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ON A HARDY-CARLEMAN’S TYPE INEQUALITY

Bicheng Yang

Abstract. In this paper, we prove that the constant factor in the Hardy-
Carleman’s type inequality is the best possible. A related integral inequality
with a best constant factor is considered.

1. INTRODUCTION

If p > 1, an ≥ 0 (n ∈ N ) and 0 <
∑∞

n=1 an < ∞, then the famous Hardy’s
inequality is

(1.1)
∞∑

n=1

( 1
n

n∑
k=1

a
1/p
k

)p
<

( p

p − 1
)p

∞∑
n=1

an,

where the constant factor
( p

p−1

)p is the best possible, and (1.1) may be reduced to
the following Carleman’s inequality when p → ∞ ( see [1, Ch. 9.12]):

(1.2)
∞∑

n=1

(a1a2 . . .an)1/n < e
∞∑

n=1

an,

where the constant factor e is still the best possible, and the left-hand side of (1.2)
is related to the sum of geometric average. Inequalities (1.1) and (1.2) are important
in analysis and its applications (see [2]).

Recently, we have proved the following two distinct strengthened versions of
(1.2) (see Yang et al. [3, 4]):

(1.3)
∞∑

n=1

(a1a2 . . .an)1/n < e
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n=1
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an;
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inequality.

469



470 Bicheng Yang

(1.4)
∞∑

n=1

(a1a2 . . . an)1/n < e

∞∑
n=1

(
1 − 1 − 2/e

n

)
an.

Another strengthened version of (1.2) was built by [5].
If we set p = 1/r in (1.1), equivalently, we have 0 < r < 1 and

(1.5)
∞∑

n=1

( 1
n

n∑
k=1

ar
k

)1/r
<

( 1
1 − r

)1/r
∞∑

n=1

an,

where the constant factor
(

1
1−r

)1/r is the best possible, and the left-hand sides of
(1.5) is related to the sum of generalized arithmetic average. Thanh et al. [6] prove
that (1.5) is still true for r ∈ [−1, 0), and for r ∈ (−∞,−1), it follows from [6]
that

(1.6)
∞∑

n=1

( 1
n

n∑
k=1

ar
k

)1/r
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2(r−1)/rr

r − 1

∞∑
n=1

an.

In particular, for r = −1, we reduce (1.5) as

(1.7)
∞∑

n=1

n∑n
k=1 a−1

k

< 2
∞∑

n=1

an.

More recently, Thanh et al. [7] gave a strengthened version of (1.7) as:

(1.8)
∞∑

n=1

n∑n
k=1 a−1

k

< 2
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(
1− 1

3n + 1
)
an.

For r ∈ [−1, 0) in (1.5), replace r by -r and equivalently we have

(1.9)
∞∑

n=1

( n∑n
k=1 a−r

k

)1/r
< (1 + r)1/r

∞∑
n=1

an (r ∈ (0, 1]).

And for r ∈ (−∞,−1) in (1.6), still replace r by -r, and equivalently we have

(1.10)
∞∑

n=1

( n∑n
k=1 a−r

k

)1/r
<

2(1+r)/rr

1 + r

∞∑
n=1

an (r ∈ (1,∞)).

Both of the left-hand sides of (1.9) and (1.10) are related to the sum of the gen-
eralized Harmonic average. We call (1.9) and (1.10) the Hardy-Carleman’s type
inequalities.

The main objective of this paper is to prove that the constant factor in (1.9) is
the best possible. For r > 0, a related integral inequality of (1.9) and (1.10) with a
best constant factor is considered.
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2. LEMMA AND MAIN RESULT

Lemma 2.1. If on = o(1) (n → ∞), then we have

(2.1)
∑N

n=1
on
n∑N

n=1
1
n

= o(1) (N → ∞).

Proof. For any ε > 0, there exists N0 > 1, such that for any n > N0,
|on| < ε/2. Setting M = max{|o1|, |o2|, · · · , |oN0|}, since we find

lim
N→∞

∑N0
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M
n∑N

n=1
1
n

= 0,

there exists N1 > N0, such that for any N > N1,
∑N0
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M
n∑N
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1
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<
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2
.

Then for any N > N1, that makes

|
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1
n
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n∑N
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1
n
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n +
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1
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2

∑N
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1
n∑N

n=1
1
n

<

∑N0
n=1

M
n∑N

n=1
1
n

+
ε

2
< ε.

Hence we have (2.1). The lemma is proved.

Theorem 2.1. If 0 < r ≤ 1, an ≥ 0 (n ∈ N ), and 0 <
∑∞

n=1 an < ∞, then
the constant factor (1 + r)1/r in (1.9) is the best possible.

Proof. We set ãn as

ãn =
1
n

, for n = 1, 2, · · · , N ; ãn = 0, for n = N + 1, N + 2, · · · .

If the constant factor (1 + r)1/r in (1.9) is not the best possible, then there exists
r ∈ (0, 1], and a positive number K, with K < (1 + r)1/r, such that (1.9) is still
valid if we replace (1 + r)1/r by K. In particular, we have

(2.2)
∞∑

n=1

( n∑n
k=1 ã−r

k

)1/r
< K

∞∑
n=1

ãn,
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and then

(2.3)
N∑

n=1

( n∑n
k=1 kr

)1/r
< K

N∑
n=1

1
n

.

Since for r ∈ (0, 1], we have

n∑
k=1

kr <

∫ n+1

0
xrdx =

1
r + 1

(n + 1)r+1,

then we find

N∑
n=1

( n∑n
k=1 kr

)1/r
> (1 + r)1/r

N∑
n=1

n1/r

(n + 1)1+1/r

= (1 + r)1/r
N∑

n=1

1
n

(
1 +

1
n

)−1−1/r = (1 + r)1/r
N∑

n=1

1 + on

n
,

where on =
(
1 + 1

n

)−1−1/r − 1 = o(1) (n → ∞). Hence by (2.3), we find

K > (1 + r)1/r
(
1 +

∑N
n=1

on
n∑N

n=1
1
n

)
,

and for N → ∞ by (2.1), it follows that K ≥ (1+r)1/r. This contracts the fact that
K < (1 + r)1/r. Hence the constant factor (1 + r)1/r in (1.9) is the best possible.
The theorem is proved.

3. A RELATED INTEGRAL INEQUALITY

To show a related integral inequality of (1.9) and (1.10), we need the following
Hölder′s inequality:

If p < 0, 1
p + 1

q = 1, f(t), g(t) ≥ 0, and f ∈ Lp(E), g ∈ Lq(E), then (see [8,
p.29])

(3.1)
∫

E
f(t)g(t)dt ≥ ( ∫

E
fp(t)dt

)1/p( ∫
E

gq(t)dt
)1/q

,

where the equality holds only if there exist real numbers a and b, such that a2 + b2

> 0,
afp(t) = bgq(t), a.e. in E.
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Theorem 3.1. If r > 0, f(x) ≥ 0 (x ∈ (0,∞)), and 0 <
∫ ∞
0 f(x)dx < ∞,

then we have

(3.2)
∫ ∞

0

( x∫ x
0 f−r(t)dt

)1/r
dx < (1 + r)1/r

∫ ∞

0
f(x)dx,

where the constant factor (1 + r)1/r is the best possible.

Proof. For x > 0, setting p = −1
r and E = (0, x) in (3.1), we find r > 0,

and

(3.3)
( ∫ x

0
f(t)g(t)dt

)−1/r ≤ ( ∫ x

0
f−1/r(t)dt

)( ∫ x

0
g1/(1+r)(t)dt

)−(1+r)/r
.

Hence by (3.3), we have

(3.4)

( ∫ x

0
f−r(t)dt

)−1/r =
( ∫ x

0
(t1+rf(t))−r(t(1+r)r)dt

)−1/r

≤ ( ∫ x

0

t1+rf(t)dt
)( ∫ x

0

trdt
)−(1+r)/r

= (r + 1)(1+r)/rx−(1+r)2/r

∫ x

0
t1+rf(t)dt.

If for any x > 0, (3.4) takes the form of equality, setting x → ∞, then by (3.1),
there exists real numbers a and b, such that a2 + b2 > 0,

at1+rf(t) = btr, a.e. in (0,∞).

It follows that af(t) = bt−1, a.e. in (0,∞). Since a2+b2 > 0, we have a �= 0, and
then f(t) = b

a t−1, a.e. in (0,∞). It contracts the face that 0 <
∫ ∞
0 f(x)dx < ∞.

Hence, there exists x0 > 0, such that (3.4) takes the form of strict inequality . Then
for x > x0, we have

( x∫ x
0 f−r(t)dt

)1/r
< (r + 1)(1+r)/rx−r−2

∫ x

0
t1+rf(t)dt, and

∫ ∞

0

( x∫ x
0 f−r(t)dt

)1/r
dx < (r + 1)(1+r)/r

∫ ∞

0
x−r−2

∫ x

0
t1+rf(t)dtdx

= (r + 1)(1+r)/r

∫ ∞

0

(
∫ ∞

t

x−r−2dx)t1+rf(t)dt = (1 + r)1/r

∫ ∞

0

f(t)dt,

which shows (3.2).
For 0 < ε < 1, we set fε(x) as

fε(x) = xε−1, for x ∈ (0, 1]; fε(x) = 0, for x ∈ (1,∞).
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If there exists r > 0, such that the constant factor (r + 1)1/r in (3.2) is not the best
possible, then there exists a positive number k,with k < (r + 1)1/r, such that (3.2)
is still valid if we replace (r + 1)1/r by k. In particular, we have

∫ ∞

0

( x∫ x
0 f−r

ε (t)dt

)1/r
dx < k

∫ ∞

0
fε(x)dx, and

∫ 1

0

( x∫ x
0 t(1−ε)rdt

)1/r
dx < k

∫ 1

0
xε−1dx =

k

ε
.

We obtain that [r(1−ε)+1]1/r < k, and for ε → 0+, it follows that (r+1)1/r ≤ k.
This contradicts the fact that k < (r + 1)1/r. Hence the constant factor (r + 1)1/r

in (3.2) is the best possible. The theorem is proved.

Remark 3.2. (a) It is interesting that the left-hand sides of inequalities (1.2),
(1.5), and (1.9) are related to three different kinds of the sum of averages.

(b) We still can’t show that the constant factor in (1.10) is the best possible or
not, even if we find that for r > 1 the related integral inequality of (1.10) is still
(3.2).
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