TAIWANESE JOURNAL OF MATHEMATICS Vol. 9, No. 3, pp. 501-510, September 2005 This paper is available online at http://www.math.nthu.edu.tw/tjm/

FACIAL STRUCTURE OF CONVEX SETS IN BANACH SPACES AND INTEGRAND REPRESENTATION OF CONVEX OPERATORS

Naoto Komuro

Abstract. Many types of convex operators which take values in some complete lattices can be represented by convex integrands. We consider a certain structure of faces of convex sets, and give a new proof of the representation theorem which is applicable in infinite-dimensional cases. As an application of such representations, we consider the conjugate duality of convex operators.

1. INTRODUCTION

Let (Ω, μ) be a measure space and let $S(\Omega)$ be the space of all measurable functions f on Ω such that $f(t) < \infty$ $(a.e.t \in \Omega)$. Let X be a real Banach space. A mapping $F : X \supset D(F) \longrightarrow S(\Omega)$ is called a convex operator if D(F) is a convex set in X, and for each $x, y \in D(F)$ and $0 < \alpha < 1$,

$$F((1-\alpha)x + \alpha y)(t) \le (1-\alpha)F(x)(t) + \alpha F(y)(t) \qquad (a.e.t \in \Omega).$$

On the other hand, a function $f: X \times \Omega \longrightarrow \mathbb{R} \cup \{\infty\}$ is called a convex integrand if for almost all t in Ω the function $f(\cdot, t)$ is convex on X. The convex integrand theory is well known and there are many applications. (See [7] for example.) We say that a convex integrand f represents a convex operator F if

(1.1)
$$f(x,t) = \begin{cases} F(x)(t) & \text{for a.e.} t \in \Omega, \ x \in D(F), \\ \infty, & x \notin D(F). \end{cases}$$

In two of the author's previous papers [3, 4], many applications of integrand representations of convex operators were demonstrated. However, the existence of integrand representation is nontrivial, and it is known only in some special cases.

Communicated by Pei-Yuan Wu.

Received March 30, 2000, accepted October 28, 2004.

²⁰⁰⁰ Mathematics Subject Classification: 52A05, 90C25.

Key words and phrases: Convex set, Face, Convex Operator, Convex integrand, Conjugate duality.

When X is the d-dimensional Euclidian space \mathbb{R}^d , the represensation theorem has been proved in [3]. In this note, we apply the theory of the faces of convex sets, and give a new method of the proof which has an advantage in extending the reperesentation theorem to infinite-dimensional cases.

2. FACES OF CONVEX SETS

When $x, y \in X$ are distinct points, then the set $[x, y] = \{(1-t)x + ty \mid 0 \le t \le 1\}$ is called the closed segment between x and y. Half open segments (x, y], [x, y) and open segment (x, y) are defined analogously. Throughout this section, we fix a nonempty closed convex set D in X. A convex subset C of D is called a face of D if

(2.1)
$$\left\{ \begin{array}{c} x, y \in D \\ (x, y) \cap C \neq \emptyset \end{array} \right\} \quad \text{implies } [x, y] \subset C.$$

By $\mathfrak{F}(D)$, we denote the set of all faces of D. For $C \in \mathfrak{F}(D)$, dim C is defined to be the dimension of aff C (the affine hull of C). It is clear that $x \in D$ is an extreme point of D if and only if $\{x\}$ is a 0-dimensional face of D. For preparation, we will state some fundamental properties of faces in the following propositions whose proofs are given in [1].

Proposition 1. If $C_{\lambda} \in \mathfrak{F}(D)$, $(\lambda \in \Lambda)$, then $\cap_{\lambda \in \Lambda} C_{\lambda} \in \mathfrak{F}(D)$, and also there exists the smallest face of D containing $\cup_{\lambda \in \Lambda} C_{\lambda}$. Hence $(\mathfrak{F}(D), \subset)$ forms a complete lattice.

Proposition 2. Let C_1 be a face of D and suppose that $C_2 \subset C_1$. Then $C_2 \in \mathfrak{F}(D)$ if and only if $C_2 \in \mathfrak{F}(C_1)$.

For a convex set C in X, \mathring{C} denotes the relative interior of C, which means the interior of C with respect to the relative topology of aff C. In the case $X = \mathbb{R}^d$, every face of a convex set D is a closed set. Indeed, if x is a point of the closure of a face C and $x_0 \in \mathring{C}$, the convexity of C yields $[x_0, x) \subset \mathring{C} \subset C$. Since C is a face of D, x must be in C.

In the following four propositions, we assume that $X = \mathbb{R}^d$.

Proposition 3. If $C_1, C_2 \in \mathfrak{F}(D)$, and $C_1 \subsetneq C_2$, then $C_1 \cap \mathring{C}_2 = \emptyset$.

Proposition 4. Let x be a point of D and let C be a face of D. Then C is the smallest face of D containing x if and only if $x \in \mathring{C}$.

Proposition 5. Let C_1 be a face of D and let x be a relative boundary point of C_1 . If C_2 is the smallest face of D containing x, then C_2 is contained by the relative boundary of C_1 .

From these propositions we obtain the following decomposition of a convex set by its faces.

Proposition 6. For every closed convex set D in \mathbb{R}^d , we can write

(2.2)
$$D = \bigcup \{ \check{C}_{\lambda} \mid C_{\lambda} \in \mathfrak{F}(D) \},$$

where the union is disjoint.

In infinite-dimensional cases, a convex set D is said to have a face decomposition if D can be written in the form (2, 2). A collection $\{C_{\lambda}\}_{\lambda \in \Lambda} \subset \mathfrak{F}(D)$ is said to be proper if $\lambda \in \Lambda$ and $C_{\lambda} \subset C_{\mu} \in \mathfrak{F}(D)$ imply that C_{μ} is also a member of $\{C_{\lambda}\}_{\lambda \in \Lambda}$. Now we define

$$\mathfrak{A} = \{ A = \bigcup_{\lambda \in \Lambda} \mathring{C}_{\lambda} \mid \{ C_{\lambda} \}_{\lambda \in \Lambda} \text{ is proper} \}.$$

Since $\{D\}$ is proper and $D \in \mathfrak{A}$, \mathfrak{A} is at least nonempty. It is easy to see that if each A_{λ} ($\lambda \in \Lambda$) is a member of \mathfrak{A} , then so are $\bigcup_{\lambda \in \Lambda} A_{\lambda}$ and $\bigcap_{\lambda \in \Lambda} A_{\lambda}$, and therefore (\mathfrak{A}, \subset) is a complete lattice.

Lemma 1. If $A \in \mathfrak{A}$, then A is a convex set.

Proof. We write $A = \bigcup_{\lambda \in \Lambda} \mathring{C}_{\lambda}$ and let x, y be arbitrary points of A. Then there exist λ and μ such that $x \in \mathring{C}_{\lambda}$ and $y \in \mathring{C}_{\mu}$. Let z be an arbitrary point of the open segment (x, y), and let C_{ν} be the smallest face containing z. Since C_{ν} is a face, we have $[x, y] \subset C_{\nu}$. By Proposition 4, C_{λ} is the smallest face containing x, and it follows that $C_{\lambda} \subset C_{\nu}$. Since the collection $\{C_{\lambda}\}_{\lambda \in \Lambda}$ is proper, we obtain $\mathring{C}_{\nu} \subset A$. This means that $z \in A$, and thus A is convex.

3. REPRESENTATION OF CONVEX OPERATORS

In this section, we prove a representation theorem of convex operators. Let D(F) be a convex set in X and let $F : D(F) \longrightarrow S(\Omega)$ be a convex operator. Throughout this section, D denotes the closure of D(F). First we state the main theorem.

Theorem 1. Let X be a separable Banach space, and let $F: X \supset D(F) \longrightarrow$ S(Ω) be a convex operator. Suppose that $\overline{D(F)}$ has a face decompositon and F is continuous with respect to the almost everywhere convergence, that is, $x_n \longrightarrow x$ in X implies $(F(x_n))(t) \longrightarrow (F(x))(t)$ for almost every $t \in \Omega$. Then F has at least a representation. In other words, there exists a convex integrand $f: X \times \Omega \longrightarrow$ $\mathbb{R} \cup \{\infty\}$ such that (1, 1) holds.

For $D = \overline{D(F)}$, we define \mathfrak{A} as in the Section 2. For $A \in \mathfrak{A}$, a convex integrand $f : A \times \Omega \longrightarrow \mathbb{R} \cup \{\infty\}$ is said to represent F on A, if

$$f(x,t) = \begin{cases} F(x)(t) \text{ for a.e.} t \in \Omega, & x \in A \cap D(F), \\ \infty, & x \in A \setminus D(F). \end{cases}$$

Definition. For a convex operator F, we define

 $\tilde{\mathfrak{A}} = \{ (A, f) \mid A \in \mathfrak{A}, \text{ and } f \text{ represents } F \text{ on } A \}.$

Moreover, for (A_1, f_1) , $(A_2, f_2) \in \tilde{\mathfrak{A}}$, we write $(A_1, f_1) \leq (A_2, f_2)$ when $A_1 \subset A_2$ and f_2 is an extension of f_1 to A_2 .

Lemma 2. (\mathfrak{A}, \leq) is inductively ordered.

Proof. Let $\{(A_{\lambda}, f_{\lambda})\}_{\lambda \in \Lambda}$ be a totally ordered subset of $\tilde{\mathfrak{A}}$. Then $A = \bigcup_{\lambda \in \Lambda} A_{\lambda}$ is an element of \mathfrak{A} . Moreover we can define a convex integrand f on $A \times \Omega$ satisfying $f = f_{\lambda}$ on $A_{\lambda} \times \Omega$ for every $\lambda \in \Lambda$. Clearly, $(A, f) \in \tilde{\mathfrak{A}}$ and it is an upper bound of $\{(A_{\lambda}, f_{\lambda})\}_{\lambda \in \Lambda}$.

Lemma 3. For $A \in \mathfrak{A}$ such that $A \neq D$, we define $\mathfrak{S}_A = \{C \in \mathfrak{F}(D) \mid C \cap A = \emptyset\}$. Then $(\mathfrak{S}_A, \subset)$ is inductively ordered.

Proof. Let $\{C_{\lambda}\}_{\lambda \in \Lambda}$ be a totally ordered subset of \mathfrak{S}_{A} . If we put $C = \bigcup_{\lambda \in \Lambda} C_{\lambda}$, then C is a convex set and $C \cap A \neq \emptyset$. Moreover, $C \in \mathfrak{F}(D)$. Indeed, if we assume $(x, y) \cap C \neq \emptyset$, then there exists $\lambda \in \Lambda$ such that $(x, y) \cap C_{\lambda} \neq \emptyset$. Hence it follows that $[x, y] \subset C_{\lambda} \subset C$. Thus $C \in \mathfrak{S}_{A}$ and it is an upper bound of $\{C_{\lambda}\}_{\lambda \in \Lambda}$.

Lemma 4. Let A be an element of \mathfrak{A} , and assume that $A \neq D$. Then there exists $C \in \mathfrak{S}_A$ such that $A \cup \mathring{C} \in \mathfrak{A}$.

Proof. By Lemma 3 and Zorn's lemma, \mathfrak{S}_A has at least a maximal element C. It is sufficient to show that $A \cup \mathring{C} \in \mathfrak{A}$. Put $A = \bigcup_{\lambda \in \Lambda} \mathring{C}_{\lambda}$, and take $C_1 \in \mathfrak{F}(D)$

such that $C_1 \supset C$. Since C is a maximal element of \mathfrak{S}_A , we have $C_1 \notin \mathfrak{S}_A$ and hence $C_1 \cap A \neq \emptyset$. Therefore we can choose $\lambda \in \Lambda$ such that $\mathring{C}_{\lambda} \cap C_1 \neq \emptyset$. It follows from Proposition 3 that $C_{\lambda} \subset C_1$ holds. Since the collection $\{C_{\lambda}\}_{\lambda \in \Lambda}$ is proper, $\mathring{C}_1 \subset A \subset A \cup \mathring{C}$. This shows that the collection $\{C_{\lambda}\}_{\lambda \in \Lambda} \cup \{C\}$ is also proper, and $A \cup \mathring{C} \in \mathfrak{A}$.

Lemma 5. \mathfrak{A} is not empty. In other words, there exists $A \in \mathfrak{A}$ such that F has a representation f on A.

Proof. It is sufficient to show that F has a representation f on D. Let E be a countable dense subset of D. We can assume that E is midpoint convex, that is, $x, y \in E$ implies $(x + y)/2 \in E$. Let B be the set of all rational numbers of the form $\lambda = n/2^m \in [0, 1]$. For each $x, y \in E$ and $\lambda \in B$, $\lambda x + (1 - \lambda)y$ belongs to E and by the convexity of F,

$$(3.1) \qquad (F(\lambda x + (1-\lambda)y))(t) \le \lambda(F(x))(t) + (1-\lambda)(F(y))(t)$$

holds for all $t \in \Omega \setminus \Omega_1(x, y, \lambda)$ where $\Omega_1(x, y, \lambda) \subset \Omega$ has μ -measure zero. Take the union of $\Omega_1(x, y, \lambda)$ over all $x, y \in E$ and $\lambda \in B$, and denote it by Ω_2 . Then $\mu(\Omega_2) = 0$ and (3, 1) holds on $\Omega \setminus \Omega_2$ for all $x, y \in E$ and $\lambda \in B$. Hence if we define f(x, t) on $E \times \Omega$ by f(x, t) = (F(x))(t) for $x, y \in E$ and $t \in \Omega$, then fsatisfies

(3.2)
$$f(\lambda x + (1 - \lambda)y, t) \le \lambda f(x, t) + (1 - \lambda)f(y, t)$$

for all $x, y \in E$, $\lambda \in B$, and $t \in \Omega \setminus \Omega_2$. For every $x \in D$, $t \in \Omega \setminus \Omega_3(x)$, $(\mu(\Omega_3(x)) = 0)$, and $\varepsilon > 0$, there exists $\delta = \delta(x, t, \varepsilon) > 0$ such that $y \in D$ and $||x - y|| < \delta$ imply $|(F(x))(t) - (F(y))(t)| < \varepsilon$, by the continuity condition of F. Hence for each $t \in \Omega \setminus (\Omega_2 \cup \Omega_3(x))$,

$$|(F(x))(t) - f(y,t)| < \varepsilon$$

holds for all $y \in E \cap V_{\delta}(x)$, where $V_{\delta}(x)$ denotes the δ -neighborhood of x. Hence for each $t \in \Omega \setminus (\Omega_2 \cup \Omega_3(x))$, the function $f(\cdot, t)$ is bounded on $E \cap V_{\delta}(x)$, and by (3, 2), this implies the uniform continuity of $f(\cdot, t)$ on $E \cap V_{\delta}(x)$. Thus we can define f(x, t) on $\mathring{D} \times \Omega$ by the usual way of taking limit. Now f is obviously a convex integrand on $X \times \Omega$ by giving the value ∞ outside \mathring{D} . Again by the continuity condition of F, we have, for each $x \in \mathring{D}$,

$$(F(x))(t) = \lim_{n \to \infty} (F(x_n))(t)$$
$$= \lim_{n \to \infty} f(x_n, t)$$
$$= f(x, t),$$

for almost every $t \in \Omega$, where $\{x_n\}$ is a sequence of E converging to x. Thus f is a representation of F on \mathring{D} and this completes the proof.

Lemma 6. Suppose that $(A, f) \in \mathfrak{A}$ and $A \neq D$. Let $C \in \mathfrak{S}_A$ be a face such that $A \cup \mathring{C} \in \mathfrak{A}$ as in Lemma 4. Then f has an extension f_1 defined on $(A \cup \mathring{C}) \times \Omega$ such that $(A \cup \mathring{C}, f_1) \in \mathfrak{A}$.

Proof. Let E be a countable dense subset of \mathring{C} . We can assume that E is midpoint convex. Let B be the set defined in the proof of Lemma 5. For each $x, y \in E$ and $\lambda \in B$, $\lambda x + (1 - \lambda)y$ belongs to E and by the convexity of F,

(3.3)
$$(F(\lambda x + (1 - \lambda)y))(t) \le \lambda(F(x))(t) + (1 - \lambda)(F(y))(t)$$

holds for all $t \in \Omega \setminus \Omega_4(x, y, \lambda)$ where $\Omega_4(x, y, \lambda) \subset \Omega$ has μ -measure zero. Next for each $x \in E$, there exists a null set $\Omega_5(x)$ such that

(3.4)
$$(F(x))(t) \ge \sup_{z \in A} \lim_{\eta \to +0} f(x + \eta(z - x), t)$$

for all $t \in \Omega \setminus \Omega_5(x)$. Take the union of $\Omega_4(x, y, \lambda)$ and $\Omega_5(x)$ over all $x, y \in E$ and $\lambda \in B$, and denote them by Ω_6 and Ω_7 respectively. Then $\mu(\Omega_6) = \mu(\Omega_7) = 0$ and (3, 3), (3, 4) holds on $\Omega \setminus (\Omega_6 \cup \Omega_7)$ for all $x, y \in E$ and $\lambda \in B$. For $x \in E$ and $t \in \Omega \setminus (\Omega_6 \cup \Omega_7)$, we define $f_0(x, t) = (F(x))(t)$. Then $f_0(\cdot, t)$ is locally bounded in E by the same reasoning as in the proof of Lemma 5. Hence $f_0(\cdot, t)$ can be extended continuously to \mathring{C} . Moreover we define

$$f_0(x,t) = \sup_{z \in A} \lim_{\eta \to +0} f(x + \eta(z - x), t)$$

for every $x \in \mathring{C}$ and $t \in \Omega_6 \cup \Omega_7$. Then the function

$$f_1(x,t) = \begin{cases} f(x,t), & (x,t) \in A \times \Omega, \\ f_0(x,t), & (x,t) \in \mathring{C} \times \Omega \end{cases}$$

is obviously a convex integrand, and we can easily see that f_1 is a representation of F on $A \cup \mathring{C}$.

Proof of Theorem 1. By Lemma 3, Lemma 5 and Zorn's lemma, \mathfrak{A} has at least a maximal element (A_0, f_0) . Moreover, Lemma 6 shows that $A_0 = D$, and this means that f_0 represents F on D. Defining $f_0 = \infty$ on $D^c \times \Omega$, we complete the construction of a representation of F.

Corollary 1. Let X be a separable Banach space, and let $F : X \longrightarrow S(\Omega)$ be a convex operator defined on the whole space X. Suppose that F is continuous with respect to the almost everywhere convergence, then F has a representation.

506

Proof. Since X is considered to have a face decomposition, this follows directly from Theorem 1.

By Proposition 6, every convex set in the finite-dimensional space \mathbb{R}^d has a face decomposition. Since every convex function on such a set is continuous on the interior of its domain, we have

Corollary 2. Every convex operator $F : \mathbb{R}^d \supset D(F) \longrightarrow S(\Omega)$ has at least a representation.

4. NORMAL REPRESENTATION

A convex integrand $f : \mathbb{R}^d \times \Omega \longrightarrow \mathbb{R} \cup \{\infty\}$ is said to be normal if $f(\cdot, t)$ is lower semicontinuous for every $t \in \Omega$ and there exists a coutable family of measurable functions $\xi_n : \Omega \longrightarrow \mathbb{R}^d$ $(n = 1, 2, \cdots)$ such that

- (1) for each n, $f(\xi_n(t), t)$ is measurable in $t \in \Omega$,
- (2) for each $t \in \Omega$, $\{\xi_n(t)\}_{n=1}^{\infty}$ is dense in $D(f(\cdot, t))$,

where $D(f(\cdot, t)) = \{x \in \mathbb{R}^d \mid f(x, t) < \infty\}$. If a convex integrand f is normal, then $f(\xi(t), t)$ is measurable in $t \in \Omega$ whenever $\xi : \Omega \longrightarrow \mathbb{R}^d$ is measurable. A convex operator F is said to have a normal representation if there exists a normal convex integrand which represents F. We will find some conditions under which a convex operator has a normal representation. By the conjugate of a convex integrand f, we mean the convex integrand $f^* : \mathbb{R}^d \times \Omega \longrightarrow \mathbb{R} \cup \{\infty\}$ defined by

$$f^*(\xi, t) = \sup_{x \in \mathbb{R}^d} \{ \langle x, \xi \rangle - f(x, t) \}.$$

Also the biconjugate $f^{**}: \mathbb{R}^d \times \Omega \longrightarrow \mathbb{R} \cup \{\infty\}$ is given by

$$f^{**}(x,t) = \sup_{\xi \in \mathbb{R}^d} \{ \langle x, \xi \rangle - f^*(\xi,t) \}.$$

If a convex integrand f is normal, then so are f^* and f^{**} . We note that if a convex integrand f represents a convex operator F then $D(f(\cdot, t))$ does not depend on $t \in \Omega$.

Lemma 7. Let $f : \mathbb{R}^d \times \Omega \longrightarrow \mathbb{R} \cup \{\infty\}$ be a representation of some convex operator. Then f is normal if and only if $f(\cdot, t)$ is lower semicontinuous, in other words, $f^{**} = f$ on $\mathbb{R}^d \times \Omega$.

Proof. Let $D = D(f(\cdot, t))$ and take a countable subset $\{a_n\}$ of D. If we put $\xi_n(t) = a_n$ for all $t \in \Omega$ and $n = 1, 2, \cdots$, then the family $\{\xi_n\}$ satisfies the definition of normality.

Remark. If a convex integrand f satisfies

- (1) for each $x \in \mathbb{R}^d$, $f(x, \cdot)$ is measurable, and
- (2) $\overline{D(\cdot,t)}$ does not depend on $t \in \Omega$,

the conclusion of Lemma 7 is also valid.

Let $L(\mathbb{R}^d, S(\Omega))$ denote the space of all linear mappings from \mathbb{R}^d to $S(\Omega)$. We identify $L(\mathbb{R}^d, S(\Omega))$ with the set $S(\Omega)^d = \{\xi = (\xi_1, \dots, \xi_d) \mid \xi_i \in S(\Omega), i = 1, \dots, d\}$ by corresponding $(\xi_1, \dots, \xi_d) \in S(\Omega)^d$ to the mapping $\varphi : \mathbb{R}^d \ni (x_1, \dots, x_d) \longrightarrow \langle x, \xi \rangle = x_1\xi_1 + \dots + x_d\xi_d \in S(\Omega)$. The conjugate operator $F^* : L(\mathbb{R}^d, S(\Omega)) \supset D(F^*) \longrightarrow S(\Omega)$ of F is defined by

$$F^*(\xi) = \bigvee_{x \in D(F^*)} (\langle x, \xi \rangle - F(x)),$$

where \bigvee means the supremum in the space $S(\Omega)$, and $D(F^*)$ is the set of all $\xi \in S(\Omega)^d$ such that the supremum $F^*(\xi)$ exists. The biconjugate operator F^{**} is defined on the space $L(L(\mathbb{R}^d, S(\Omega)), S(\Omega)) = L(S(\Omega)^d, S(\Omega))$, and we regard $S(\Omega)^d$ and \mathbb{R}^d as the subspaces of this by corresponding $\eta \in S(\Omega)^d$ and $x \in \mathbb{R}^d$ to $\langle \eta, \cdot \rangle$ and $\langle x, \cdot \rangle \in L(S(\Omega)^d, S(\Omega))$, respectively. For $x \in \mathbb{R}^d$ and $\eta \in S(\Omega)$, F^{**} is defined by

$$F^{**}(x) = \bigvee_{\xi \in D(F^*)} (\langle x, \xi \rangle - F^*(\xi)),$$
$$F^{**}(\eta) = \bigvee_{\xi \in D(F^*)} (\langle \eta, \xi \rangle - F^*(\xi)).$$

They are only defined on the domain $D(F^{**})$ where these suprema exist.

Theoem 2. Let $F : \mathbb{R}^d \supset D(F) \longrightarrow S(\Omega)$ be a convex operator and let $f : \mathbb{R}^d \times \Omega \longrightarrow \mathbb{R} \cup \{\infty\}$ be a representation of F. Then the convex integrand f^* and f^{**} are normal representations of F^* and F^{**} respectively. Moreover, for $\xi \in D(F^*)$ and $\eta \in D(F^{**})$,

$$(F^*(\xi))(t) = f^*(\xi(t), t),$$

$$(F^{**}(\eta))(t) = f^{**}(\eta(t), t)$$

hold for almost every $t \in \Omega$.

This theorem follows from the following lemma.

Lemma 8. Let $F : \mathbb{R}^d \supset D(F) \longrightarrow S(\Omega)$ be a convex operator, and let $f : \mathbb{R}^d \times \Omega \longrightarrow \mathbb{R}^d \cup \{\infty\}$ be a representation of F. Let U be a convex subset

of D(F) and suppose that $\inf_{x \in U} f(x,t) > -\infty$ for almost every $t \in \Omega$. Then $\bigwedge_{x \in U} F(x) \in S(\Omega)$ exists and

$$(\bigwedge_{x \in U} F(x))(t) = \inf_{x \in U} f(x, t).$$

Proof. Let E be a countable dense set in U. Then we have

$$\inf_{x \in U} f(x,t) = \inf_{x \in E} f(x,t)$$

for $a.e.t \in \Omega$. Hence $\inf_{x \in U} f(x, t)$ is measurable in t and

$$(\bigwedge_{x \in U} F(x))(t) \leq (\bigwedge_{x \in E} F(x))(t)$$
$$= \inf_{x \in E} f(x, t)$$
$$= \inf_{x \in U} f(x, t)$$
$$\leq (\bigwedge_{x \in U} F(x))(t)$$

for $a.e.t \in \Omega$, and the lemma is proved.

Proof of Theorem 2. By Lemma 8 we have

$$(F^*(\xi))(t) = \bigvee_{x \in D(F)} (\langle x, \xi \rangle - F(x))(t)$$
$$= \sup_{x \in D(F)} (\langle x, \xi(t) \rangle - f(x, t))$$
$$= f^*(\xi(t), t) \quad (a.e.t \in \Omega)$$

for every $\xi \in D(F^*) \subset S(\Omega)^d$. The latter statement can be obtained by analogy. Combining Lemma 7 and Theorem 2, we obtain the following result.

Theorem 3. A convex operator $F : \mathbb{R}^d \supset D(F) \longrightarrow S(\Omega)$ satisfies

$$F^{**}(x) = F(x)$$

for every $x \in D(F)$ if and only if F has a normal representation.

We note that the theorems in the Section 4 can be extended to infinite-dimensional cases by a parallel argument under the hypothesis in Theorem 1.

References

- 1. A. Brønsted, An Introduction to Convex Polytopes, Springer-Verlag, 1983.
- 2. N. Komuro, On basic properties of convex functions and convex integrands, *Hokkaido Math. J.*, **18** (1989), 1-30.
- 3. —, Convex operators and convex integrands, Proc. Japan Acad. 65A (1989), 77-80.
- 4. —, On the integrand representation of convex operators, *J. Hokkaido Univ. Educ.*, **46** (1996), 13-19
- 5. S. S. Kutateladze, Convex operators, Russian Math. Survey, 34 (1979),
- 6. R. T. Rockafellar, Convex Analysis, Princeton University Press, 1970.
- 7. —, Integral functionals, Normal integrands, and Measurable selections, Springer-Verlag Berlin, (1976), 157-207.

Naoto Komuro Hokkaido University of Education at Asahikawa, Hokumoncho 9 chome, Asahikawa, 070-8621, Japan E-mail: komuro@asa.hokkyodai.ac.jp