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GENERALIZED DERIVATIONS WITH NILPOTENT VALUES ON
MULTILINEAR POLYNOMIALS

Jer-Shyong Lin and Cheng-Kai Liu

Abstract. Let R be a prime ring without nonzero nil one-sided ideals. Suppose
that g is a generalized derivation of R and that f(X1 , · · · , Xk) is a multilinear
polynomial not central-valued on R such that g(f(x1 , · · · , xk)) is nilpotent
for all x1, · · · , xk in some nonzero ideal of R. Then g = 0.

1. INTRODUCTION AND RESULTS

The study of derivations having values satisfying certain properties has been
investigated in various papers. As to derivations having nilpotent values, Herstein
and Giambruno [9] proved that if R is a semiprime ring and d is a derivation of R
such that d(x)n = 0 for all x in some nonzero ideal I of R, where n ≥ 1 is a fixed
integer, then d(I) = 0. In [7] Felzenszwalb and Lanski proved that if R is a ring
with no nonzero nil one-sided ideals and d is a derivation such that d(x)n = 0 for
all x in some nonzero ideal I of R, where n = n(x) ≥ 1 is an integer depending
on x, then d(I) = 0. The extensions of this theorem to Lie ideals were obtained by
Carini and Giambruno [3] in case charR �= 2 and by Lanski [12] in case of arbitrary
characteristic. A full generalization in this vein was proved by Wong [19]. She
showed that if d is a derivation of a prime ring R such that d(f(x1, · · · , xk))n = 0
for all xi in some nonzero ideal of R, where n = n(x1, · · · , xk) ≥ 1 is an integer
depending on xi and f(X1, · · · , Xk) is a multilinear polynomial not central-valued
on R, then d = 0 provided that n is fixed or R contains no nonzero nil one-sided
ideals.

Let R be a ring. An additive mapping g : R → R is called a generalized
derivation of R if there exists a derivation d of R such that g(xy) = g(x)y +xd(y)
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for all x, y ∈ R. In [10] Hvala proved a result concerning generalized derivations
with nilpotent values of bounded index. In fact, he proved that if R is a prime ring
of charR > n and g is a generalized derivation of R satisfying g(x)n = 0 for all
x ∈ R, then g = 0. Later, Lee [15] extended this result to Lie ideals. Recently,
[18] Wang showed that if g is a generalized derivation of a prime ring R such that
g(f(x1, · · · , xk))n = 0 for all xi in some nonzero ideal of R, where n ≥ 1 is a
fixed integer and f(X1, · · · , Xk) is a multilinear polynomial not central-valued on
R, then g = 0. In this paper we shall prove the unbounded version of Wang’s result.
Precisely, we will prove the following

Theorem 1. Let K be a commutative ring with unity and let R be a prime K-
algebra without nonzero nil one-sided ideals. Let f(X 1, · · · , Xk) be a multilinear
polynomial over K with at least one coefficient invertible in K. Suppose that g is
a generalized derivation of R and f(X 1, · · · , Xk) is not central-valued on R such
that g(f(x1, · · · , xk)) is nilpotent for all x1, · · · , xk in some nonzero ideal I of R.
Then g = 0.

Let R be a ring. For x, y ∈ R, we denote [x, y] = xy − yx. An additive
subgroup L of R is said to be a Lie ideal of R if [u, r] ⊆ L for all u ∈ L and
r ∈ R. A Lie ideal L of R is called noncommutative if [L, L] �= 0. It is well-known
that if L is a noncommutative Lie ideal of a prime ring R, then [x1, x2] ⊂ L for
all x1, x2 in some nonzero ideal I of R (see the proof of [8, Lemma 1.3]). So we
immediately obtain the following result from Theorem 1.

Theorem 2. Let R be a prime ring without nonzero nil one-sided ideals and let
L be a noncommutative Lie ideal of R. Suppose that g is a generalized derivation
of R such that g(u) is nilpotent for each u ∈ L. Then g = 0.

Finally, we extend Wang’s result to the case of semiprime rings.

Theorem 3. Let R be a semiprime K-algebra, where K is a commutative
ring with unity. Let f(X1, · · · , Xk) be a multilinear polynomial over K with at
least one coefficient invertible in K. Suppose that g is a generalized derivation of
R such that g(f(x1, · · · , xk))n = 0 for all x1, · · · , xk ∈ R, where n ≥ 1 a fixed
integer. Then [f(x1, · · · , xk), x]g(y) = 0 for all x1, · · · , xk, x, y ∈ R.

2. PRELIMINARIES

Throughout, unless specially stated, let R be a prime K-algebra, where K is a
commutative ring with unity and f(X1, · · · , Xk) abbreviated by f or f(Xi), will
be a multilinear polynomial over K with at least one coefficient invertible in K .
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An additive mapping g : R → R is called a generalized derivation of R if there
exists a derivation d of R such that g(xy) = g(x)y + xd(y) for all x, y ∈ R.

We let U be the maximal right ring of quotients of R and let Q stand for the
two sided Martindale quotient ring of R. The center C of U (and Q) is called the
extended centroid of R (see [1] for details). It is well-known that any derivation
of R can be uniquely extended to a derivation of Q. Without loss of generality, we
may write

f(X1, · · · , Xk) = α1X1 · · ·Xk +
∑

σ �=id

ασXσ(1) · · ·Xσ(k),

where α1 is invertible in K and the sum is taken over all permutations σ except the
identity id in the symmetric group Sk .

We include two preliminary lemmas.

Lemma 1.1. Let R be a prime ring with nonzero socle H . Suppose that R is
not a domain and d is a derivation of R such that d(e)e = 0 for all e = e 2 ∈ H .
Then d = 0. By symmetry, if ed(e) = 0 for all e = e2 ∈ H , then d = 0.

Proof. Let x ∈ R. For e = e2 ∈ H , e + (1 − e)xe is still an idempotent
in H . Assume first that d is X-inner, that is, d(x) = ax − xa for some a ∈ Q.
Then (ae − ea)e = 0 for e = e2 ∈ H . Hence ae = eae for e = e2 ∈ H . Let
y ∈ H and e = e2 ∈ H . Then (1 − e)y ∈ H . Note that H is a regular ring [6,
Lemma 1]. So (1 − e)yH = hH for some h = h2 ∈ H . Hence eh = 0. Since
ah = hah, we have eah = 0. Therefore ea(1− e)y = 0 and then ea(1− e)H = 0
implies that ea(1 − e) = 0. Thus ae − ea = 0 for all e2 = e ∈ H . In particular,
a(e+(1− e)xe) = (e+(1− e)xe)a. Then a(1− e)xe = (1− e)xea for all x ∈ R.
Since R is not a domain, there exists e = e2 ∈ H and e �= 0, 1. By Martindale’s
Lemma [17, Theorem 2 (a)], a(1− e) = λ(1− e) and ea = λe for some λ ∈ C. So
a = λ and then d = 0, as desired. Assume next that d is not X-inner. Let x ∈ R.
Expanding d(e + (1− e)xe)(e + (1− e)xe) = 0 and using d(e)e = 0 to yield that

d(e)(1− e)xe + d(1− e)xe + (1 − e)d(x)e + (1− e)xd(e)(1− e)xe = 0

for all x ∈ R. Thus (1 − e)d(x)e + (1 − e)xd(e)xe = 0. Applying Kharchenko’s
Theorem [11] by replacing d(x), x with y, 0 respectively, we have that (1−e)ye = 0
for all y ∈ R. Thus e = 0 or 1 for e = e2 ∈ H , a contradiction. This proves the
lemma.

The second lemma is implicit in the proof of [7, Theorem 5].

Lemma 1.2. Let R be a ring and v ∈ R, v2 = 0. Suppose that for each x ∈ R
with x2 = 0 we have either xv = 0 or vx = 0. Then vhv = 0 for all nilpotent
elements h in R.
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Proof. Assume on the contrary that vhv �= 0 for some nilpotent element h.
Since h is nilpotent, there exists some � ≥ 1 such that vhkv = 0 and vh�v �= 0
for all k > �. Note that ((1 + h�)v(1 + h�)−1)2 = 0. By assumption, either
v(1+h�)v(1+h�)−1 = 0 or (1+h�)v(1+h�)−1v = 0. Thus either v(1+h�)v = 0
or v(1 + h�)−1v = 0. So 0 = v(1 + h�)−1v = v(1− h� + h2� − h3� + · · · )v. This
implies that vh�v = 0, a contradiction.

2. PROOF OF THEOREM 1 AND THEOREM 3

Before proving Theorem 1, we make the following remark. For each coefficient
α of f , since α and d(α) are all contained in C, we may choose a nonzero ideal
Iα of R such that αIα ∪ d(α)Iα ⊆ R. Replacing I by I · (∩αIα), where the
intersection runs over all coefficients of f , we may assume that αI∪d(α)I ⊆ R for
each coefficient α of f . If k = 1, then f(X1) = α1X1, where α−1

1 ∈ K. Observe
that f(X1)X2 = α1X1X2 is not central-valued on R; otherwise R is commutative
and then f is central-valued on R. Replacing f by fX2, we may always assume
that k ≥ 2.

We divide the proof of Theorem 1 into several lemmas.

Lemma 2.1. Theorem 1 holds if R is a semisimple algebra.

Proof. Let RM be an irreducible left R-module and AnnR(M)= {r ∈ R |
rm = 0 for all m ∈ M}. Let J = α1I

2. Since α−1
1 ∈ K , J is a nonzero ideal

of R contained in I . We claim that either g(J2) ⊆ AnnR(M) or g(f(xi))k+1 ⊆
AnnR(M) for xi ∈ I . If J ⊆ AnnR(M), then g(J2) ⊆ AnnR(M). So we
may assume that JM �= 0 and then M is also an irreducible left J-module. Let
D = End(RM) = End(JM). Suppose first that dimMD ≤ k + 1. Then R =
R/AnnR(M) ∼= Mm(D), where m ≤ k+1. Since g(f(xi)) = g(f(xi))+AnnR(M)
is nilpotent in R, we must have g(f(xi))

m
= 0, that is, g(f(xi))m ∈ AnnR(M)

for all xi ∈ I .
Suppose now that dimMD > k + 1. By [15, Theorem 4], we may write

g(x) = ax + d(x) for all x ∈ R, where a ∈ U and d a derivation of R. Notice
that aR ⊆ g(R)− d(R) ⊆ R. Define an additive map d : J → End(MD) given by
d(r) = Ld(r), where Ld(r)(v) = d(r) · v for v ∈ M (see [2, p.326]). We divide the
proof into two cases.

Case 1. Assume that d is M -inner [2, Definition 4.1]. That is, there exists an
additive endomorphism T of M such that d(r)v = T (rv) − rT (v) for all r ∈ J
and v ∈ M . Suppose first that v and T (v) are linear dependent over D for all
v ∈ M . Then by [2, Lemma 7.1] there exists λ ∈ D such that T (v) = vλ for all
v ∈ M . Hence d(r)v = (rv)λ − r(vλ) = 0 for r ∈ J, v ∈ M , that is, d(J)M = 0
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and so d(J) ⊆ AnnR(M). If (aJ)M = 0, then g(J2) ⊆ AnnR(M), as claimed.
Hence we may assume that (a(α1y))v �= 0 for some y ∈ I2 and v ∈ M . Let
w = (a(α1y))v and w = u1, · · · , uk be k D-independent vectors in M . Since
M is an irreducible left J-module, by the Jacobson Density Theorem, there exist
r1, · · · , rk ∈ J such that rku1 = u2, rk−1u2 = u3, · · · , r2uk−1 = uk, r1uk = v and
riuj = 0 for all other possible choices of i and j. Then af(yr1, · · · , rk)w = w and
d(f(yr1, · · · , rk)) ∈ d(J). Hence g(f(yr1, · · · , rk))w = (af(yr1, ..., rk))w = w.
In particular, g(f(yr1, ..., rk))nw = w for all n ≥ 1, a contradiction.

So we may assume that there exists v ∈ M such that v and T (v) are linear
independent over D. Let v = u0, T (v) = u1, · · · , uk be k+1 D-independent vectors
in M . By the Jacobson Density Theorem, there exist y ∈ I2 and r1, · · · , rk ∈ J
such that (α1y)v = v, rku1 = u2, · · · , r2uk−1 = uk, r1uk = −v and riuj = 0 for
all other possible choices of i and j. Hence we have

g(f(yr1, · · · , rk))nv=(af(yr1, · · · , rk)+Tf(yr1, · · · , rk)−f(yr1, · · · , rk)T )nv=v

for all n ≥ 1, a contradiction.

Case 2. Assume that d is not M -inner. We denote by f d(X1, · · · , Xk) the
polynomial obtained from f(X1, · · · , Xk) by replacing each coefficient α with
d(α · 1). Let v1, · · · , vk be k D-independent vectors in M . By the Extended
Jacobson Density Theorem [2, Theorem 4.6], there exist r1, · · · , rk ∈ J such that

d(rk)vk = vk−1, rk−1vk−1 = vk−2, · · · , r2v2 = v1, r1v1 = vk

and
rivj = 0, d(ri)vj = 0 for all other possible choices of i and j.

Let y ∈ I2 such that (α1y)vk = vk . Then af(yr1, · · · , rk)vk = 0,

fd(yr1, · · · , rk)vk = 0,

f(d(yr1), r2, · · · , rk)vk = f(d(y)r1 + yd(r1), r2, · · · , rk)vk = 0

and f(yr1, · · · , d(ri), · · · , rk)vk = 0. But f(yr1, · · · , rk−1, d(rk))vk = vk. So
we have g(f(yr1, · · · , rk))vk =

(
af(yr1, · · · , rk) + d(f(yr1, · · · , rk))

)
vk = vk.

Hence g(f(yr1, · · · , rk))nvk = vk for all n ≥ 1, a contradiction.
So now we have g(J2)Rg(f(xi))k+1 ⊆ ∩M AnnR(M) = 0, where the inter-

section runs over all irreducible left R-modules M . If g(J2) = 0, then g = 0 by
[15, Theorem 6]. Otherwise, by primeness of R, g(f(xi))k+1 = 0 for all xi ∈ I .
Thus g = 0 follows from [18, Theorem 1].

From now on we may assume that R is not a semisimple algebra, that is, J(R),
the Jacobson radical of R, is nonzero.
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Lemma 2.2. Theorem 1 holds if there exist b, c ∈ Q with bc = 0 but bd(c) �= 0.

Proof. We first claim that if u, v ∈ Q with uv = 0 but ud(v) �= 0, then f
vanishes on Qu. Let I ′ be a nonzero ideal of R such that vI ′, I ′v and I ′u are all
contained in I . Rewrite f in a form that

f = X1f1(X2, · · · , Xk) + X2f2(X1, X3, · · · , Xk) + · · ·+ Xkf(X1, · · · , Xk−1).

For all x1, · · · , xk ∈ I ′, we have

f(vx1, x2u, · · · , xku) = vx1f1(x2u, · · · , xku)

and
g(f(vx1, x2u, · · · , xku))v = vx1d(f1(x2u, · · · , xku))v.

Thus

(g(f(vx1, x2u, · · · , xku)))nv = v(x1d(f1(x2u, · · · , xku))v)n = 0

for some n = n(xi) ≥ 1. Hence I ′d(f1(x2u, · · · , xku))v is a nil left ideal of R.
So d(f1(x2u, · · · , xku))v = 0. And then

f1(x2u, · · · , xku)d(v) = d(f1(x2u, · · · , xku)v) − d(f1(x2u, · · · , xku))v = 0

for all xi ∈ I ′ and hence for all xi ∈ Q by [5, Theorem 2]. By [19, Lemma 4],
f1(x2u, · · · , xku) = 0 for all xi ∈ Q. In a similar way, we have fi(xju) = 0 for all
xj ∈ Q and i = 2, · · · , k. Therefore, f(x1u, · · · , xku) is a GPI of Q. Since bc = 0
and bd(c) �= 0, Q satisfies the nontrivial GPI f(x1b, · · · , xkb). By Martindale’s
Theorem [17], Q is a primitive ring with nonzero socle H and its associated division
ring D is finite-dimensional over C. Moreover, Q is isomorphic to a dense subring
of the ring of linear transformations of a vector space M over D and H consists
of linear transformations of finite rank. If dimMD = m, then Q ∼= Mm(D). Then
g(f(xi))m = 0 for all xi ∈ I . By [18, Theorem 1], we are done. So we assume
that dimDM = ∞. Note that f is not a PI of Q(1− e) for e2 = e ∈ H . Otherwise,
Q(1−e) = Qh for some h2 = h ∈ H by [13, Proposition]. Thus (1−e)(1−h) = 0.
This implies that 1 = e + (1 − e)h ∈ H , contrary to the infinite-dimensional of
DM . Since e(1 − e) = 0, we have 0 = ed(1 − e) = −ed(e) for all e2 = e ∈ H .
By Lemma 1.1, d = 0. This contradicts that bd(c) �= 0.

By Lemma 2.2, now we may assume that xy = 0 implies that xd(y) = 0 for
x, y ∈ Q.

Lemma 2.3. Let R be a non-GPI ring. Then Theorem 1 holds.
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Proof. Let
S = {s ∈ R | s2 = 0}.

If S = 0, then R is a prime reduced ring and hence is a domain. So g(f(xi)) = 0
for all xi ∈ I . By [18, Theorem 1], we are done. Now we assume that S �= 0. We
first to show that d(S) = 0.

Now let

T = {t ∈ R | xty = 0 whenever xy = 0 for x, y ∈ Q}.

Note that T is a subring of R. We also remark that S and T are invariant under
inner automorphisms of R. For x, y ∈ Q with xy = 0 and s ∈ S, we have
xd(y) = 0 = sd(s) and x(1− s)(1 + s)y = 0. Thus

0 = x(1 − s)d((1 + s)y) = x(1− s)(1 + s)d(y) + x(1 − s)d(1 + s)y = xd(s)y.

So d(S) ⊆ T . Also d(s)s = d(s2) − sd(s) = 0 implies that d(s)2 = 0 for s ∈ S,
that is, d(S) ⊆ S.

Suppose first that T ∩ S = 0. Then d(S) = 0. We are done. So suppose now
that W = T ∩ S �= 0. Note that (1 + z)W (1 + z)−1 ⊆ W for z ∈ J(R). We
claim that there exists some 0 �= v ∈ R such that v ∈ W and vRv ⊆ T . Fix
0 �= w ∈ W . If wW = 0, then w(1 + z)W (1 + z)−1 = 0 for z ∈ J(R). This
implies wJ(R)W = 0 and so w = 0, a contradiction. Choose t ∈ W such that
wt �= 0. Recall that w2 = t2 = wtw = 0 and (trwt)2 = 0 for r ∈ R. Hence

(1 + trwt)w(1 − trwt) − w = w − wtrwt ∈ T.

Let v = wt. Then 0 �= v ∈ W and vRv ⊆ T . Let

V = {v ∈ W | vRv ⊆ T}.

Obviously, (1 + z)V (1 + z)−1 ⊆ V for z ∈ J(R). And for v ∈ V and s2 = 0,
svRvs ⊆ sTs = 0 yields that either vs = 0 or sv = 0. Since g(f(xi)) is nilpotent,
by Lemma 1.2, vg(f(xi))v = 0 for all v ∈ V . Let L be the additive subgroup of
R generated by {f(xi) : xi ∈ I}. Let y ∈ R. Using multilinearity of f(Xi), we
have [y, f(x1, · · · , xk)] =

∑k
i=1 f(x1, · · · , [y, xi], · · · , xk). Hence [R, L] ⊆ L and

then L is a Lie ideal of R. Obviously, vg(L)v = 0. Since R is a non-GPI ring,
L must be noncommutative. Moreover, we have vg(R)v = 0 by [14, Theorem 2].
From the definition of T we see that vg(r)tv = 0 for t ∈ T . Hence

vrd(t)v = vg(rt)v − vg(r)tv = 0

for all r ∈ R. This implies that d(t)v = 0 for all t ∈ T and v ∈ V . So it follows
that d(t)J(R)v = 0 from d(t)(1+z)v(1+z)−1 = 0 for z ∈ J(R). Thus d(T ) = 0.
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In particular, d(V ) = 0. Let 0 �= v ∈ V and s2 = 0. Then either sv = 0 or vs = 0.
If vs = 0, then vd(s) = 0. If sv = 0, then vs = (1 − s)v(1 + s) − v ∈ T and
so 0 = d(vs) = d(v)s + vd(s) = vd(s). Using (1 + z)−1v(1 + z)d(s) = 0 for
z ∈ J(R), we obtain that d(S) = 0.

Next we claim that d = 0. For 0 �= s ∈ S, obviously we have sRs ⊆ S.
So 0 = d(sRs) = d(sR)s = sd(R)s. This yields that sd(R) ⊆ S. Thus 0 =
d(sd(R)) = sd2(R) for all s ∈ S. Therefore (1 + z)−1s(1 + z)d2(R) = 0 for
z ∈ J(R), implying that d2(R) = 0. By [4, Theorem 2], we may assume that the
characteristic of R is equal to 2. Using 0 = d(sR)s and in view of [4, Lemma
4], there exists some ps ∈ Q depending on s such that d(x) = psx − xps and
pssR = 0. So pss = 0. Since 0 = d2(x) = p2

sx − xp2
s , we see that p2

s ∈ C for all
0 �= s ∈ S. Thus it follows that p2

s = 0 from pss = 0. Suppose that ps �= ps′ for
some 0 �= s, s′ ∈ S. Then ps − α = ps′ for some α ∈ C and (ps − α)2 = 0 = p2

s.
This implies that α = 0, a contradiction. So we may assume that d(x) = px − xp

for some p ∈ Q and ps = 0 for all s ∈ S. Using p(1 + z)S(1 + z)−1 = 0 for
z ∈ J(R), we have p = 0. Hence d = 0, as claimed.

So now g(x) = ax for some a ∈ U [15, Theorem 4]. For 0 �= s ∈ S, we have

sg(f(sx1,· · ·sxk−1, sxks))=saf(sx1,· · ·sxk−1, sxks)=sah(sx1,· · ·, sxk−1)sxks

for some multilinear polynomial h(x1, · · · , xk−1). Thus

0 = sg(f(sx1, · · ·sxk−1, sxks))m = (sah(sx1, · · · , sxk−1)sxk)ms

for m large enough. Hence sah(sx1, · · · , sxk−1)sI is a nil right ideal of R. So
sah(sx1, · · · , sxk−1)sxk = 0 for all xi ∈ I . Since R is a non-GPI ring, we have
sas = 0 for all s ∈ S. Also we have

sg(f(x1, sx2, · · ·sxk−1, sxks)) = sax1h
′(sx2, · · · , sxk−1)sxks

for some multilinear polynomial h′(x2, · · · , xk−1). Thus

0 = sg(f(x1, sx2, · · ·sxk−1, sxks))m = (sax1h
′(sx2, · · · , sxk−1)sxk)ms

for m large enough. Hence sax1h
′(sx2, · · · , sxk−1)sI is a nil right ideal of R.

So sax1h
′(sx2, · · · , sxk−1)sxk = 0 for all xi ∈ I . Since R is a non-GPI ring, it

follows that sa = 0 for all s ∈ S. Using (1 + z)−1S(1 + z) ⊆ S, we may easily
get a = 0. So g = 0. This proves the lemma.

Proof of Theorem 1. In view of Lemma 2.3, R can be assumed to be a
prime GPI-ring. Then by Martindale’s Theorem [17], Q is a primitive ring with
nonzero socle H and its associated division ring D is finite-dimensional over C.
Moreover, Q is isomorphic to a dense subring of the ring of linear transformations
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of a vector space M over D and H consists of linear transformations of finite rank.
If dimMD = m, then Q ∼= Mm(D). Hence g(f(xi))m = 0 for all xi ∈ I . By [18,
Theorem 1], we are done. So we assume that dimMD = ∞. Since e(1−e) = 0 for
e2 = e ∈ H , in view of Lemma 2.2 we have 0 = ed(1− e) = −ed(e). By Lemma
1.1, d = 0. So now g(x) = ax. For each e2 = e ∈ H , it follows from Litöff’s
Theorem [6] that eQe ∼= Mm(D), where dim(eM)D = m. Choose a nonzero ideal
I ′ of R such that eI ′e ⊆ I . Thus

(eaef(ex1e, · · · , exke))m = 0

for all xi ∈ I ′ and hence for xi ∈ Q by [5, Theorem 2]. Moreover, if 2m− 1 > k,
then f is not cental-valued on eQe and then eae = 0 by [18, Theorem 1]. Given
r ∈ R and h ∈ H , there exists e2 = e ∈ H such that arh, rh ∈ eQe and
eQe ∼= Mm(D), 2m − 1 > k. Then arh = earh = eaerh = 0. This implies that
aRH = 0. Thus a = 0 and so g = 0. The proof is now complete.

Proof of Theorem 3. By [15, Theorem 4], we may write g(x) = ax + d(x)
for all x ∈ R, where a ∈ U and d a derivation of R. Since U and R satisfy
the same differential identities [16, Theorem 3], g(f(x1, · · · , xk))n = 0 for all
x1, · · · , xk ∈ U . Denote by C = Z(U) the center of U . Let P be a maximal ideal
of C. Then PU is a prime ideal of U invariant under all derivations of U and
∩P PU = 0, where P’s run over all maximal ideals of C (see [16, p.32 (iii)]).

Fix a maximal ideal P of C. Let d be the canonical derivation of U = U/PU

induced by d. Set g(x) = a · x + d(x). Note that g is a generalized deriva-
tion of the prime ring U . Moreover, g(f(x1, · · · , xk))n = 0. It follows from
[18, Theorem 1] that either g(U) = 0 or f(X1, · · · , Xk) is central-valued on
U , that is either g(U) ⊂ PU or [f(x1, · · · , xk), x] ⊂ PU for x1, · · · , xk, x ∈
U . Hence [f(x1, · · · , xk), x]g(U) ⊂ PU . But since ∩P PU = 0, we obtain
[f(x1, · · · , xk), x]g(y) = 0 for x1, · · · , xk, x, y ∈ U .
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