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JORDAN ε-HOMOMORPHISMS AND JORDAN ε-DERIVATIONS

Maja Fošner

Abstract. Herstein’s theorems on Jordan homomorphisms and Jordan deriva-
tions on prime associative algebras are extended to graded prime associative
algebras.

1. INTRODUCTION

Let A be an associative algebra over a field Φ. Introducing a new product in
A, the so called Jordan product (resp. Lie product), by x ◦ y = xy + yx (resp.
[x, y] = xy − yx), A becomes a Jordan algebra (resp. Lie algebra). In the 1950’s
Herstein initiated the study of the relationship between the associative and the Jordan
and Lie structure of associative rings (see e.g. [9, 10]). Over the recent years, a
number of Herstein’s results were extended to associative superalgebras (i.e. Z2-
graded associative algebras) [1,3-6, 11], and also to more general graded associative
algebras [2, 12, 14]. In particular, a superalgebra version of Herstein’s theorem
on Jordan homomorphisms (resp. Jordan derivations) was proved recently in [1]
by Beidar, Brešar and Chebotar (resp. in [3] by the present author). On the other
hand, Bergen and Grzeszczuk [2] extended Herstein’s theorems on Jordan ideals to
the context of associative algebras graded by an arbitrary abelian group equipped
with a bicharacter ε. This gives rise to a question whether the results from [1] and
[3] can be extended to the more general graded context. The goal of this paper is
to show that this is indeed possible.

In Section 2 we shall recall all the necessary definitions and state some prelim-
inary results. Section 3 is devoted to Jordan ε-homomorphisms, and Section 4 is
devoted to Jordan ε-derivations.

We shall make use, without explicit mention, several ideas from [1] and [3]. On
the other hand, there are several problems that are trivial in the superalgebra setting,
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that now appear in the more general situation studied in the present paper. It should
also be mentioned that the concepts of the proofs of the main results, Theorem
3.4 (on Jordan ε-homomorphisms) and Theorem 4.3 (on Jordan ε-derivations), are
similar. Anyway, in some parts of the proofs there are some rather significant
differences, and therefore we shall give details of both proofs.

2. PRELIMINARIES

Throughout the paper, Φ will be a field of characteristic not 2, and by an algebra
we shall always mean an algebra over Φ.

Let A and B be associative algebras. Recall that a linear map ϕ : B → A is
called a Jordan homomorphism if

ϕ(x ◦ y) = ϕ(x) ◦ ϕ(y)

for all x, y ∈ B. A Jordan derivation on A is a linear map D : A → A satisfying

D(x ◦ y) = D(x) ◦ y + x ◦D(y)

for all x, y ∈ A. Let us now state the classical Herstein’s theorems on Jordan
homomorphisms and Jordan derivations. To be precise, we shall state their simpli-
fied versions since Herstein proved these theorems for rings and not algebras over
fields. On the other hand, Herstein obtained the first theorem under the additional
assumption that the characteristic of rings is different from 3. This assumption was
later removed by Smiley [13] who also simplified the proof.

Theorem 2.1. [7, 13] A Jordan homomorphism from an arbitrary associa-
tive algebra onto a prime associative algebra is either a homomorphism or an
antihomomorphism.

Theorem 2.2. [8] A Jordan derivation on a prime associative algebra is a
derivation.

Let G be an abelian group and let A be a G-graded associative algebra. That
is, there are subspaces Ag, g ∈ G, of A such that A = ⊕g∈GAg and AgAh ⊆ Agh

for all g, h ∈ G. We say that an element a ∈ A is homogeneous if a ∈ Ag for some
g ∈ G. The set of all homogeneous elements in A will be denoted by H(A), i.e.
H(A) = ∪g∈GAg. A subspace S of A is said to be graded if S = ⊕g∈GS ∩ Ag.
We say that A is graded prime if the product of two nonzero graded ideals of A is
always nonzero.

Let Φ∗ = Φ\{0} and let ε : G×G → Φ∗ be a fixed anti-symmetric bicharacter.
That is, ε is a homomorphism in each argument and ε(g, h) = ε(h, g)−1 for all g, h ∈
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G. We shall use the same symbol, ε, to denote the map from H(A) ×H(A) to Φ∗

defined by ε(x, y) = ε(g, h) where x ∈ Ag and y ∈ Ah. We shall also write ε(g, y)
for ε(g, h) where g ∈ G and y ∈ Ah. Clearly, ε satisfies ε(xy, z) = ε(x, z)ε(y, z)
and ε(x, y) = ε(y, x)−1 for all x, y, z ∈ H(A). Consequently, ε(x, x) = ±1 for
every x ∈ H(A). Set G+ = {g ∈ G | ε(g, g) = 1} and G− = {g ∈ G | ε(g, g) =
−1}. We define A+ = ⊕g∈G+Ag and A− = ⊕g∈G−Ag . Of course, A = A+⊕A−.

Introducing a new product in A by

x◦εy = xy + ε(x, y)yx

(resp. [x, y]ε = xy − ε(x, y)yx) for all x, y ∈ H(A), A becomes a Jordan (resp.
Lie) color algebra (see [2] and [12] for details). The ε-center of A is Z ε(A) =
{x ∈ A | [y, x]ε = 0 for all y ∈ A}. Note that Zε(A) is a graded subspace.

Given another associative G-graded algebra B, we shall say that a linear map
ϕ : B → A is a Jordan ε-homomorphism if it is homogeneous (that is, ϕ(B g) ⊆ Ag

for all g ∈ G) and satisfies

ϕ(x ◦ε y) = ϕ(x) ◦ε ϕ(y)

for all x, y ∈ H(B). A homogeneous linear map ϕ : B → A will be called an ε-
homomorphism (resp. ε-antihomomorphism) if ϕ(xy) = ϕ(x)ϕ(y) (resp. ϕ(xy) =
ε(x, y)ϕ(y)ϕ(x)) for all x, y ∈ H(B). Clearly, ε-homomorphisms and ε-antihomo-
morphisms are examples of Jordan ε-homomorphisms, and of course one might ask
when these are in fact the only possible examples.

In the case where G = {1,−1} ∼= Z2 we call a G-graded algebra a superalgebra.
In this context we consider the bicharacter defined by ε(−1,−1) = −1 (and of
course ε(i, j) = 1 if one of i, j is 1). Accordingly, A+ = A1, which is called an
even part of A, and A− = A−1, an odd part of A. Following [1] we shall use the
term superhomomorphism instead of an ε-homomorphism in this context. Let us
now state the main result of [1].

Theorem 2.3. [2] A Jordan superhomomorphism from an arbitrary associative
superalgebra onto a prime associative superalgebra A such that [A 1,A1] 	= 0 is
either a superhomomorphism or a superantihomomorphism.

In [1, Examples 4 and 5] it is shown that superalgebras with commutative even
part must really be excluded.

In Theorem 3.4 we shall generalize Theorem 2.3 to the case where G is an
arbitrary abelian group.

Let k ∈ G. We shall say that a linear map Dk : A → A is a Jordan ε-derivation
of degree k (resp. an ε-derivation of degree k) if Dk(Ag) ⊆ Akg and

Dk(x◦εy) = Dk(x)◦εy + ε(k, x)x◦εDk(y)
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(resp. Dk(xy) = Dk(x)y + ε(k, x)xDk(y)) for all x, y ∈ H(A). We define a
Jordan ε-derivation (resp. an ε-derivation) as a finite sum of Jordan ε-derivations
(resp. ε-derivations) of different degrees. Clearly, every ε-derivation is also a
Jordan ε-derivation. The question that appears is when the converse is true. For
superalgebras this question was answered in [3]. We now state the main result from
this paper (the terminology used should be self-explanatory).

Theorem 2.4. [3] A Jordan superderivation on a prime associative superal-
gebra A such that [A1,A1] 	= 0 is a superderivation.

The case when the even part is commutative is indeed exceptional, as shown in
[3, Examples 3.3, 3.4 and 4.3].

We shall generalize Theorem 2.4 to the graded context in Theorem 4.3.

We continue by pointing out a few useful observations on graded prime asso-
ciative algebras which shall be needed later. It is well-known that the primeness of
an algebra A can be characterized by the condition that aAb = 0, where a, b ∈ A,
implies a = 0 or b = 0. The first lemma is an analogous result for graded algebras,
which can be proved by making some obvious modifications in the argument:

Theorem 2.5. A is graded prime if and only if aAb = 0, where a, b ∈ H(A),
implies a = 0 or b = 0.

Theorem 2.6. Let A be graded prime and let a ∈ H(A+), b ∈ H(A−) and
c ∈ H(A).

(i) If aA+a = 0, then a = 0.
(ii) If cA− = 0 (or A−c = 0), then c = 0 or A− = 0.
(iii) If aA−b = bA−a = 0, then a = 0 or b = 0.
(iv) If aA+b = bA+a = 0, then a = 0 or b = 0.
(v) If aA−c = 0 (or cA−a = 0), then c = 0 or aA−a = 0.

(vi) If aA+c = 0 (or cA+a = 0), then c = 0 or aA−a = 0.

Proof. Pick any x ∈ A−. Then we have (axa)y(axa) ∈ aA+aA− = 0 for
all y ∈ A− and (axa)z(axa) = 0 for all z ∈ A+. Therefore (axa)A(axa) = 0
which yields axa = 0 for all x ∈ H(A−) by Lemma 2.5. Thus aA−a = 0, which
together with aA+a = 0 implies aAa = 0. Hence a = 0 by the primeness of A.
Therefore we proved (i).

Let cA− = 0. Hence cA+A− ⊆ cA− = 0 and also cA−A− = 0. Therefore
cAA− = 0. By Lemma 2.5 we get c = 0 or A− = 0. In a similar fashion we can
prove the same if A−c = 0.
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Assume that aA−b = bA−a = 0. Whence (axb)y(axb) = 0 for all x ∈ A+ and
y ∈ A−. On the other hand, we have (axb)z(axb) ∈ aA−b = 0 for all x, z ∈ A+.
Consequently (axb)A(axb) = 0 for all x ∈ H(A+). By Lemma 2.5 it follows that
aA+b = 0. According to our assumption we get aAb = 0. Again using Lemma
2.5 the result follows. Analogously we can show that (iv) holds true.

Let aA−c = 0. Therefore axaA−c = 0 for all x ∈ A−. On the other hand, we
have axaA+c ⊆ aA−c = 0 for all x ∈ A−. These two relations yield (axa)Ac = 0
for all x ∈ A−. Since A is prime it follows that aA−a = 0 or c = 0. The same is
true if cA−a = 0.

Suppose that aA+c = 0. Hence axaA+c = 0 for all x ∈ A−. We also have
axaA−c ⊆ aA+c = 0 for all x ∈ A−. Consequently axaAc = 0 which yields
aA−a = 0 or c = 0 by the primeness of A. Similarly we can show that the same
is true if cA+a = 0.

Finally, we state three important identities, which hold true in any graded algebra
A. One can check them directly.

(1) [xy, z]ε = x[y, z]ε + ε(y, z)[x, z]εy, x, y ∈ H(A),

(2) [[x, y]ε, z]ε = x ◦ε (y ◦ε z) − ε(x, y)y ◦ε (x ◦ε z), x, y ∈ H(A),

(3) 2yxy = (y ◦ε x) ◦ε y − ε(y, x)x ◦ε y2, x ∈ H(A), y ∈ H(A+).

3. JORDAN ε-HOMOMORPHISMS

Throughout this section, A and B will be associative algebras graded by G, and ε
will be a fixed bicharacter for G. Further, by ϕ we denote a Jordan ε-homomorphism
from B onto A. We set

τ(x, y) = ϕ(xy)− ϕ(x)ϕ(y),
ω(x, y) = ϕ(xy)− ε(x, y)ϕ(y)ϕ(x)

for all x, y ∈ H(B). In the case when one of x or y lies in B1 it follows that
ω(x, y) = ϕ(xy) − ϕ(y)ϕ(x). Of course ϕ is an ε-homomorphism (resp. an ε-
antihomomorphism) if and only if τ(x, y) = 0 (resp. ω(x, y) = 0) for all x, y ∈
H(B).

A straightforward calculation shows us that for all x, y, z ∈ H(B) we have

(4) τ(x, y) = −ε(x, y)τ(y, x),

(5) ω(x, y) = −ε(x, y)ω(y, x),

(6) τ(xy, z)− τ(x, yz) = ϕ(x)τ(y, z)− τ(x, y)ϕ(z),

(7) ω(xy, z)− ω(x, yz) = ε(x, yz)ω(y, z)ϕ(x)− ε(xy, z)ϕ(z)ω(x, y).
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Note that (4) (resp. (5)) implies that for any g, h ∈ G, τ(Ag,Ah) = 0 (resp. ω(Ag,

Ah) = 0) if and only if τ(Ah,Ag) = 0 (resp. ω(Ah,Ag) = 0). Using (2) it follows
immediately from the definition of a Jordan ε-homomorphism that

(8) ϕ([[x, y]ε, z]ε) = [[ϕ(x), ϕ(y)]ε, ϕ(z)]ε.

Lemma 3.1. Let p, q, r, s ∈ G.

(i) If τ(Bpq,Brs) = 0, then [τ(Bp,Bq),Ars]ε = [Apq, τ(Br,Bs)]ε = 0.

(ii) If ω(Bpq,Brs) = 0, then [ω(Bp,Bq),Ars]ε = [Apq, ω(Br,Bs)]ε = 0.

In particular, if τ(Bpq,Brs) = 0 or ω(Bpq,Brs) = 0 then

[τ(Bp,Bq), ω(Br,Bs)]ε = 0.

Proof. Suppose that τ(Bpq,Brs) = 0. Note that τ(Brs,Bpq) = 0, as well. Pick
x ∈ Bp, y ∈ Bq and z ∈ Brs. Since [x, y]ε ∈ Bpq it follows that

ϕ([[x, y]ε, z]ε) = ϕ([x, y]εz) − ε(xy, z)ϕ(z[x, y]ε)

= ϕ([x, y]ε)ϕ(z)− ε(xy, z)ϕ(z)ϕ([x, y]ε)

= [ϕ([x, y]ε), ϕ(z)]ε.

Comparing this relation with (8) we get [ϕ([x, y]ε)− [ϕ(x), ϕ(y)]ε, ϕ(z)]ε = 0. We
have ϕ(x◦εy) = ϕ(x)◦εϕ(y) and so [τ(x, y), ϕ(z)]ε = 0 for all x ∈ Bp, y ∈ Bq, z ∈
Brs. Thus [τ(Bp,Bq),Ars]ε = 0. In particular, we have [τ(Bp,Bq), ω(Br,Bs)]ε ⊆
[τ(Bp,Bq),Ars]ε = 0. Analogously we can show that [Apq, τ(Br,Bs)]ε = 0.

Assume now that ω(Bpq,Brs) = 0. Since also ω(Brs,Bpq) = 0 it follows that

ϕ([[x, y]ε, z]ε) = ε(xy, z)ϕ(z)ϕ([x, y]ε)− ϕ([x, y]ε)ϕ(z)

= −[ϕ([x, y]ε), ϕ(z)]ε

for all x ∈ Bp, y ∈ Bq and z ∈ Brs. Using (8) and the assumption that ϕ is a Jordan
ε-homomorphism we get [ω(Bp,Bq),Ars]ε = 0. In a similar fashion we show that
[Apq, ω(Br,Bs)]ε = 0. Thereby [τ(Bp,Bq), ω(Br,Bs)]ε ⊆ [Apq, ω(Br,Bs), ]ε = 0
and the proof is complete.

From now on we assume that A is graded prime and [A1,A1] 	= 0.

Lemma 3.2. If τ(B1,B+) = 0, then ϕ is an ε-homomorphism.

Proof. Of course, τ(B+,B1) = 0 as well. In particular, τ(Bpr,B1) = 0 for
all p, r ∈ G−. Using Lemma 3.1 (i) it follows that [τ(Bp,Br),A1]ε = 0 for all
p, r ∈ G−. Thus we have

(9) [τ(B−,B−),A1]ε = 0.
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Pick any x, y ∈ H(B−) and z ∈ B1. From (6) it follows that the element ϕ(x)τ(y, z)
ε-commutes with ϕ(z) since [τ(x, y)ϕ(z), ϕ(z)]ε = 0 by (1). Therefore

(10) [A−τ(B−, z), ϕ(z)]ε = 0

for all z ∈ B1. Let u ∈ H(A+) and v ∈ H(A−). Hence uv ∈ H(A−). Next, apply
(1) and (10) to derive that

0 = [uvτ(y, x), ϕ(x)]ε − u[vτ(y, x), ϕ(x)]ε = ε(vyx, x)[u, ϕ(x)]εvτ(y, x)

for all y ∈ H(B−) and x ∈ B1. Consequently

(11) [A+, ϕ(x)]εA−τ(B−, x) = 0

for all x ∈ B1. Analogously, by (6) and (9) we get that τ(x, y)ϕ(z) ε-commutes
with ϕ(x) for all x ∈ B1, y, z ∈ H(B−), since [ϕ(x)τ(y, z), ϕ(x)]ε = 0 by (1).
Using (4) we also have that τ(y, x)ϕ(z) ε-commutes with ϕ(x). That is

[τ(B−, x)A−, ϕ(x)]ε = 0

for all x ∈ B1. Again using (1) and vu ∈ H(A−) it follows that

0 = [τ(y, x)vu, ϕ(x)]ε − ε(u, x)[τ(y, x)v, ϕ(x)]εu = τ(y, x)v[u, ϕ(x)]ε

for all y ∈ H(B−) and x ∈ B1. Thus

(12) τ(B−, x)A−[A+, ϕ(x)]ε = 0

for all x ∈ B1. Now compare (11) and (12) and note that Lemma 2.6 (iii) can be
used. Whence it follows that for each x ∈ B1 either τ(B−, x) = 0 or [A+, ϕ(x)]ε =
0. Using the fact a group B1 cannot be the union of its proper subgroups and the
assumption [A1,A1] 	= 0 it follows that

(13) τ(B−,B1) = 0.

In particular, τ(Bpr,B1) = 0 for all p ∈ G− and r ∈ G+. Using Lemma 3.1 (i) it
follows that [τ(Bp,Br),A1]ε = 0. Consequently,

(14) [τ(B−,B+),A1]ε = 0.

Using (6), (13) and (14) we get [τ(x, y)ϕ(z),A1]ε = 0 for all x ∈ H(B−), y ∈
H(B+) and z ∈ B1. By (1) and (14) we get τ(x, y)[ϕ(z),A1]ε = 0. Using
[A1,A1] ⊆ A1 and (14) we obtain

(15) τ(B−,B+)[A1,A1] = [A1,A1]τ(B−,B+) = 0.
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Pick any x, z ∈ H(B+) and y ∈ H(B−). In view of (6) one easily deduces from (4)
and (15) that τ(x, y)ϕ(z)[A1,A1] = 0 and [A1,A1]ϕ(x)τ(y, z) = 0, which yields

τ(B+,B−)A+[A1,A1] = [A1,A1]A+τ(B+,B−) = 0.

Lemma 2.6 (iv) implies that τ(B+,B−) = 0 or [A1,A1] = 0. According to our
assumption it follows that

(16) τ(B+,B−) = 0.

Again making use of (6) we get τ(x, y)ϕ(z) = 0 for all x, y ∈ H(B+) and z ∈
H(B−). Thus we have τ(B+,B+)A− = 0. Using Lemma 2.6 (ii) it follows that
A− = 0 or τ(B+,B+) = 0. First assume that the second relation holds true,

(17) τ(B+,B+) = 0.

Hence by Lemma 3.1 (i) it follows that

(18) [τ(B−,B−),A+]ε = 0.

Let x, y ∈ H(B−) and z ∈ H(B+). From (6), (16), (17) and (18) we get
[τ(x, y)ϕ(z),A+]ε = 0. Using (1) and (18) we arrive at τ(x, y)[ϕ(z),A+]ε = 0.
Thus we have

(19) τ(B−,B−)[A+,A+]ε = 0.

By (18) we get

(20) τ(B−,B−)A+[A+,A+]ε = 0.

Pick any x, y, z ∈ H(B−). Multiply (6) on the right by [A+,A+]ε and use (16) and
(19) to get τ(x, y)ϕ(z)[A+,A+]ε = 0. Therefore

τ(B−,B−)A−[A+,A+]ε = 0

which together with (20) yields τ(B−,B−)A[A+,A+]ε = 0. Using the primeness of
A and [A1,A1] 	= 0 it follows that τ(B−,B−) = 0. Combining all our conclusions
it follows that ϕ is an ε-homomorphism.

Assume now that A− = 0. This trivially yields τ(B−,B−) = 0. From the
assumption that τ(B+,B1) = 0 we get

(21) [τ(B+,B+),A1]ε = 0

by Lemma 3.1 (i). Using (6) we get [τ(x, y)ϕ(z),A1]ε = 0 for all x, y ∈ H(B+)
and z ∈ B1. Accordingly, τ(x, y)[ϕ(z),A1]ε = 0 by (1) and (21). Therefore

(22) τ(B+,B+)[A1,A1] = 0.
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Let x, y, z ∈ H(B+). Multiply (6) on the right by [A1,A1] and use (22) to get
τ(B+,B+)A+[A1,A1] = 0. Since A = A+ is a graded prime algebra and
[A1,A1] 	= 0 it follows that τ(B+,B+) = 0.

Lemma 3.3. If ω(B1,B+) = 0, then ϕ is an ε-antihomomorphism.

Proof. The proof is a simple modification of that of Lemma 3.2, so we give
only an outline. First we observe using Lemma 3.1 (ii) that

[ω(B−,B−),A1]ε = 0.

Using (7) we derive [ω(y, z)ϕ(x), ϕ(z)]ε = 0 for all x, y ∈ H(B−), z ∈ A1 and
[ϕ(z)ω(x, y), ϕ(x)]ε = 0 for all x ∈ B1, y, z ∈ H(B−). Therefore [ω(B−, x)A−,

ϕ(x)]ε = [A−ω(B−, x), ϕ(x)]ε = 0 for all x ∈ B1. By (1) we arrive at

ω(B−, x)A−[A+, ϕ(x)]ε = [A+, ϕ(x)]εA−ω(B−, x) = 0

for all x ∈ B1. Lemma 2.6 (iii) implies

ω(B−,B1) = 0.

Again making use of Lemma 3.1 (ii) it follows that

[ω(B−,B+),A1]ε = 0.

By (7) we arrive at [ϕ(z)ω(x, y),A1]ε = 0 for all x ∈ H(B−), y ∈ H(B+) and
z ∈ B1, and hence

ω(B−,B+)[A1,A1] = [A1,A1]ω(B−,B+) = 0

by (1). From (7) we derive that ω(y, z)ϕ(x)[A1,A1] = [A1,A1]ϕ(z)ω(x, y) = 0
for all x, z ∈ H(B+), y ∈ H(B−). Thus we have

ω(B−,B+)A+[A1,A1] = [A1,A1]A+ω(B−,B+) = 0.

In view of Lemma 2.6 (iv) we get

ω(B−,B+) = 0.

Again using (7) we arrive at ω(y, z)ϕ(x) = 0 for all x ∈ H(B−) and y, z ∈ H(B+).
Hence ω(B+,B+)A− = 0. Lemma 2.6 (ii) implies A− = 0 or ω(B+,B+) = 0.
Suppose that

ω(B+,B+) = 0.
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Using Lemma 3.1 (ii) we infer

[ω(B−,B−),A+]ε = 0.

By (7) we get [ϕ(z)ω(x, y),A+]ε = 0 for all x, y ∈ H(B−), z ∈ H(B+), which
yields

ω(B−,B−)[A+,A+]ε = 0.

Therefore also
ω(B−,B−)A+[A+,A+]ε = 0.

Using (7) we get ω(y, z)ϕ(x)[A+,A+]ε = 0 for all x, y, z ∈ H(B−). Hence

ω(B−,B−)A−[A+,A+]ε = 0

which in turn implies ω(B−,B−)A[A+,A+]ε = 0. According to our assumption
that A is prime and [A1,A1] 	= 0 it follows that ω(B−,B−) = 0.

Finally, suppose that A− = 0. First, this trivially implies ω(B−,B−) = 0. Since
ω(B1,B+) = 0 it follows from Lemma 3.1 (ii) that

[ω(B+,B+),A1]ε = 0.

Therefore one can deduce from (7) that [ϕ(z)ω(x, y),A1]ε = 0 for all x, y ∈ H(B+),
z ∈ B1. Hence

[A1,A1]ω(B+,B+) = 0.

Again making use of (7) we arrive at [A1,A1]ϕ(z)ω(x, y) = 0 for all x, y, z ∈
H(B+). Thus [A1,A1]A+ω(B+,B+) = 0. Since A = A+ is a graded prime
algebra it follows that ω(B+,B+) = 0. Hence ω is an ε-antihomomorphism, as
desired.

Theorem 3.4. Let ϕ be a Jordan ε-homomorphism from an arbitrary graded as-
sociative algebra B onto a graded prime associative algebra A such that [A 1,A1] 	=
0. Then ϕ is either an ε-homomorphism or an ε-antihomomorphism.

Proof. Using (3) and the assumption that ϕ is a Jordan ε-homomorphism it
follows that

(23) ϕ(axa) = ϕ(a)ϕ(x)ϕ(a)

for all a ∈ H(B+) and x ∈ H(B). Linearizing (23) we get

(24) ϕ(axb + bxa) = ϕ(a)ϕ(x)ϕ(b)+ ϕ(b)ϕ(x)ϕ(a)
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for all a, b ∈ Bg, g ∈ G+ and x ∈ H(B). Pick any x ∈ H(B) and a, b ∈ H(B+).
Using (23) we get

ϕ(abxba + baxab) = ϕ(a(bxb)a + b(axa)b)

= ϕ(a)ϕ(bxb)ϕ(a)+ ϕ(b)ϕ(axa)ϕ(b)

= ϕ(a)ϕ(b)ϕ(x)ϕ(b)ϕ(a)+ ϕ(b)ϕ(a)ϕ(x)ϕ(a)ϕ(b).

On the other hand, using (24) we get

ϕ(abxba + baxab) = ϕ((ab)x(ba)+ (ba)x(ab))

= ϕ(ab)ϕ(x)ϕ(ba)+ ϕ(ba)ϕ(x)ϕ(ab).

Comparing identities so obtained and using ϕ(a ◦ε b) = ϕ(a) ◦ε ϕ(b) it follows that

0 = ϕ(ab)ϕ(x)(−ε(b, a)ϕ(ab)+ ϕ(b)ϕ(a) + ε(b, a)ϕ(a)ϕ(b))

+(−ε(b, a)ϕ(ab)+ ϕ(b)ϕ(a) + ε(b, a)ϕ(a)ϕ(b))ϕ(x)ϕ(ab)

−ϕ(a)ϕ(b)ϕ(x)ϕ(b)ϕ(a)− ϕ(b)ϕ(a)ϕ(x)ϕ(a)ϕ(b)

= τ(a, b)ϕ(x)ϕ(b)ϕ(a)+ ε(b, a)ω(a, b)ϕ(x)ϕ(a)ϕ(b)

−ε(b, a)τ(a, b)ϕ(x)ϕ(ab)− ε(b, a)ω(a, b)ϕ(x)ϕ(ab)

= −ε(b, a)(τ(a, b)ϕ(x)ω(a, b)+ ω(a, b)ϕ(x)τ(a, b)).

for all x ∈ H(B) and a, b ∈ H(B+). Hence

(25) τ(a, b)ϕ(x)ω(a, b)+ ω(a, b)ϕ(x)τ(a, b) = 0

for all x ∈ H(B) and a, b ∈ H(B+). Let a, b ∈ H(B+) and write τ = τ(a, b) and
ω = ω(a, b) for brevity. Using that ϕ is onto it follows that (25) can be written as
τyω + ωyτ = 0 for all y ∈ A. Therefore τy(ωzτ) = −τ(yτz)ω = (ωyτ)zτ =
−τyωzτ for all y, z ∈ A. Hence τAωAτ = 0. Since A is prime it follows by
Lemma 2.5 that τ = 0 or ω = 0. Let g, h ∈ G+ and let us show that one of these
two conditions is fulfilled for all a ∈ Bh and b ∈ Bg. For any fixed a ∈ Bh the
sets {b ∈ Bg | τ(a, b) = 0} and {b ∈ Bg | ω(a, b) = 0} are additive subgroups of
Bg whose union is, by what we proved, equal to Bg. Since a group cannot be the
union of its proper subgroups, it follows that either τ(a,Bg) = 0 or ω(a,Bg) = 0.
Therefore Bh is the union of its additive subgroups {a ∈ Bh | τ(a,Bg) = 0} and
{a ∈ Bh | ω(a,Bg) = 0}, and so one of them equals Bh. Consequently, for each
pair g, h ∈ G+ either τ(Bh,Bg) = 0 or ω(Bh,Bg) = 0.

Let us show that either τ(B1,Bg) = 0 for all g ∈ G+ or ω(B1,Bg) = 0 for
all g ∈ G+. Assume that ω(B1,Bg) 	= 0 and τ(B1,Bh) 	= 0 for some g, h ∈ G+.
Therefore, by what we proved,

(26) τ(B1,Bg) = 0 and ω(B1,Bh) = 0.
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Further, we have τ(B1,B1) = 0 or ω(B1,B1) = 0. If τ(B1,B1) = ω(B1,B1) = 0
then [A1,A1] = 0, a contradiction. Now we may assume that τ(B1,B1) 	= 0.
Namely, τ(B1,B1) = 0 implies ω(B1,B1) 	= 0 and the remaining proof is similar,
so we omit it. We have τ(B1,Bgpr) = 0 or ω(B1,Bgpr) = 0 and also τ(B1,Bpr) = 0
or ω(B1,Bpr) = 0 for all p, r ∈ G−. Since BiBj ⊆ Bij for all i, j ∈ G it follows
by Lemma 3.1 that

(27) [τ(B1,B1), ω(BgBp,Br)]ε = 0,

(28) [τ(B1,B1), ω(Bg,BpBr)]ε = 0,

(29) [τ(B1,B1), ω(Bp,Br)]ε = 0.

Since τ(B1,Bg) = 0 we get [τ(B1,B1),Ag]ε = 0 by Lemma 3.1 (i). By (1) and
(29) we arrive at

(30)
[τ(B1,B1), ω(Bp,Br)Ag]ε ⊆ [τ(B1,B1), ω(Bp,Br)]εAg

+ω(Bp,Br)[τ(B1,B1),Ag]ε = 0.

Pick any x ∈ Bg, y ∈ Bp and z ∈ Br. Using (7), (27), (28) and (30) it follows
that [τ(B1,B1), ϕ(z)ω(x, y)]ε = 0. Hence [τ(B1,B1),Arω(Bg,Bp)]ε = 0 for all
p, r ∈ G−. Using (1) it follows that

[τ(B1,B1),As]εArω(Bg,Bp) ⊆ [τ(B1,B1),AsArω(Bg,Bp)]ε

+As[τ(B1,B1),Arω(Bg,Bp)]ε = 0

for all s ∈ G+ and p, r ∈ G−. Thus we have

(31) [τ(B1,B1),A+]εA−ω(Bg,B−) = 0.

In a similar fashion, by considering the condition that τ(B1,Brpg) = 0 or ω(B1,Brpg) =
0, we get [τ(B1,B1), ω(Bg,Bp)Ar]ε = 0 which yields

(32) ω(Bg,B−)A−[τ(B1,B1),A+]ε = 0.

Compare (31) and (32) and note that Lemma 2.6 (iii) can be used. Thus ω(Bg,B−) =
0 or [τ(B1,B1),A+]ε = 0.

Suppose that

(33) [τ(B1,B1),A+]ε = 0.

It is easy to see that ω(a, b)−τ(a, b) = [ϕ(a), ϕ(b)]ε for all a, b ∈ H(B). Therefore,
given a, b ∈ B1 we have ω(a, b) = 0 since ω(B1,B1) = 0. Hence τ(a, b) =
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−[ϕ(a), ϕ(b)]. Consequently [[ϕ(a), ϕ(b)],A+]ε = 0 by (33). Since ϕ is onto it
follows that [[x, y],A+]ε = 0 for all x, y ∈ A1. In particular, [[x2, y], z]ε = 0 for
all z ∈ H(A+). Using (1) we see that [x[x, y] + [x, y]x, z]ε = [2x[x, y], z]ε = 0.

which in turn implies [x, z]ε[x, y] = 0. Since [x, y]ε-commutes with A+ it follows
that [x, z]εA+[x, y]ε = 0 for all z ∈ H(A+). Therefore [x, y]A+[x, y] = 0 for all
x, y ∈ A1. Consequently, by Lemma 2.6 (i) we get [x, y] = 0 for all x, y ∈ A1, a
contradiction.

Therefore ω(Bg,B−) = 0. Lemma 3.1 (ii) implies

(34) [ω(Bg,B1),A−]ε = 0.

Pick x ∈ Bg, y ∈ B1, z ∈ H(A+) and w ∈ H(A−). Using (1) it follows that

[ω(x, y), z]εw ∈ [ω(Bg,B1),A+A−]ε + A+[ω(Bg,B1),A−]ε = 0,

which yields [ω(Bg,B1),A+]εA− = 0. Hence [ω(Bg,B1),A+]ε = 0 or A− = 0 by
Lemma 2.6 (ii). Suppose that the first relation holds true. Together with (34) this
yields

ω(Bg,B1) ⊆ Zε(A).

By what we proved we have ω(Bg,Bh) = 0 or τ(Bg,Bh) = 0. Let us show that in
both cases we get

(35) ω(B1,Bg)τ(B1,Bh) = 0.

Suppose first that ω(Bg,Bh) = 0. Hence ω(Bh,Bg) = 0, as well. Therefore, given
x ∈ Bh, y ∈ B1 and z ∈ Bg we have ω(y, z)ϕ(x) = 0 by (7) and (26). Thus we
have ω(B1,Bg)Ah = 0, which implies ω(B1,Bg)τ(B1,Bh) ⊆ ω(B1,Bg)Ah = 0.

Suppose now that τ(Bg,Bh) = 0. In a similar fashion, by using (6) and (26) we
get Agτ(B1,Bh) = 0. Hence ω(B1,Bg)τ(B1,Bh) ⊆ Agτ(B1,Bh) = 0, as desired.
Since ω(Bg,B1) ⊆ Zε(A) it follows that ω(B1,Bg)Aτ(B1,Bh) = 0. The primeness
of A yields ω(B1,Bg) = 0 or τ(B1,Bh) = 0, a contradiction.

Suppose now that A− = 0. Hence A = A+. We proved (35) for every h ∈ G+

such that τ(B1,Bh) 	= 0. But this relation is also true when τ(B1,Bh) = 0. Hence
ω(B1,Bg)τ(B1,B+) = 0. Making use of (6) it follows that ω(B1,Bg)ϕ(x)τ(y, z) =
0 for all x ∈ H(B+) and y, z ∈ B1. Thus ω(B1,Bg)A+τ(B1,B1) = 0 which yields
ω(B1,Bg) = 0 or τ(B1,B1) = 0, a contradiction.

We proved that τ(B1,B+) = 0 or ω(B1,B+) = 0. Using Lemma 3.2 and
Lemma 3.3 the result follows.

Example 3.5. Let A be a graded prime algebra with unity such that [A+,A]ε =
0 and A− ◦ε A− = 0 (cf. [2, Proposition 2.7] where such algebras are described
in greater detail). Suppose there is an invertible a ∈ A1 such that a2 	= ±1. Now
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define ϕ : A → A by ϕ(x + y) = x + ay for all x ∈ H(A+) and y ∈ H(A−).
Then ϕ is a Jordan ε-automorphism which is neither an ε-automorphism nor an
ε-antiautomorphism. Note that this example is actually an extension of Example 4
in [1].

4. JORDAN ε-DERIVATIONS

Let us fix the notation. Throughout, A will be an associative algebra graded by
G, and ε will be a bicharacter. We fix k ∈ G and let Dk be a Jordan ε-derivation
of degree k on A. We set

δk(x, y) = Dk(xy)− Dk(x)y − ε(k, x)xDk(y)

for all elements x, y ∈ H(A). In the case when x lies in A1 it follows that
δk(x, y) = Dk(xy)−Dk(x)y − xDk(y). Of course δk is an ε-derivation of degree
k if and only if δk(x, y) = 0 for all x, y ∈ H(A).

A straightforward calculation shows us that

(36) δk(x, y) = −ε(x, y)δk(y, x),

(37) δk(xy, z) + δk(x, y)z = δk(x, yz) + ε(k, x)xδk(y, z)

for all x, y, z ∈ H(A). Note that (36) implies that δk(Ag,Ah) = 0 if and only if
δk(Ah,Ag) = 0, g, h ∈ G. Using (2) it follows immediately from the definition of
a Jordan ε-derivation that

(38)
Dk([[x, y]ε, z]ε) = [[Dk(x), y]ε, z]ε + ε(k, x)[[x, Dk(y)]ε, z]ε

+ε(k, xy)[[x, y]ε, Dk(z)]ε.

Lemma 4.1. Let p, q, r ∈ G. If δk(Apq,Ar) = 0, then [δk(Ap,Aq),Ar]ε = 0.

Proof. Let x ∈ Ap, y ∈ Aq and z ∈ Ar. Since [x, y]ε ∈ Apq it follows that

Dk([[x, y]ε, z]ε) = Dk([x, y]εz) − ε(xy, z)Dk(z[x, y]ε)

= Dk([x, y]ε)z + ε(k, xy)[x, y]εDk(z)

−ε(xy, z)Dk(z)[x, y]ε − ε(kxy, z)zDk([x, y]ε)

= [Dk([x, y]ε), z]ε + ε(k, xy)[[x, y]ε, Dk(z)]ε.

Comparing this relation with (38) and using that Dk(x◦εy) = Dk(x)◦εy+ε(k, x)x◦ε

Dk(y) we arrive at [δk(x, y), z]ε = 0 for all x ∈ Ap, y ∈ Aq and z ∈ Ar.
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From now on A will be graded prime and [A1,A1] 	= 0.

Lemma 4.2. If δk(A1,A+) = 0, then Dk is an ε-derivation.

Proof. Note that δk(A+,A1) = 0 as well. Therefore Lemma 4.1 implies

(39) [δk(A+,A+),A1]ε = 0.

By (37) we get [δk(x, y)z,A1] = 0 for all x, y ∈ H(A+) and z ∈ A1. Using (1)
and (39) we arrive at δk(x, y)[z,A1] = 0. Thus

(40) δk(A+,A+)[A1,A1] = [A1,A1]δk(A+,A+) = 0.

Let x, y, z ∈ H(A+). Multiply (37) on the right by [A1,A1]. Using (40) it follows
that δk(x, y)z[A1,A1] = 0. Similarly, by multiplying (37) on the left by [A1,A1]
we get [A1,A1]xδk(y, z) = 0, which yields

(41) δk(A+,A+)A+[A1,A1] = [A1,A1]A+δk(A+,A+) = 0.

Again using our assumption that δk(A+,A1) = 0 it follows by Lemma 4.1 that

(42) [δk(A−,A−),A1]ε = 0.

Therefore (37) implies that [xδk(y, z), z]ε = 0 for all x, y ∈ H(A−) and z ∈ A1.
Hence by (1) it follows that

0 = [wxδk(y, z), z]ε − w[xδk(y, z), z]ε = [w, z]εxδk(y, z)

for all w ∈ H(A+), x, y ∈ H(A−) and z ∈ A1. Thus we have

(43) [A+, z]A−δk(A−, z) = 0

for all z ∈ A1. Similarly, by (37) and (42) we have [δk(x, y)z, x]ε = 0 for all
x ∈ A1, y, z ∈ H(A−), and hence δk(x, y)z[w, x]ε = 0 for all w ∈ H(A+). This
implies

(44) δk(A−, x)A−[A+, x] = 0

for all x ∈ A1. We now divide the proof into two parts: when k ∈ G+ and when
k ∈ G−.

Case 1. Suppose first that k ∈ G+. Now compare the identities (43) and
(44) and note that Lemma 2.6 (iii) can be used. Therefore for each x ∈ A1 either
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δk(A−, x) = 0 or [A+, x] = 0. Using the fact that a group cannot be the union of
its proper subgroups and the assumption [A1,A1] 	= 0 it follows that

δk(A−,A1) = 0.

Using Lemma 4.1 we arrive at

(45) [δk(A−,A+),A1]ε = 0.

Hence from (37) we get [δk(x, y)z,A1] = 0 for all x ∈ H(A−), y ∈ H(A+) and
z ∈ A1. Consequently, from (1) and (45) we get δk(x, y)[z,A1] = 0. Thus

(46) δk(A−,A+)[A1,A1] = [A1,A1]δk(A−,A+) = 0.

Let x ∈ H(A−) and y, z ∈ H(A+). Multiply (37) on the right by [A1,A1]. Using
(40) and (46) we arrive at δk(x, y)z[A1,A1] = 0 which yields

(47) δk(A−,A+)A+[A1,A1] = 0.

Let x, y ∈ H(A+) and z ∈ H(A−). Again multiply (37) on the left by [A1,A1] to
get [A1,A1]xδk(y, z) = 0 by (40) and (46). Hence

(48) [A1,A1]A+δk(A−,A+) = 0

by (36). Therefore (47) and (48) together with Lemma 2.6 (iv) imply

(49) δk(A−,A+) = 0.

Using (37) it follows that xδk(y, z) = 0 for all x ∈ H(A− and y, z ∈ H(A+). That
is, A− δk(A+,A+) = 0. Hence Lemma 2.6 (ii) implies A− = 0 or δk(A+,A+) =
0. Suppose that

(50) δk(A+,A+) = 0.

Using Lemma 4.1 we get

(51) [δk(A−,A−),A+]ε = 0.

Hence by (37), (49) and (50) we arrive at [δk(x, y)z,A+]ε = 0 for all x, y ∈ H(A−)
and z ∈ H(A+). Therefore δk(x, y)[z,A+]ε = 0 by (1) and (51). Thus

(52) δk(A−,A−)[A+,A+]ε = [A+,A+]εδk(A−,A−) = 0.

Using (51) we also have

(53) δk(A−,A−)A+[A+,A+]ε = 0.
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Now pick any x, y, z ∈ H(A−) and multiply (37) on the right by [A+,A+]ε. Using
(49) and (52) it follows that δk(x, y)z[A+,A+]ε = 0. Therefore δk(A−,A−)A−[A+,
A+]ε = 0 which together with (53) yields

δk(A−,A−)A[A+,A+]ε = 0.

Since A is prime and [A1,A1] 	= 0 we get δk(A−,A−) = 0, and the result follows.
Assume that A− = 0. This yields δk(A−,A−) = 0. By (41) we arrive at

δk(A+,A+) = 0 since A = A+ is a graded prime algebra. Consequently, in the
case when k ∈ G+ we proved that δk is an ε-derivation on A.

Case 2. Suppose now that k ∈ G−. From (41) and Lemma 2.6 (iv) it follows
that

(54) δk(A+,A+) = 0

since δk(A+,A+) ⊆ A−. Hence

(55) [δk(A−,A−),A+]ε = 0

by Lemma 4.1. Using (43), (44) and Lemma 2.6 (v) we have for each x ∈ A1

either [A+, x]ε = 0 or δk(A−, x)A−δk(A−, x) = 0. Thus the union of the sets
B = {x ∈ A1 | [A+, x]ε = 0} and C = {x ∈ A1 | δk(A−, x)A−δk(A−, x) = 0}
is, by what we proved, equal to A1. Using the assumption that [A1,A1] 	= 0, we
have B 	= A1. Therefore there exists x /∈ B. Let us show that C = A∞. Suppose
that there exists y ∈ A1 such that y /∈ C. Hence x + y, x − y /∈ B which yields
x+y, x−y ∈ C. Therefore it is easy to see that this implies y ∈ C, a contradiction.
Consequently, we have

(56) δk(A−, x)A−δk(A−, x) = 0

for all x ∈ A1. From (37) and (55) we get

[δk(x, y)z, w]ε = [ε(k, x)xδk(y, z), w]ε

for all x, z ∈ H(A−), y ∈ A1 and w ∈ H(A+). Multiply this relation on the right
by A−δk(A−, y). Using (56) we get

[δk(x, y)z, w]εA−δk(A−, y) = 0.

Again using (56) we also have

[δk(x, y)z, w]εA+δk(A−, y) = 0.
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Hence [δk(x, y)z, w]εAδk(A−, y) = 0 for all x, z ∈ H(A−), y ∈ A1 and w ∈
H(A+). Thus

[δk(A−, y)A−,A+]εAδk(A−, y) = 0

for all y ∈ A1. By the primeness of A and the fact that a group cannot be the union
of its proper subgroups we get [δk(A−,A1)A−,A+]ε = 0 or δk(A−,A1) = 0. In
any case the first relation holds true. In particular,

[δk(A−,A1)A−, δk(A−,A1)A+]ε = 0

since δk(A−,A1)A+ ⊆ A+. Using (56) we arrive at

δk(A−, x)A+δk(A−, x)A− = 0

for all x ∈ A1, which yields A− = 0 or δk(A−, x)A+δk(A−, x) = 0 by Lemma
2.6 (ii). In both cases we have

δk(A−,A1) = 0.

Namely, if the second relation holds true the result follows by Lemma 2.6 (i).
Consequently

(57) [δk(A−,A+),A1]ε = 0

by Lemma 4.1. From this relation together with (37) and (54) we get [δk(x, y)z,A1]ε
= 0 for all x ∈ H(A−), y, z ∈ H(A+). Hence by (1) and (57) we arrive at
δk(x, y)[z,A1]ε = 0. Therefore

δk(x, y)w[z, v]ε = δk(x, y)[wz, v]ε − ε(z, v)δk(x, y)[w, v]εz = 0

for all v ∈ A1, x ∈ H(A−) and w, y, z ∈ H(A+) which implies

δk(A−,A+)A+[A+,A1]ε = 0.

Using Lemma 2.6 (vi) and the assumption that [A1,A1] 	= 0 it follows that

(58) δk(A−,A+)A−δk(A−,A+) = 0.

In the next step of the proof we shall more or less just repeat the procedure just
presented. Anyway, we shall give details. From (37) and (55) we get

[δk(x, y)z, w]ε = [ε(k, x)xδk(y, z), w]ε

for all x, z ∈ H(A−), w, y ∈ H(A+). Multiply this relation by A−δk(A−,A+).
Using (58) we get

[δk(x, y)z, w]εA−δk(A−,A+) = 0.
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Again using (58) we also have

[δk(x, y)z, w]εA+δk(A−,A+) = 0

and hence
[δk(A−,A+)A−,A+]εAδk(A−,A+) = 0.

By the primeness of A we get δk(A−,A+) = 0 or [δk(A−,A+)A−,A+]ε = 0. In
any case the second relation holds true. In particular,

[δk(A−,A+)A−, δk(A−,A+)A+]ε = 0.

Using (58) we get
δk(A−,A+)A+δk(A−,A+)A− = 0

which yields A− = 0 or δk(A−,A+)A+δk(A−,A+) = 0 by Lemma 2.6 (ii). In
both cases we have

(59) δk(A−,A+) = 0.

Namely, if the latter is true than the result follows from Lemma 2.6 (i). By (37),
(54), (55) and (59) we get [δk(x, y)z,A+]ε = 0 for all x, y ∈ H(A−), z ∈ H(A+).
Using (1) and the standard argument we arrive at

(60) δk(A−,A−)A+[A+,A+]ε = 0.

Similarly we can show that [xδk(y, z),A+]ε = 0 for all x ∈ H(A+) and y, z ∈
H(A−), which yields

(61) [A+,A+]εA+δk(A−,A−) = 0.

Using (60) and (61) we arrive at δk(A−,A−) = 0 by Lemma 2.6 (iv). The proof
is complete.

Theorem 4.3 Let D be a Jordan ε-derivation on a graded prime associative
algebra A such that [A1,A1] 	= 0. Then D is an ε-derivation.

Proof. It suffices to prove that for every k ∈ G, a Jordan ε-derivation Dk of
degree k is an ε-derivation. Let k ∈ G and let Dk be a Jordan ε-derivation of degree
k. By (3) it follows that

Dk(axa) = Dk(a)xa + ε(k, a)aDk(x)a + ε(k, ax)axDk(a).

Linearizing this identity we arrive at

Dk(axb) + Dk(bxa) = Dk(a)xb + Dk(b)xa + ε(k, a)aDk(x)b

+ε(k, a)bDk(x)a + ε(k, ax)axDk(b)

+ε(k, ax)bxDk(a)



614 Maja Fošner

for all a, b ∈ Ag, g ∈ G+ and x ∈ H(A). Let a, b ∈ H(A+) and x ∈ H(A).
Considering the expression Dk(abxba + baxab) we get

Dk(a(bxb)a + b(axa)b) = Dk(a)bxba+ε(k, a)aDk(bxb)a+ε(k, ab2x)abxbDk(a)

+Dk(b)axab+ε(k, b)bDk(axa)b+ε(k, a2bx)baxaDk(b)

= Dk(a)bxba + ε(k, a)aDk(b)xba

+ε(k, ab)abDk(x)ba + ε(k, abx)abxDk(b)a

+ε(k, ab2x)abxbDk(a) + Dk(b)axab

+ε(k, b)bDk(a)xab + ε(k, ab)baDk(x)ab

+ε(k, abx)baxDk(a)b + ε(k, a2bx)baxaDk(b),

and on the other hand

Dk((ab)x(ba)+ (ba)x(ab)) = Dk(ab)xba + ε(k, ab)abDk(x)ba

+ε(k, axb)abxDk(ba) + Dk(ba)xab

+ε(k, ab)baDk(x)ab + ε(k, abx)baxDk(ab)

Comparing the identities so obtained and using (36) we arrive at

(62)

0 = (Dk(ab)− Dk(a)b − ε(k, a)aDk(b))xba

+(Dk(ba)− Dk(b)a− ε(k, b)bDk(a))xab

+ε(k, abx)bax(Dk(ab)− Dk(a)b − ε(k, a)aDk(b))

+ε(k, axb)abx(Dk(ba)− Dk(b)a− ε(k, b)bDk(a))

= δk(a, b)xba+ δk(b, a)xab + ε(k, abx)baxδk(a, b)

+ε(k, abx)abxδk(b, a)

= δk(a, b)x[b, a]ε + ε(k, abx)[b, a]εxδk(a, b)

for all a, b ∈ H(A+) and x ∈ H(A). Write δk = δk(a, b) and c = [b, a]ε. Using
(62) it follows that

δkxcyc = −ε(k, a2b2xy)cxcyδk

= ε(k, abx)cxδkyc

= −δkxcyc

which yields δkxcyc = 0 for all x, y ∈ H(A). Hence δkAcAc = 0 which in
turn implies δk = 0 or c = 0 by the primeness of A. Thus we proved that for
each pair a, b ∈ H(A+) we have δk(a, b) = 0 or [a, b]ε = 0. Arguing as in the
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proof of Theorem 3.4 we get that for each pair g, h ∈ G+ either δk(Ag,Ah) = 0
or [Ag,Ah]ε = 0. Let us show that δk(A1,Ag) = 0 for all g ∈ G+. Suppose
that [A1,Ag]ε = 0 for some g ∈ G+. Therefore by (38) we have [Dk([x, y]ε) −
[Dk(x), y]ε − [x, Dk(y)]ε, z]ε = 0 for all x ∈ A1, y ∈ Ag and z ∈ A. Since also
Dk(x ◦ε y) − Dk(x) ◦ε y − x ◦ε Dk(y) = 0 we arrive at

(63) [δk(A1,Ag),A]ε = 0.

Therefore from (37) we get [xδk(y, z), z]ε = 0 for all x, z ∈ A1 and y ∈ Ag. Using
(1) and (63) it follows that [x, z]δk(y, z) = 0 which in turn implies [x, z]Aδk(y, z) =
0 for all x, z ∈ A1 and y ∈ Ag. Since A is prime it follows that for each z ∈ A1

either [A1, z] = 0 or δk(Ag, z) = 0. Using the fact a group A1 cannot be the
union of its proper subgroups and the assumption [A1,A1] 	= 0 it follows that
δk(Ag,A1) = 0, as desired. Thus we proved that δk(A+,A1) = 0. Using Lemma
4.2 the result follows.

Example 4.4. Let A be an algebra such as in Example 3.5 and let k ∈ G+.
Pick a ∈ Ak and define Dk : A → A by Dk(x + y) = ay for all x ∈ H(A+)
and y ∈ H(A−). Then Dk is a Jordan ε-derivation of degree k which is not an
ε-derivation provided that a 	= 0 and A− 	= 0. This example is just an extension of
Example 3.3 in [3].
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5. C. Gómez-Ambrosi and F. Montaner, On Herstein’s constructions relating Jordan and
associative superalgebras, Comm. Algebra, 28 (2000), 3743-3762.



616 Maja Fošner
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