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STRONG CONVERGENCE THEOREMS FOR COMMUTATIVE
SEMIGROUPS OF CONTINUOUS LINEAR OPERATORS

ON BANACH SPACES

Kazutaka Eshita and Wataru Takahashi

Abstract. We first prove a strong convergence theorem of Mann’s type for a
commutative family of continuous linear operators in a Banach space by using
strongly regular sequences of means on commutative semigroups. Using this,
we obtain various strong convergence theorems for continuous linear operators
in a Banach space.

1. INTRODUCTION

In 1938, Yosida [23] proved the following mean ergodic theorem for continuous
linear operators: Let E be a real Banach space and let T be a linear operator of E

into itself such that there exists a constant C with ‖T n‖ ≤ C for n = 1, 2, 3, . . . ,
and T is weakly completely continuous, i.e., T maps the closed unit ball of E into
a weakly compact subset of E . Then the Cesàro means

Snx =
1
n

n∑
k=1

T kx

converge strongly as n → ∞ to a fixed point of T for each x ∈ E . Mann [11] also
discussed an iterative sequence as follows: x0 = x ∈ E and

xn+1 = αnxn + (1− αn)Txn,

where {αn} ⊆ [0, 1] and T is a continuous linear operator on E . Kido and Taka-
hashi [9] extended Yosida’s theorem to amenable semigroups of continuous linear
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operators in a Banach space. On the other hand, in 1975, Baillon [4] proved the
following nonlinear ergodic theorem: Let C be a bounded closed convex subset of
a real Hilbert space H and let T be a nonexpansive mapping of C into itself. Then
the Cesàro means

Snx =
1
n

n∑
k=1

T kx

converge weakly as n → ∞ to a fixed point of T for each x ∈ C. Lau, Shioji and
Takahashi [10] extended Baillon’s theorem to amenable semigroups of nonexpansive
mappings in a uniformly convex Banach space whose norm is Fŕechet differentiable.
In 1997, Shimizu and Takahashi [13] also found an iteration scheme of obtaining
a common fixed point of a family of nonexpansive mappings in a Hilbert space.
Then, many authors have studied such iterative schemes for families of nonlinear
mappings in a Hilbert space or a Banach space; see, for instance, [1-3, 13-20].

In this paper, we introduce an iterative scheme of finding a common fixed point
of a commutative family of continuous linear operators in a Banach space. Then,
using Kido and Takahashi’s result [9], we prove a strong convergence theorem for
such a family of operators in a Banach space. Further, we apply this result to obtain
various strong convergence theorems for continuous linear operators in a Banach
space.

2. PRELIMINARIES

Let E be a real Banach space with norm ‖ ‖. We denote by E∗ the dual of
E . For x ∈ E and x∗ ∈ E∗, we denote by 〈x, x∗〉 the value of x∗ at x. For a
continuous linear operator T on E , we denote by T∗ the adjoint of T , i.e., for every
x∗ ∈ E∗, T ∗x∗ ∈ E∗ is defined by 〈x, T ∗x∗〉 = 〈Tx, x∗〉 for any x ∈ E . For a net
{xα}, we write xα → x if {xα} converges strongly to a point x. For a subset A of
E , we denote by coA the closure of convex hull of A. We denote by Z+ the set of
nonnegative integers, and denote by R+ the set of nonnegative real numbers. Let S
be a nonempty set. Then we denote by l∞(S) the Banach space of all bounded real-
valued functions of S with supremum norm. For a topological space S, we denote
by C(S) the set of all f ∈ l∞(S) such that f is continuous. If, S has the discrete
topology, C(S) = l∞(S) holds. Let S be a topological space. Then µ is said to be
a mean on C(S) if µ ∈ C(S)∗ and µ(1S) = ‖µ‖ = 1, where 1S(s) = 1 for every
s ∈ S. It is well-known that a linear function µ of C(S) into reals is a mean on
C(S) if and only if infs∈S f(s) ≤ µ(f) ≤ sups∈S f(s) for every f ∈ C(S); see
[21, Theorem 1.4.1]. A semigroup S is said to be a semitopological semigroup if
S is a Hausdorff space and for every a ∈ S, the mappings s 	→ sa and s 	→ as
of S into itself are continuous. For µ ∈ C(S)∗ and f ∈ C(S), we write µsf(s)
instead of µ(f). For example, if f(s) = 〈Tsx, x∗〉 for every s ∈ S, where x ∈ E
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and x∗ ∈ E∗, we write µs〈Tsx, x∗〉 instead of µ(f). Let S be a semitopological
semigroup. For a ∈ S and f ∈ C(S), we define laf ∈ C(S) by (laf)(s) = f(as)
for every s ∈ S, and define raf ∈ C(S) by (raf)(s) = f(sa) for every s ∈ S.
For a ∈ S and a mean µ on C(S), we define l∗aµ ∈ C(S)∗ by (l∗aµ)(f) = µ(laf)
for every f ∈ C(S), and define r∗aµ ∈ C(S)∗ by (r∗aµ)(f) = µ(raf) for every
f ∈ C(S). In this case, l∗aµ and r∗aµ are also means on C(S). A mean µ on C(S)
is left invariant (right invariant) if l ∗sµ = µ (r∗sµ = µ) for every s ∈ S, respectively.
A mean µ is invariant if µ is left invariant and right invariant; see [7, 12, 21] for
more details. For an operator T on E , we denote by F (T ) the set of fixed points
of T . For a family S = {Ts : s ∈ S} of operators on E , we denote by F (S) the
set of common fixed points of S = {Ts : s ∈ S}, i.e., F (S) =

⋂
s∈S F (Ts). Let

E be a real Banach space and let S be a semitopological semigroup with identity
e. Let S = {Ts : s ∈ S} be a family of continuous linear operators on E satisfying
the following conditions:

(C1) There exists C ≥ 0 such that ‖Ts‖ ≤ C for each s ∈ S;
(C2) for every x ∈ E , {Tsx : s ∈ S} is relatively weakly compact on E;
(C3) Tst = TsTt for each s, t ∈ S and Tex = x for every x ∈ E;
(C4) for every x ∈ E and x∗ ∈ E∗, the mapping s 	→ 〈Tsx, x∗〉 is continuous.

Then such a family S = {Ts : s ∈ S} is called a C-semigroup of continuous linear
operators on E [9, 21]. From (C1), {Tsx : s ∈ S} is bounded for every x ∈ E . Let
µ be a mean on C(S) and let S = {Ts : s ∈ S} be a C-semigroup of continuous
linear operators on E . For every x ∈ E , it follows from [9] that there exists a
unique element Tµx ∈ co{Tsx : s ∈ S} such that 〈Tµx, x∗〉 = µs〈Tsx, x∗〉 for
any x∗ ∈ E∗. Further, we know the following results; see, for instance, Kido and
Takahashi [9].

Lemma 2.1. Let µ be a mean on C(S). Then Tµ is a continuous linear
operator on E such that ‖Tµ‖ ≤ C.

Lemma 2.2. Let µ be a left invariant mean on C(S). Then Tµx ∈ F (S) for
every x ∈ E .

Theorem 2.3. Let S = {Ts : s ∈ S} be a C-semigroup of continuous linear
operators on E such that C(S) has an invariant mean. Then for each x ∈ E ,
co{Tsx : s ∈ S} ∩ F (S) consists of one point.

Theorem 2.4. Let S = {Ts : s ∈ S} be a C-semigroup of continuous linear
operators on E . Let {µα} be a net of means on C(S) such that for each s ∈ S
and f ∈ C(S), µα(f) − µα(lsf) → 0 and ‖µα − r∗sµα‖ → 0. Then the following
hold:
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(1) There exists a unique continuous linear operator Q of E onto F (S) such
that QTs = TsQ = Q for each s ∈ S and Qx ∈ co{Ttx : t ∈ S} for each
x ∈ E;

(2) for every x ∈ E , the net {Tµαx} converges strongly to Qx.

Remark 2.5. Such a Q satisfies Q2 = Q. In fact, for x ∈ E and ε > 0, it
follows from Qx ∈ co{Tsx : s ∈ S} that there exist finite elements {si}i∈I of S and
nonnegative numbers {λi}i∈I with

∑
i∈I λi = 1 such that

∥∥Qx −∑i∈I λiTsix
∥∥ <

ε. Then we have

‖Q2x − Qx‖ ≤
∥∥∥∥∥Q
(

Qx −
∑
i∈I

λiTsix

)∥∥∥∥∥ +

∥∥∥∥∥Q
(∑

i∈I

λiTsix

)
− Qx

∥∥∥∥∥
≤ ‖Q‖ε +

∥∥∥∥∥
∑
i∈I

λiQTsix − Qx

∥∥∥∥∥
= ‖Q‖ε +

∥∥∥∥∥
∑
i∈I

λiQx − Qx

∥∥∥∥∥
= ‖Q‖ε.

Since ε > 0 is arbitrary, we have Q2 = Q.
If a semitopological semigroup S is commutative, by Markov and Kakutani’s

fixed point theorem, there exists an invariant mean on C(S); see [21] for the proof.
Let {µα} be a net of means on C(S). Then, {µα} is said to be strongly regular if
‖µα − r∗sµα‖ → 0; see, for instance, [8]. From Theorems 2.3 and 2.4, we have the
following theorem for commutative semigroups of continuous linear operators. We
shall use this result for the proof of our main result (Theorem 3.3).

Theorem 2.6. Let E be a real Banach space, let S be a commutative semi-
topological semigroup with identity and let S = {T s : s ∈ S} be a C-semigroup
of continuous linear operators on E . Then there exists a unique continuous linear
projection Q of E onto F (S) such that QT s = TsQ = Q for each s ∈ S and
Qx ∈ co{Ttx : t ∈ S} for each x ∈ E . Further, if {µα} is a strongly regular net
of means on C(S), then {Tµαx} converges strongly to Qx for every x ∈ E .

3. MAIN RESULT

In this section, we proved a strong convergence theorem of Mann’s type for
a commutative semigroup of continuous linear operators on a real Banach space.
Before proving the theorem, we need the following two lemmas.
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Lemma 3.1. Let S be a commutative semitopological semigroup with identity,
let S = {Ts : s ∈ S} be a C-semigroup of continuous linear operators on E and
let µ be a mean on C(S). Then TsTµ = TµTs for every s ∈ S.

Proof. Let s ∈ S. For every x ∈ E and x∗ ∈ E∗, we have

〈TsTµx, x∗〉 = 〈Tµx, T ∗
s x∗〉

= µt〈Ttx, T ∗
s x∗〉

= µt〈TsTtx, x∗〉
= µt〈TtTsx, x∗〉
= 〈TµTsx, x∗〉 .

Hence we get TsTµ = TµTs.

Lemma 3.2. Let {αn} ⊆ [0, 1] satisfy
∑∞

n=0(1−αn) = ∞, and let {bn}, {εn} ⊆
[0,∞) be sequences such that

bn+1 ≤ αnbn + (1− αn)εn, n = 0, 1, 2, . . . ,

and limn→∞ εn = 0. Then limn→∞ bn = 0.

Proof. Fix ε > 0. Then there exists an n0 such that εn ≤ ε for each n ≥ n0.
So, for every n ≥ n0, we have

bn+1 ≤ αnbn + (1 − αn)ε

and hence
bn+1 − ε ≤ αn(bn − ε).

Consequently, we have

bn − ε ≤ αn−1(bn−1 − ε)
≤ αn−1αn−2(bn−2 − ε)
. . .

≤ αn−1αn−2 . . . αn0(bn0 − ε)

and hence

bn ≤ ε + (bn0 − ε)
n−1∏
k=n0

αk.

Note that
∏∞

k=n0
αk = 0. In fact, from

∑∞
n=0(1 − αn) = ∞, it follow that

0 ≤
n−1∏
k=n0

αk ≤
n−1∏
k=n0

exp(αk − 1) = exp


−

n−1∑
k=n0

(1 − αk)


→ 0
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as n → ∞. Then we have
lim sup

n→∞
bn ≤ ε.

Since ε > 0 is arbitrary, we have limn→∞ bn = 0.

Theorem 3.3. Let E be a real Banach space, let S be a commutative semi-
topological semigroup with identity and let S = {T s : s ∈ S} be a C-semigroup of
continuous linear operators on E . Let {µn}∞n=0 be a strongly regular sequence of
means on C(S). Consider the following iteration scheme:

x0 = x ∈ E;
xn+1 = αnxn + (1 − αn)Tµnxn, n = 0, 1, 2, . . . ,

where {αn} ⊆ [0, 1] satisfies
∑∞

n=0(1 − αn) = ∞. Then the sequence {xn}
converges strongly to Qx ∈ F (S), where Qx = limn→∞ Tµnx.

Proof. Put K0(x) = co{Tsx : s ∈ S}. First, we show that {xn} ⊆ K0(x).
Assume xn ∈ K0(x). Then Tµnxn ∈ K0(x). In fact, suppose Tµnxn �∈ K0(x).
Then, by the separation theorem, there exists x∗ ∈ E∗ such that

〈Tµnxn, x∗〉 < inf{〈z, x∗〉 : z ∈ K0(x)}
= inf{〈Tsx, x∗〉 : s ∈ S}.

So we have

〈Tµnxn, x∗〉 = (µn)s〈Tsxn, x∗〉
≥ inf{〈Tsxn, x∗〉 : s ∈ S}
= inf{〈xn, T ∗

s x∗〉 : s ∈ S}
≥ inf{〈z, T ∗

s x∗〉 : s ∈ S, z ∈ K0(x)}
= inf{〈Ttx, T ∗

s x∗〉 : s, t ∈ S}
= inf{〈TsTtx, x∗〉 : s, t ∈ S}
≥ inf{〈Tsx, x∗〉 : s ∈ S}
> 〈Tµnxn, x∗〉 .

This is a contradiction. Since xn and Tµnxn are in K0(x), we have xn+1 =
αnxn + (1−αn)Tµnxn ∈ K0(x). Then, by the induction, we have {xn} ⊆ K0(x).
Next we show that ‖Tµnxn − Qx‖ → 0 as n → ∞. Let ε > 0 be arbitrary. Since
Tµnx → Qx by Theorem 2.6, there exists n0 such that

(∗) C · ‖Tµnx − Qx‖ < ε for any n ≥ n0.
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Fix n ≥ n0. Since xn ∈ K0(x), there exist finite elements {si}i∈I of S and
nonnegative numbers {λi}i∈I with

∑
i∈I λi = 1 such that

C ·
∥∥∥∥∥xn −

∑
i∈I

λiTsix

∥∥∥∥∥ < ε.

Then, by Lemma 3.1 and from (∗), we have

‖Tµnxn − Qx‖ ≤
∥∥∥∥∥Tµnxn − Tµn

(∑
i∈I

λiTsix

)∥∥∥∥∥ +

∥∥∥∥∥Tµn

(∑
i∈I

λiTsix

)
− Qx

∥∥∥∥∥
≤ ‖Tµn‖ ·

∥∥∥∥∥xn −
∑
i∈I

λiTsix

∥∥∥∥∥+

∥∥∥∥∥
∑
i∈I

λiTµnTsix − Qx

∥∥∥∥∥
< ε +

∑
i∈I

λi‖TsiTµnx − TsiQx‖

≤ ε +
∑
i∈I

λi‖Tsi‖ ‖Tµnx − Qx‖

< ε +
∑
i∈I

λiε = 2ε.

It follows that ‖Tµnxn − Qx‖ → 0 as n → ∞. On the other hand, we have

‖xn+1 − Qx‖ = ‖αnxn + (1− αn)Tµnxn − Qx‖
= ‖αn(xn − Qx) + (1− αn)(Tµnxn − Qx)‖
≤ αn‖xn − Qx‖+ (1− αn)‖Tµnxn − Qx‖.

Put bn = ‖xn − Qx‖ and εn = ‖Tµnxn − Qx‖. Then we have

bn+1 ≤ αnbn + (1− αn)εn, n = 0, 1, 2, . . . ,

and limn→∞ εn = 0. By Lemma 3.2, it follows that bn = ‖xn − Qx‖ → 0 as
n → ∞.

4. STRONGLY REGULAR SEQUENCES OF MEANS

In this section, we deal with examples of strongly regular sequences of means.
A family {q(n, j)}∞n,j=0 of real numbers is said to be a strongly regular summation
method [5,6] if it satisfies the following:

(S1) q(n, j) ≥ 0;

(S2)
∑∞

j=0 q(n, j) = 1 for every n;
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(S3) limn→∞ q(n, j) = 0 for every j;
(S4) limn→∞

∑∞
j=0 |q(n, j + 1) − q(n, j)| = 0.

In particular, if q(n, 0) ≥ q(n, 1) ≥ q(n, 2) ≥ · · · for every n, then (S1)–(S3) imply
(S4). In fact, fix n ≥ 0. From (S2), we have

∞∑
j=0

|q(n, j + 1)− q(n, j)| =
∞∑

j=0

(q(n, j)− q(n, j + 1))

= q(n, 0)− lim
j→∞

q(n, j)

= q(n, 0).

Therefore (S3) implies (S4).

Remark 4.1. (S1), (S2) and (S4) imply (S3). In fact, for every j, we have

0 ≤ q(n, j) = lim
k→∞

q(n, k) +
∞∑

k=j

(q(n, k)− q(n, k + 1))

≤
∞∑

k=0

|q(n, k)− q(n, k + 1)| → 0

as n → ∞. Hence (S3) holds.

Theorem 4.2. Let {q(n, j)}∞n,j=0 be a family of real numbers. For every
n ≥ 0 and f ∈ l∞(Z+), define µn(f) =

∑∞
j=0 q(n, j)f(j). Then the following are

equivalent:

(1) {µn}∞n=0 is a strongly regular sequence of means on l ∞(Z+);

(2) {q(n, j)}∞n,j=0 is a strongly regular summation method.

Proof. (2) ⇒ (1): For every n ≥ 0, we show that µn is a mean on l∞(Z+).
In fact, we have, for each f ∈ l∞(Z+),

µn(f) =
∞∑

j=0

q(n, j)f(j)≤
∞∑

j=0

q(n, j) ·
(

sup
j

f(j)

)
= sup

j
f(j).

Similarly, we have µn(f) ≥ infj f(j). Then µn is a mean on l∞(Z+). Next, we
show that {µn} is strongly regular. In fact, for every f ∈ l∞(Z+), we have



Strong Convergence Theorems 539

|(µn − r∗1µn)(f)| = |µn(f) − µn(r1f)|

=

∣∣∣∣∣∣
∞∑

j=0

q(n, j)f(j)−
∞∑

j=0

q(n, j)f(j + 1)

∣∣∣∣∣∣
=

∣∣∣∣∣∣q(n, 0)f(0) +
∞∑

j=0

q(n, j + 1)f(j + 1)−
∞∑

j=0

q(n, j)f(j + 1)

∣∣∣∣∣∣
≤ |q(n, 0)f(0)|+

∞∑
j=0

|q(n, j + 1) − q(n, j)| |f(j + 1)|

≤ |q(n, 0)| ‖f‖+
∞∑

j=0

|q(n, j + 1) − q(n, j)| ‖f‖.

Then, from (S3) and (S4), we have

‖µn − r∗1µn‖ ≤ |q(n, 0)|+
∞∑

j=0

|q(n, j + 1)− q(n, j)| → 0

as n → ∞. Fix k ≥ 1. Then we have

‖µn − r∗kµn‖ = sup
‖f‖≤1

|µn(f) − µn(rkf)|

= sup
‖f‖≤1

∣∣∣∣∣∣
k−1∑
j=0

(µn(rjf) − µn(rj+1f))

∣∣∣∣∣∣
≤ sup

‖f‖≤1

k−1∑
j=0

|µn(rjf) − µn(r1(rjf))|

≤ sup
‖f‖≤1

k−1∑
j=0

‖µn − r∗1µn‖ ‖rjf‖

≤
k−1∑
k=0

‖µn − r∗1µn‖ → 0

as n → ∞. Hence {µn} is a strongly regular sequence of means on l∞(Z+).
(1) ⇒ (2): For every j, k ∈ Z+, we define

δj(k) =

{
1, if j = k,
0, if j �= k.

Then δj ∈ l∞(Z+) for every j. Now, for every n and j, we have
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q(n, j) =
∞∑

k=0

q(n, k)δj(k) = µn(δj) ≥ inf
k∈Z+

δj(k) = 0.

Hence (S1) holds. Since µn is a mean on l∞(Z+) for every n, we have

=
∞∑

j=0

q(n, j) · 1Z+(j) =
∞∑

j=0

q(n, j).

Hence (S2) holds. We show (S4). Fix n ≥ 0 and define fn by fn(0) = 0 and

fn(j) =

{
1, if q(n, j) ≥ q(n, j − 1),
−1, if q(n, j) < q(n, j − 1),

for each j ≥ 1. It is clear that fn ∈ l∞(Z+) and ‖fn‖ = 1. Since {µn} is strongly
regular, we also have

∞∑
j=0

|q(n, j + 1)− q(n, j)|

=
∞∑

j=0

(
q(n, j + 1)− q(n, j)

)
fn(j + 1)

=
∞∑

j=0

q(n, j + 1)fn(j + 1)−
∞∑

j=0

q(n, j)fn(j + 1)

= q(n, 0)fn(0) +
∞∑

j=1

q(n, j)fn(j)−
∞∑

j=0

q(n, j)fn(j + 1)

= µn(fn) − µn(r1fn)

≤ ‖µn − r∗1µn‖‖fn‖
= ‖µn − r∗1µn‖ → 0

as n → ∞. Hence (S4) holds.

A family {q(n, i, j)}∞n,i,j=0 of real numbers is called a strongly regular bi-
summation method if it satisfies the following:

(B1) q(n, i, j)≥ 0;

(B2)
∑∞

i,j=0 q(n, i, j) = 1 for every n;
(B3a) limn→∞

∑∞
i,j=0 |q(n, i + 1, j)− q(n, i, j)|= 0;

(B3b) limn→∞
∑∞

i,j=0 |q(n, i, j + 1)− q(n, i, j)|= 0.
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Theorem 4.3. Let {q(n, i, j)}∞n,i,j=0 be a family of real numbers. For every
n ≥ 0 and f ∈ l∞(Z+× Z+), define µn(f) =

∑∞
i,j=0 q(n, i, j)f(i, j). Then the

following are equivalent:

(1) {µn}∞n=0 is a strongly regular sequence of means on l ∞(Z+× Z+);

(2) {q(n, i, j)}∞n,i,j=0 is a strongly regular bi-summation method.

Proof. (2) ⇒ (1): For every n ≥ 0, we show that µn is a mean on l∞(Z+×Z+).
In fact, for every f ∈ l∞(Z+× Z+), we have

µn(f) =
∞∑

i,j=0

q(n, i, j)f(i, j) ≤
∞∑

i,j=0

q(n, i, j) ·
(

sup
(i,j)

f(i, j)

)
= sup

(i,j)

f(i, j).

Similarly, we have µn(f) ≥ inf(i,j) f(i, j). Then µn is a mean on l∞(Z+× Z+).
Note that

(∗∗)
∞∑

j=0

q(n, 0, j) ≤
∞∑

i,j=0

|q(n, i, j)− q(n, i + 1, j)|

for every n ≥ 0. In fact, for every k ≥ 1, we have

∞∑
j=0

q(n, 0, j) =
∞∑

j=0

(
q(n, k, j) +

k−1∑
i=0

(q(n, i, j)− q(n, i + 1, j))

)

≤
∞∑

j=0

q(n, k, j) +
∞∑

i,j=0

|q(n, i, j)− q(n, i + 1, j)|.

It follows from (B2) that limk→∞
∑∞

j=0 q(n, k, j) = 0, and hence we have (∗∗).
Next, we show that {µn} is strongly regular. For every f ∈ l∞(Z+× Z+), from
(∗∗), we have

|(µn− r∗(1,0)µn)(f)|

=

∣∣∣∣∣∣
∞∑

i,j=0

q(n, i, j)f(i, j)−
∞∑

i,j=0

q(n, i, j)f(i+ 1, j)

∣∣∣∣∣∣
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=

∣∣∣∣∣∣
∞∑

j=0

q(n, 0, j)f(0, j)+
∞∑
i=1

∞∑
j=0

q(n, i, j)f(i, j)−
∞∑

i,j=0

q(n, i, j)f(i+ 1, j)

∣∣∣∣∣∣
≤

∞∑
j=0

|q(n, 0, j)f(0, j)|+
∞∑

i,j=0

|q(n, i + 1, j)− q(n, i, j)| |f(i+ 1, j)|

≤
∞∑

j=0

q(n, 0, j) ‖f‖+
∞∑

i,j=0

|q(n, i + 1, j)− q(n, i, j)| ‖f‖

≤ 2
∞∑

i,j=0

|q(n, i + 1, j)− q(n, i, j)| ‖f‖.

Then we have

‖µn − r∗(1,0)µn‖ ≤ 2
∞∑

i,j=0

|q(n, i + 1, j)− q(n, i, j)| → 0

as n → ∞. Similarly, we have ‖µn − r∗(0,1)µn‖ → 0 as n → ∞. Then for every
(k, l) ∈ Z+× Z+, we have ‖µn − r∗(k,l)µn‖ → 0 as n → ∞.

(1) ⇒ (2): As in the proof of Theorem 4.2, we can show (B1) and (B2). Fix
n ≥ 0 and define fn by fn(0, j) = 0 for each j ≥ 0 and

fn(i, j) =




1, if q(n, i, j) ≥ q(n, i− 1, j)

−1, if q(n, i, j) < q(n, i− 1, j)

for each i ≥ 1 and j ≥ 0. It is clear that fn ∈ l∞(Z+× Z+) and ‖fn‖ = 1. Then
we have

∞∑
i,j=0

|q(n, i + 1, j)− q(n, i, j)|

=
∞∑

i,j=0

q(n, i + 1, j)fn(i + 1, j)−
∞∑

i,j=0

q(n, i, j)fn(i + 1, j)

=
∞∑

j=0

q(n, 0, j)fn(0, j) +
∞∑
i=1

∞∑
j=0

q(n, i, j)fn(i, j)−
∞∑

i,j=0

q(n, i, j)fn(i + 1, j)

= µn(fn) − µn(r(1,0)fn)

≤ ‖µn − r∗(1,0)µn‖ → 0

as n → ∞. Hence (B3a) holds. Similarly, we have (B3b).
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5. APPLICATIONS

Now, using Theorem 3.3, we can prove some strong convergence theorems for
continuous linear operators on a Banach space. A linear operator T on a real
Banach space E is said to be uniformly C-Lipschitz if there exists C ≥ 1 such that
‖T n‖ ≤ C for every n ≥ 0.

Theorem 5.1. Let T be a uniformly C-Lipschitz linear operator on a real
Banach space E and suppose that {T jx : j ≥ 0} is relatively weakly compact for
every x ∈ E . Let {q(n, j)}∞n,j=0 be a strongly regular summation method. Define
a sequence {xn}∞n=0 in E by the following iteration scheme:

x0 = x ∈ E;

xn+1 = αnxn + (1− αn)
∞∑

j=0

q(n, j)T jxn, n = 0, 1, 2, . . . ,

where {αn} ⊆ [0, 1] satisfies
∑∞

n=0(1 − αn) = ∞. Then the sequence {xn}
converges strongly to some p ∈ F (T ).

Proof. It is clear that S = {T j : j ∈ Z+} is a C-semigroup of continu-
ous linear operators on E . For every n ≥ 0 and f ∈ l∞(Z+), define µn(f) =∑∞

j=0 q(n, j)f(j). Then, from Theorem 4.2, it follows that {µn} is a strongly reg-
ular sequence of means on l∞(Z+). Next we show Tµny =

∑∞
j=0 q(n, j)T jy for

every y ∈ E . In fact, for every x∗ ∈ E∗, we have

〈Tµny, x∗〉 = (µn)j

〈
T jy, x∗〉

=
∞∑

j=0

q(n, j)
〈
T jy, x∗〉

=

〈 ∞∑
j=0

q(n, j)T jy, x∗
〉

.

Hence we have Tµny =
∑∞

j=0 q(n, j)T jy. Then, from Theorem 3.3, {xn} con-
verges strongly to Qx ∈ F (S) = F (T ).

Corollary 5.2. Let T be a uniformly C-Lipschitz linear operator on a real
Banach space E and suppose that {T jx : j ∈ Z+} is relatively weakly compact for
every x ∈ E . Define a sequence {xn}∞n=0 in E by the following iteration scheme:

x0 = x ∈ E;

xn+1 = αnxn +
1− αn

n + 1

n∑
j=0

T jxn, n = 0, 1, 2, . . . ,
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where {αn} ⊆ [0, 1] satisfies
∑∞

n=0(1 − αn) = ∞. Then the sequence {xn}
converges strongly to some p ∈ F (T ).

Proof. For every n, j ≥ 0, we define

q(n, j) =

{
1/(n + 1), if j ≤ n,
0, if j > n.

(S1)–(S3) are clear. Since q(n, 0) ≥ q(n, 1) ≥ q(n, 2) ≥ · · · for every n ≥
0, it follows that {q(n, j)} is a strongly regular summation method. So, from
Theorem 5.1, the sequence {xn} converges strongly to some p ∈ F (T ).

Corollary 5.3. Let T be a uniformly C-Lipschitz linear operator on a real
Banach space E and suppose that {T jx : j ≥ 0} is relatively weakly compact for
every x ∈ E . Let {an} ⊆ (0, 1) be a sequence converging to 1. Define a sequence
{xn}∞n=0 in E by the following iteration scheme:

x0 = x ∈ E;

xn+1 = αnxn + (1 − αn)(1− an)
∞∑

j=0

(an)jT jxn, n = 0, 1, 2, . . . ,

where {αn} ⊆ [0, 1] satisfies
∑∞

n=0(1 − αn) = ∞. Then the sequence {xn}
converges strongly to some p ∈ F (T ).

Proof. For every n, j ≥ 0, we define q(n, j) = (1 − an)(an)j . (S1) and (S3)
are clear. (S2): For any n ≥ 0, we have

∞∑
j=0

q(n, j) = (1− an)
∞∑

j=0

(an)j = (1 − an) · 1
1 − an

= 1.

Since q(n, 0) ≥ q(n, 1) ≥ q(n, 2) ≥ · · · for every n ≥ 0, we get (S4). So, it follows
that {q(n, j)} is a strongly regular summation method. So, from Theorem 5.1, the
sequence {xn} converges strongly to some p ∈ F (T ).

The following corollary is connected with Yoshimoto [22].

Corollary 5.4. Let T be a uniformly C-Lipschitz linear operator on a real
Banach space E and suppose that {T jx : j ≥ 0} is relatively weakly compact for
every x ∈ E . Let δ > 0 and let {λj}∞j=0 be a sequence of nonnegative numbers
such that λj+1 ≥ λj + δ for every j. Let {tn} ⊆ (0,∞) be a sequence converging
to 0. Define a sequence {xn}∞n=0 in E by the following iteration scheme:
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x0 = x ∈ E;

xn+1 = αnxn + (1− αn)

∞∑
j=0

e−λjtnT jxn

∞∑
j=0

e−λj tn

, n = 0, 1, 2, . . . ,

where {αn} ⊆ [0, 1] satisfies
∑∞

n=0(1 − αn) = ∞. Then the sequence {xn}
converges strongly to some p ∈ F (T ).

Proof. For every t ≥ 0, we define g(t) =
∑∞

j=0 e−λj t. Note that g(t) is
well-defined. In fact, since λj ≥ λ0 + δj, we have

g(t) =
∞∑

j=0

e−λjt ≤
∞∑

j=0

e−λ0t(e−δt)j =
e−λ0t

1 − e−δt
< ∞.

We also have limt↓0 g(t) = ∞. In fact, let N ≥ 1. Since limt↓0 e−λjt = 1
for every j, there exists t0 > 0 such that e−λjt > 1/2 for every t < t0 and j =
0, 1, . . . , N−1. Then we have g(t) ≥∑N−1

j=0 e−λj t > N/2 for every t < t0. So, we
have limt↓0 g(t) = ∞. Next, for every n, j ≥ 0, we define q(n, j) = e−λjtn/g(tn).
Now we show that {q(n, j)} is a strongly regular summation method. In fact, (S1)
is clear. (S2): For every n, we have

∞∑
j=0

q(n, j) =
∞∑

j=0

e−λj tn

g(tn)
=

g(tn)
g(tn)

= 1.

(S3): Fix j ≥ 0. Since limt↓0 g(t) = ∞, we have

q(n, j) =
e−λj tn

g(tn)
≤ 1

g(tn)
→ 0

as n → ∞. Since q(n, 0) ≥ q(n, 1) ≥ q(n, 2) ≥ · · · , we get (S4). Then {q(n, j)}
is a strongly regular summation method. So, from Theorem 5.1, the sequence {xn}
converges strongly to some p ∈ F (T ).

Theorem 5.5. Let S and T be uniformly C-Lipschitz linear operators on a
real Banach space E satisfying ST = TS and suppose {S iT jx : i, j ∈ Z+} is
relatively weakly compact for every x ∈ E . Let {q(n, i, j)}∞n,i,j=0 be a strongly
regular bi-summation method. Define a sequence {x n}∞n=0 in E by the following
iteration scheme:

x0 = x ∈ E;

xn+1 = αnxn + (1− αn)
∞∑

i,j=0

q(n, i, j)SiT jxn, n = 0, 1, 2, . . . ,
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where {αn} ⊆ [0, 1] satisfies
∑∞

n=0(1 − αn) = ∞. Then the sequence {xn}
converges strongly to some p ∈ F (S) ∩ F (T ).

Proof. Define U(i, j) = S iT j for every (i, j) ∈ Z+× Z+. It is clear that S =
{U(i, j) : (i, j) ∈ Z+×Z+} is a C2-semigroup of continuous linear operators on E .
For every n ≥ 0 and f ∈ l∞(Z+×Z+), we define µn(f) =

∑∞
i,j=0 q(n, i, j)f(i, j).

By Theorem 4.3, it follows that {µn} is a strongly regular sequences of means on
l∞(Z+× Z+). Fix y ∈ E . Then, for every n ≥ 0 and x∗ ∈ E∗, we have

〈Uµny, x∗〉 = (µn)(i,j) 〈U(i, j)y, x∗〉

=
∞∑

i,j=0

q(n, i, j) 〈U(i, j)y, x∗〉

=
∞∑

i,j=0

q(n, i, j)
〈
SiT jy, x∗〉

=

〈 ∞∑
i,j=0

q(n, i, j)SiT jy, x∗
〉

.

So we have

Uµny =
∞∑

i,j=0

q(n, i, j)SiT jy

for every y ∈ E and n ≥ 0. From Theorem 3.3, it follows that the sequence {xn}
converges strongly to some p ∈ F (S) = F (S) ∩ F (T ).

Corollary 5.6. Let S and T be uniformly C-Lipschitz linear operators on a
real Banach space E satisfying ST = TS and suppose {S iT jx : i, j ∈ Z+} is
relatively weakly compact for every x ∈ E . Define a sequence {xn}∞n=0 in E by
the following iteration scheme:

x0 = x ∈ E;

xn+1 = αnxn +
1 − αn

(n + 1)2

n∑
i,j=0

SiT jxn, n = 0, 1, 2, . . . ,

where {αn} ⊆ [0, 1] satisfies
∑∞

n=0(1 − αn) = ∞. Then the sequence {xn}
converges strongly to some p ∈ F (S) ∩ F (T ).

Proof. This is a special case of Theorem 5.5. For every n, i, j ≥ 0, we define

q(n, i, j) =

{
1/(n + 1)2, if i, j ≤ n,
0, otherwise.
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(B1) and (B2) are clear. Since
∞∑

i,j=0

|q(n, i + 1, j)− q(n, i, j)| =
∞∑

j=0

|q(n, n + 1, j)− q(n, n, j)|

=
n∑

j=0

1
(n + 1)2

=
1

n + 1
→ 0

as n → ∞, we have (B3a). Similarly, we have (B3b). So, {q(n, i, j)} is a strongly
regular bi-summation method. So, from Theorem 5.5, the sequence {xn} converges
strongly to some p ∈ F (S) ∩ F (T ).

Corollary 5.7. Let S and T be uniformly C-Lipschitz linear operators on a
real Banach space E satisfying ST = TS and suppose {S iT jx : i, j ∈ Z+} is
relatively weakly compact for every x ∈ E . Define a sequence {xn}∞n=0 in E by
the following iteration scheme:

x0 = x ∈ E;

xn+1 = αnxn +
2(1− αn)

(n + 1)(n + 2)

∑
i+j≤n

SiT jxn, n = 0, 1, 2, . . . ,

where {αn} ⊆ [0, 1] satisfies
∑∞

n=0(1 − αn) = ∞. Then the sequence {xn}
converges strongly to some p ∈ F (S) ∩ F (T ).

Proof. This is also a special case of Theorem 5.5. For every n, i, j ≥ 0, we
define

q(n, i, j) =

{
2/(n + 1)(n + 2), if i + j ≤ n,
0, if i + j > n.

(B1) is clear. Since
∞∑

i,j=0

q(n, i, j) =
∞∑

k=0

∑
i+j=k

q(n, i, j) =
n∑

k=0

2(k + 1)
(n + 1)(n + 2)

= 1,

we have (B2). Since
∞∑

i,j=0

|q(n, i + 1, j)− q(n, i, j)| =
∞∑

k=0

∑
i+j=k

|q(n, i + 1, j)− q(n, i, j)|

=
∑

i+j=n

|q(n, i + 1, j)− q(n, i, j)|

=
∑

i+j=n

2
(n + 1)(n + 2)

=
2

n + 2
→ 0
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as n → ∞, we have (B3a). Similarly, we have (B3b). It follows that {q(n, i, j)} is
a strongly regular bi-summation method. So, from Theorem 5.5, the sequence {xn}
converges strongly to some p ∈ F (S) ∩ F (T ).

Finally, we obtain two strong convergence theorems of Mann’s type for one-
parameter semigroups of continuous linear operators on a Banach space.

Corollary 5.8. let S = {Tt : t ∈ R+} be a C-semigroup of continuous linear
operators on a real Banach space E . Let {λn} ⊆ (0,∞) be a sequence with
λn → ∞. Define a sequence {xn}∞n=0 in E by the following iteration scheme:

x0 = x ∈ E;

xn+1 = αnxn +
1 − αn

λn

∫ λn

0
Ttxn dt, n = 0, 1, 2, . . . ,

where {αn} ⊆ [0, 1] satisfies
∑∞

n=0(1− αn) = ∞. Then {xn} converges strongly
to some p ∈ F (S).

Proof. For every f ∈ C(R+), we define µn(f) = (1/λn)
∫ λn

0 f(t) dt. Then
{µn} is a strongly regular sequence of means on C(R+) and, for every y ∈ E , we
have Tµny = (1/λn)

∫ λn

0 Tty dt; see [21, Theorem 3.5.2]. From Theorem 3.3, It
follows that the sequence {xn} converges strongly to some p ∈ F (S).

Corollary 5.9. Let S = {Tt : t ∈ R+} be a C-semigroup of continuous linear
operators on a real Banach space E . Let {λn} ⊆ (0,∞) be a sequence with
λn → 0. Define a sequence {xn}∞n=0 by the following iteration scheme:

x0 = x ∈ E;

xn+1 = αnxn + (1 − αn)λn

∫ ∞

0
e−λntTtxn dt, n = 0, 1, 2, . . . ,

where {αn} ⊆ [0, 1] satisfies
∑∞

n=0(1− αn) = ∞. Then {xn} converges strongly
to some p ∈ F (S).

Proof. For every n and f ∈ C(R+), define µn(f) = λn

∫∞
0 e−λntf(t) dt. Then

{µn} is a strongly regular sequence of means on C(R+) and, for every y ∈ E , we
have Tµny = λn

∫∞
0 e−λntTty dt; see [21, Theorem 3.5.3]. From Theorem 3.3, it

follows that the sequence {xn} converges strongly to some p ∈ F (S).
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