c) \neq 0$.
Proof. We first claim that if $u, v \in Q$ with $u v=0$ but $u d(v) \neq 0$, then f vanishes on $Q u$. Let I^{\prime} be a nonzero ideal of R such that $v I^{\prime}, I^{\prime} v$ and $I^{\prime} u$ are all contained in I. Rewrite f in a form that

$$
f=X_{1} f_{1}\left(X_{2}, \cdots, X_{k}\right)+X_{2} f_{2}\left(X_{1}, X_{3}, \cdots, X_{k}\right)+\cdots+X_{k} f\left(X_{1}, \cdots, X_{k-1}\right)
$$

For all $x_{1}, \cdots, x_{k} \in I^{\prime}$, we have

$$
f\left(v x_{1}, x_{2} u, \cdots, x_{k} u\right)=v x_{1} f_{1}\left(x_{2} u, \cdots, x_{k} u\right)
$$

and

$$
g\left(f\left(v x_{1}, x_{2} u, \cdots, x_{k} u\right)\right) v=v x_{1} d\left(f_{1}\left(x_{2} u, \cdots, x_{k} u\right)\right) v
$$

Thus

$$
\left(g\left(f\left(v x_{1}, x_{2} u, \cdots, x_{k} u\right)\right)\right)^{n} v=v\left(x_{1} d\left(f_{1}\left(x_{2} u, \cdots, x_{k} u\right)\right) v\right)^{n}=0
$$

for some $n=n\left(x_{i}\right) \geq 1$. Hence $I^{\prime} d\left(f_{1}\left(x_{2} u, \cdots, x_{k} u\right)\right) v$ is a nil left ideal of R. So $d\left(f_{1}\left(x_{2} u, \cdots, x_{k} u\right)\right) v=0$. And then

$$
f_{1}\left(x_{2} u, \cdots, x_{k} u\right) d(v)=d\left(f_{1}\left(x_{2} u, \cdots, x_{k} u\right) v\right)-d\left(f_{1}\left(x_{2} u, \cdots, x_{k} u\right)\right) v=0
$$

for all $x_{i} \in I^{\prime}$ and hence for all $x_{i} \in Q$ by [5, Theorem 2]. By [19, Lemma 4], $f_{1}\left(x_{2} u, \cdots, x_{k} u\right)=0$ for all $x_{i} \in Q$. In a similar way, we have $f_{i}\left(x_{j} u\right)=0$ for all $x_{j} \in Q$ and $i=2, \cdots, k$. Therefore, $f\left(x_{1} u, \cdots, x_{k} u\right)$ is a GPI of Q. Since $b c=0$ and $b d(c) \neq 0, Q$ satisfies the nontrivial GPI $f\left(x_{1} b, \cdots, x_{k} b\right)$. By Martindale's Theorem [17], Q is a primitive ring with nonzero socle H and its associated division ring D is finite-dimensional over C. Moreover, Q is isomorphic to a dense subring of the ring of linear transformations of a vector space M over D and H consists of linear transformations of finite rank. If $\operatorname{dim} M_{D}=m$, then $Q \cong M_{m}(D)$. Then $g\left(f\left(x_{i}\right)\right)^{m}=0$ for all $x_{i} \in I$. By [18, Theorem 1], we are done. So we assume that $\operatorname{dim}_{D} M=\infty$. Note that f is not a PI of $Q(1-e)$ for $e^{2}=e \in H$. Otherwise, $Q(1-e)=Q h$ for some $h^{2}=h \in H$ by [13, Proposition]. Thus $(1-e)(1-h)=0$. This implies that $1=e+(1-e) h \in H$, contrary to the infinite-dimensional of ${ }_{D} M$. Since $e(1-e)=0$, we have $0=e d(1-e)=-e d(e)$ for all $e^{2}=e \in H$. By Lemma $1.1, d=0$. This contradicts that $b d(c) \neq 0$.

By Lemma 2.2, now we may assume that $x y=0$ implies that $x d(y)=0$ for $x, y \in Q$.

Lemma 2.3. Let R be a non-GPI ring. Then Theorem 1 holds.

Proof. Let

$$
S=\left\{s \in R \mid s^{2}=0\right\}
$$

If $S=0$, then R is a prime reduced ring and hence is a domain. So $g\left(f\left(x_{i}\right)\right)=0$ for all $x_{i} \in I$. By [18, Theorem 1], we are done. Now we assume that $S \neq 0$. We first to show that $d(S)=0$.

Now let

$$
T=\{t \in R \mid x t y=0 \text { whenever } x y=0 \text { for } x, y \in Q\}
$$

Note that T is a subring of R. We also remark that S and T are invariant under inner automorphisms of R. For $x, y \in Q$ with $x y=0$ and $s \in S$, we have $x d(y)=0=s d(s)$ and $x(1-s)(1+s) y=0$. Thus

$$
0=x(1-s) d((1+s) y)=x(1-s)(1+s) d(y)+x(1-s) d(1+s) y=x d(s) y
$$

So $d(S) \subseteq T$. Also $d(s) s=d\left(s^{2}\right)-s d(s)=0$ implies that $d(s)^{2}=0$ for $s \in S$, that is, $d(S) \subseteq S$.

Suppose first that $T \cap S=0$. Then $d(S)=0$. We are done. So suppose now that $W=T \cap S \neq 0$. Note that $(1+z) W(1+z)^{-1} \subseteq W$ for $z \in J(R)$. We claim that there exists some $0 \neq v \in R$ such that $v \in W$ and $v R v \subseteq T$. Fix $0 \neq w \in W$. If $w W=0$, then $w(1+z) W(1+z)^{-1}=0$ for $z \in J(R)$. This implies $w J(R) W=0$ and so $w=0$, a contradiction. Choose $t \in W$ such that $w t \neq 0$. Recall that $w^{2}=t^{2}=w t w=0$ and $(t r w t)^{2}=0$ for $r \in R$. Hence

$$
(1+\operatorname{tr} w t) w(1-t r w t)-w=w-w \operatorname{tr} w t \in T
$$

Let $v=w t$. Then $0 \neq v \in W$ and $v R v \subseteq T$. Let

$$
V=\{v \in W \mid v R v \subseteq T\}
$$

Obviously, $(1+z) V(1+z)^{-1} \subseteq V$ for $z \in J(R)$. And for $v \in V$ and $s^{2}=0$, $s v R v s \subseteq s T s=0$ yields that either $v s=0$ or $s v=0$. Since $g\left(f\left(x_{i}\right)\right)$ is nilpotent, by Lemma 1.2, $v g\left(f\left(x_{i}\right)\right) v=0$ for all $v \in V$. Let L be the additive subgroup of R generated by $\left\{f\left(x_{i}\right): x_{i} \in I\right\}$. Let $y \in R$. Using multilinearity of $f\left(X_{i}\right)$, we have $\left[y, f\left(x_{1}, \cdots, x_{k}\right)\right]=\sum_{i=1}^{k} f\left(x_{1}, \cdots,\left[y, x_{i}\right], \cdots, x_{k}\right)$. Hence $[R, L] \subseteq L$ and then L is a Lie ideal of R. Obviously, $v g(L) v=0$. Since R is a non-GPI ring, L must be noncommutative. Moreover, we have $v g(R) v=0$ by [14, Theorem 2]. From the definition of T we see that $v g(r) t v=0$ for $t \in T$. Hence

$$
v r d(t) v=v g(r t) v-v g(r) t v=0
$$

for all $r \in R$. This implies that $d(t) v=0$ for all $t \in T$ and $v \in V$. So it follows that $d(t) J(R) v=0$ from $d(t)(1+z) v(1+z)^{-1}=0$ for $z \in J(R)$. Thus $d(T)=0$.

In particular, $d(V)=0$. Let $0 \neq v \in V$ and $s^{2}=0$. Then either $s v=0$ or $v s=0$. If $v s=0$, then $v d(s)=0$. If $s v=0$, then $v s=(1-s) v(1+s)-v \in T$ and so $0=d(v s)=d(v) s+v d(s)=v d(s)$. Using $(1+z)^{-1} v(1+z) d(s)=0$ for $z \in J(R)$, we obtain that $d(S)=0$.

Next we claim that $d=0$. For $0 \neq s \in S$, obviously we have $s R s \subseteq S$. So $0=d(s R s)=d(s R) s=s d(R) s$. This yields that $s d(R) \subseteq S$. Thus $0=$ $d(s d(R))=s d^{2}(R)$ for all $s \in S$. Therefore $(1+z)^{-1} s(1+z) d^{2}(R)=0$ for $z \in J(R)$, implying that $d^{2}(R)=0$. By [4, Theorem 2], we may assume that the characteristic of R is equal to 2 . Using $0=d(s R) s$ and in view of [4, Lemma 4], there exists some $p_{s} \in Q$ depending on s such that $d(x)=p_{s} x-x p_{s}$ and $p_{s} s R=0$. So $p_{s} s=0$. Since $0=d^{2}(x)=p_{s}^{2} x-x p_{s}^{2}$, we see that $p_{s}^{2} \in C$ for all $0 \neq s \in S$. Thus it follows that $p_{s}^{2}=0$ from $p_{s} s=0$. Suppose that $p_{s} \neq p_{s^{\prime}}$ for some $0 \neq s, s^{\prime} \in S$. Then $p_{s}-\alpha=p_{s^{\prime}}$ for some $\alpha \in C$ and $\left(p_{s}-\alpha\right)^{2}=0=p_{s}^{2}$. This implies that $\alpha=0$, a contradiction. So we may assume that $d(x)=p x-x p$ for some $p \in Q$ and $p s=0$ for all $s \in S$. Using $p(1+z) S(1+z)^{-1}=0$ for $z \in J(R)$, we have $p=0$. Hence $d=0$, as claimed.

So now $g(x)=a x$ for some $a \in U$ [15, Theorem 4]. For $0 \neq s \in S$, we have $s g\left(f\left(s x_{1}, \cdots s x_{k-1}, s x_{k} s\right)\right)=s a f\left(s x_{1}, \cdots s x_{k-1}, s x_{k} s\right)=\operatorname{sah}\left(s x_{1}, \cdots, s x_{k-1}\right) s x_{k} s$
for some multilinear polynomial $h\left(x_{1}, \cdots, x_{k-1}\right)$. Thus

$$
0=s g\left(f\left(s x_{1}, \cdots s x_{k-1}, s x_{k} s\right)\right)^{m}=\left(\operatorname{sah}\left(s x_{1}, \cdots, s x_{k-1}\right) s x_{k}\right)^{m} s
$$

for m large enough. Hence $\operatorname{sah}\left(s x_{1}, \cdots, s x_{k-1}\right) s I$ is a nil right ideal of R. So $\operatorname{sah}\left(s x_{1}, \cdots, s x_{k-1}\right) s x_{k}=0$ for all $x_{i} \in I$. Since R is a non-GPI ring, we have sas $=0$ for all $s \in S$. Also we have

$$
\operatorname{sg}\left(f\left(x_{1}, s x_{2}, \cdots s x_{k-1}, s x_{k} s\right)\right)=\operatorname{sax}_{1} h^{\prime}\left(s x_{2}, \cdots, s x_{k-1}\right) s x_{k} s
$$

for some multilinear polynomial $h^{\prime}\left(x_{2}, \cdots, x_{k-1}\right)$. Thus

$$
0=s g\left(f\left(x_{1}, s x_{2}, \cdots s x_{k-1}, s x_{k} s\right)\right)^{m}=\left(s a x_{1} h^{\prime}\left(s x_{2}, \cdots, s x_{k-1}\right) s x_{k}\right)^{m} s
$$

for m large enough. Hence $\operatorname{sax_{1}} h^{\prime}\left(s x_{2}, \cdots, s x_{k-1}\right) s I$ is a nil right ideal of R. So $\operatorname{sax}_{1} h^{\prime}\left(s x_{2}, \cdots, s x_{k-1}\right) s x_{k}=0$ for all $x_{i} \in I$. Since R is a non-GPI ring, it follows that $s a=0$ for all $s \in S$. Using $(1+z)^{-1} S(1+z) \subseteq S$, we may easily get $a=0$. So $g=0$. This proves the lemma.

Proof of Theorem 1. In view of Lemma 2.3, R can be assumed to be a prime GPI-ring. Then by Martindale's Theorem [17], Q is a primitive ring with nonzero socle H and its associated division ring D is finite-dimensional over C. Moreover, Q is isomorphic to a dense subring of the ring of linear transformations
of a vector space M over D and H consists of linear transformations of finite rank. If $\operatorname{dim} M_{D}=m$, then $Q \cong M_{m}(D)$. Hence $g\left(f\left(x_{i}\right)\right)^{m}=0$ for all $x_{i} \in I$. By [18, Theorem 1], we are done. So we assume that $\operatorname{dim} M_{D}=\infty$. Since $e(1-e)=0$ for $e^{2}=e \in H$, in view of Lemma 2.2 we have $0=e d(1-e)=-e d(e)$. By Lemma $1.1, d=0$. So now $g(x)=a x$. For each $e^{2}=e \in H$, it follows from Litoff's Theorem [6] that $e Q e \cong M_{m}(D)$, where $\operatorname{dim}(e M)_{D}=m$. Choose a nonzero ideal I^{\prime} of R such that $e I^{\prime} e \subseteq I$. Thus

$$
\left(e a e f\left(e x_{1} e, \cdots, e x_{k} e\right)\right)^{m}=0
$$

for all $x_{i} \in I^{\prime}$ and hence for $x_{i} \in Q$ by [5, Theorem 2]. Moreover, if $2 m-1>k$, then f is not cental-valued on $e Q e$ and then eae $=0$ by [18, Theorem 1]. Given $r \in R$ and $h \in H$, there exists $e^{2}=e \in H$ such that arh, $r h \in e Q e$ and $e Q e \cong M_{m}(D), 2 m-1>k$. Then $a r h=e a r h=e a e r h=0$. This implies that $a R H=0$. Thus $a=0$ and so $g=0$. The proof is now complete.

Proof of Theorem 3. By [15, Theorem 4], we may write $g(x)=a x+d(x)$ for all $x \in R$, where $a \in U$ and d a derivation of R. Since U and R satisfy the same differential identities [16, Theorem 3], $g\left(f\left(x_{1}, \cdots, x_{k}\right)\right)^{n}=0$ for all $x_{1}, \cdots, x_{k} \in U$. Denote by $C=Z(U)$ the center of U. Let P be a maximal ideal of C. Then $P U$ is a prime ideal of U invariant under all derivations of U and $\cap_{P} P U=0$, where P 's run over all maximal ideals of C (see [16, p. 32 (iii)]).

Fix a maximal ideal P of C. Let \bar{d} be the canonical derivation of $\bar{U}=U / P U$ induced by d. Set $\bar{g}(\bar{x})=\bar{a} \cdot \bar{x}+\bar{d}(\bar{x})$. Note that \bar{g} is a generalized derivation of the prime ring \bar{U}. Moreover, $\bar{g}\left(f\left(\overline{x_{1}}, \cdots, \overline{x_{k}}\right)\right)^{n}=0$. It follows from [18, Theorem 1] that either $\bar{g}(\bar{U})=0$ or $f\left(X_{1}, \cdots, X_{k}\right)$ is central-valued on \bar{U}, that is either $g(U) \subset P U$ or $\left[f\left(x_{1}, \cdots, x_{k}\right), x\right] \subset P U$ for $x_{1}, \cdots, x_{k}, x \in$ U. Hence $\left[f\left(x_{1}, \cdots, x_{k}\right), x\right] g(U) \subset P U$. But since $\cap_{P} P U=0$, we obtain $\left[f\left(x_{1}, \cdots, x_{k}\right), x\right] g(y)=0$ for $x_{1}, \cdots, x_{k}, x, y \in U$.

References

1. K. I. Beidar, W. S. Martindale 3rd and A. V. Mikhalev, Rings with Generalized Identities, Marcel Dekker, Inc., New York-Basel-Hong Kong, 1996.
2. K. I. Beidar and M. Bresar, Extended Jacobson density theorem for ring with automorphisms and derivations, Israel J. Math., 122 (2001), 317-346.
3. L. Carini and A. Giambruno, Lie ideals and nil derivations, Bollettino U. M. I., $\mathbf{6}$ (1985), 497-503.
4. C.-M. Chang and T.-K. Lee, Derivations and central linear generalized polynomials in prime rings, Southeast Asian Bull. Math., 21 (1997), 215-225.
5. C.-L. Chuang, GPIs having coefficients in Utumi quotient rings, Proc. Amer. Math. Soc., 103 (1988), 723-728.
6. C. Faith and Y. Utumi, On a new proof of Litoff's theorem, Acta Math. Acad. Sci. Hung., 14 (1963), 369-371.
7. B. Felzenszwalb and C. Lanski, On the centralizers of ideals and nil derivations, J. Algebra, 83 (1983), 520-530.
8. I. N. Herstein, Topics in Ring Theory, University of Chicago Press, Chicago, 1969.
9. I. N. Herstein and A. Giambruno, Derivations with nilpotent values, Rend. Del Circ. Math. Palermo, 30 (1981), 199-206.
10. B. Hvala, Generalized derivations in rings, Comm. Algebra, 26 (1998), 1147-1166.
11. V. K. Kharchenko, Differential identities of semiprime rings, Algebra and Logic, 18 (1979), 86-119. (English translation: Algebra and Logic, 18 (1979), 58-80.)
12. C. Lanski, Derivations with nilpotent values on Lie ideals, Proc. Amer. Math. Soc., 108 (1990), 31-37.
13. T.-K. Lee, Power reduction property for generalized identities of one-sided ideals, Algebra Colloq., 3 (1996), 19-24.
14. T.-K. Lee, Differential identities of Lie ideals or large right ideals in prime rings, Comm. Algebra, 27 (1999), 793-810.
15. T.-K. Lee, Generalized derivations of left faithful rings, Comm. Algebra, 27 (1999), 4057-4073.
16. T.-K. Lee, Semiprime rings with differential identities, Bull. Inst. Math. Acad. Sinica, 20 (1992), 27-38.
17. W. S. Martindale, III, Prime rings satisfying a generalized polynomial identity, J. Algebra, 12 (1969), 576-584.
18. Y. Wang, Generalized derivations with power-central values on multilinear polynomials, to appear in Algebra Colloq.
19. T.-L. Wong, Derivations with power-central values on multilinear polynomials, Algebra Colloq., 3 (1996), 369-378.

Jer-Shyong Lin

Department of Information Management, Yuanpei Institute of Science and Technology,
Hsinchu 300, Taiwan
E-mail: linjs@mail.yust.edu.tw
Cheng-Kai Liu
Department of Mathematics,
National Changhua University of Education, Changhua 500, Taiwan
E-mail: ckliu@cc.ncue.edu.tw

[^0]: Received September 24, 2004; revised October 20, 2004.
 Communicated by Shun-Jen Cheng.
 2000 Mathematics Subject Classification: 16W25, 16R50, 16N60, 16 U80.
 Key words and phrases: Generalized derivation, prime ring, Martindale quotient ring, Generalized polynomial identity (GPI).
 Address correspondence to Cheng-Kai Liu.

