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THE HÁJECK-RÈNYI INEQUALITY FOR THE AANA RANDOM
VARIABLES AND ITS APPLICATIONS

Mi-Hwa Ko, Tae-Sung Kim and Zhengyan Lin

Abstract. In this paper we study the Hájeck-Rènyi type inequality of asymp-
totically almost negatively associated (AANA) random variables and derive

strong laws of large numbers for weighted sums of AANA sequences.

1. INTRODUCTION

Let (Ω,F ,P) be a probability space and {X1, · · · , Xn} be a sequence of ran-
dom variables defined on (Ω,F ,P). A finite family {X1, · · · , Xn} is said to be
negatively associated(NA) if for any disjoint subsets A, B ⊂ {1, · · · , n} and any
real coordinatewise nondecreasing functions f : RA → R and g : RB → R,

Cov(f(Xi; i ∈ A), g(Xj; j ∈ B)) ≤ 0.

An infinite family of random variables is negatively associated (NA) if every finite

subfamily is negatively associated (NA). This concept was introduced by Joag-Dev

and Proschan(1983). A sequence {Xn, n ≥ 1} of random variables is called asymp-
totically almost negatively associated (AANA) if there is a nonnegative sequence

q(m) → 0 such that

(1)
Cov(f(Xm), g(Xm+1, · · · , Xm+k))

≤ q(m)(V ar(f(Xm))V ar(g(Xm+1, · · · , Xm+k)))
1
2

for all m, k ≥ 1 and for all coordinatewise increasing continuous functions f and
g whenever the right-hand side of (1) is finite. This definition was introduced by

Chandra and Ghosal(1996 a,b).
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The family of AANA sequences contains negatively associated(in particular,

independent) sequences(with q(m) = 0, ∀m ≥ 1) and some more sequences of
random variables which are not much deviated from being negatively associated.

Condition (1) is clearly satisfied if the R2,2-measure of dependence(see Bradley

et al.(1987)) between σ(Xm) and σ(Xm+1, Xm+2, · · ·) converges to zero. The
following is a non-trivial example of an AANA sequence constructed by Chan-

dra and Ghosal(1996a): Let {Yn} be i.i.d. N(0,1) variables and define Xn =
(1 + a2

n)−
1
2 (Yn + anYn+1) where an > 0 and an → 0.

Chandra and Ghosal(1996 a) derived the Kolmogorov type maximal inequality for

AANA random variables and obtained the strong law of large numbers for AANA

random variables by using this inequality. Chandra and Ghosal(1996 b) also derived

the almost sure convergence of weighted averages on the AANA random variables.

In this paper we derive the Hájeck-Rènyi type inequality of asymptotically almost

negatively associated (AANA) random variables and apply this inequality to ob-

tain the strong laws of large numbers for weighted sums of AANA sequences. A

Marcinkiewicz strong law of large numbers for identically distributed AANA se-

quence is also obtained as a special case.

2. RESULTS

We start this section with the property of asymptotically almost negatively asso-

ciated (AANA) random variables which can be obtained easily from the definition

of AANA random variables.

Lemma 2.1. Let {Xn, n ≥ 1} be a sequence of asymptotically almost neg-
atively associated (AANA). Then {fn(Xn), n ≥ 1} is still a sequence of AANA
random variables, where fn(·), n = 1, 2, · · · , are nondecreasing functions.

From the idea of the proof of Theorem 1 in Chandra and Ghosal(1996 a) we

have the following lemma:

Lemma 2.2. Let {Xn, n ≥ 1} be a sequence of AANA random variables with
EXk = 0 and EX2

k < ∞, k ≥ 1. Suppose that there exist M > 1 and D > 0
such that for all n ≥ 1

(2) (
n∑

k=1

σ
M/(M−1)
k )1−1/M ≤ D(

n∑

k=1

σ2
k)1/2,

where σ2
k = EX2

k , k ≥ 1. Let A = D(
∑n−1

m=1 qM (m))1/M . Then we have

(3) E(max1≤k≤n

k∑

i=1

Xi)2 ≤ (A + (1 + A2)1/2)2
n∑

k=1

σ2
k.
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(4) E(
n∑

k=1

Xk)2 ≤ (A + (1 + A2)1/2)2
n∑

k=1

σ2
k,

Proof. For fixed n > 1, we set

(5) Uk = max(Xk, Xk + Xk+1, · · · , Xk + · · ·+ Xn), 1 ≤ k ≤ n.

Note that Uk’s are AANA by Lemma 2.1 and Uk = max{Xk, Xk + Uk+1}. Con-
sequently it follows from (1) that

EU2
k ≤ EX2

kI(Uk+1 ≤ 0) + E(Xk + Uk+1)2I(Uk+1 > 0)

≤ σ2
k + EU2

k+1I(Uk+1 > 0) + 2EXkUk+1I(Uk+1 > 0)

≤ σ2
k + EU2

k+1 + 2q(k)σk(EU2
k+1)

1/2, 1 ≤ k ≤ n − 1.

Define a sequence {ξk, 1 ≤ k ≤ n} by
{

ξ2
k = σ2

k + ξ2
k+1 + 2q(k)σkξk+1, 1 ≤ k ≤ n − 1,

ξ2
n = σ2

n .

From the definition of ξk we have

(7) EU2
k ≤ ξ2

k , 1 ≤ k ≤ n.

Note that {ξk} is decreasing. Thus

ξ2
k ≤ σ2

k + ξ2
k+1 + 2q(k)σkξ1, 1 ≤ k ≤ n − 1.

Substituting sequentially and using the Hölder inequality, we get

ξ2
1 ≤ τ2 + 2ξ1

n−1∑

k=1

q(k)σk

≤ τ2 + 2ξ1(
n−1∑

k=1

qM (k))1/M(
n−1∑

k=1

σ
M/(M−1)
k )(M−1)/M

≤ τ2 + 2ξ1Aτ, where τ2 =
n∑

k=1

σ2
k.

Hence

(8) (ξ1 − Aτ)2 ≤ (1 + A2)τ2

Combining (5), (7) and (8) we have EU2
1 ≤ ξ2

1 ≤ (A + (1 + A2)1/2)2τ2 and so (3)

follows.
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To prove (4), for fixed n ≥ 1, set

(9) Tk = Xk + Xk+1 + · · ·+ Xn, 1 ≤ k ≤ n.

Then we have

Tk = Xk + Tk+1

and consequently it follows from (1) that

ET 2
k ≤ σ2

k + ET 2
k+1 + 2q(k)σk(ET 2

k+1)
1/2, 1 ≤ k ≤ n − 1.

Proceeding as in the last part of the proof of (3), we get (4).

Remark 2.1. (3) and (4) are always true for M = 2 (in this case (2) becomes
an equality with D = 1).

We obtain the following theorem by Lemma 2.2 :

Theorem 2.3. Let {Xn, n ≥ 1} be a sequence of AANA random variables
with EXn = 0 and σ2

n = EX2
n < ∞, n ≥ 1. Suppose that condition (2) is

satisfied and A is defined as in Lemma 2.2. Then

(10) P{max1≤k ≤ n |Sk| ≥ ε} ≤ 2ε−2(A + (1 + A2)
1
2 )2

n∑

k=1

σ2
k.

Remark 2.2. By putting M = 2 Theorem 2.3 yields Theorem 1 of Chandra
and Ghosal(1996a).

As a consequence of Theorem 2.3 we also have the following result:

Theorem 2.4. Let {an, n ≥ 1} be a positive sequence of real numbers and
{bn, n ≥ 1} a positive sequence of nondecreasing real numbers. Let {Xn, n ≥ 1}
be a sequence of AANA random variables with EXn = 0 and EX2

n < ∞. Suppose
that condition (2) is satisfied and A is defined as in Lemma 2.2. Then

(11) P

{
max1≤k≤n

∣∣∣∣∣

∑k
i=1 aiXi

bk

∣∣∣∣∣ ≥ ε

}
≤ 8ε−2(A + (1 + A2)

1
2 )2

n∑

k=1

(a2
kσ

2
k

b2
k

)
.

Proof. Without loss of generality, setting b0 = 0, we have

Sk =
k∑

j=1

bj
ajXj

bj
=

k∑

j=1

(
j∑

i=1

(bi − bi−1)
ajXj

bj
)

=
k∑

i=1

(bi − bi−1)
∑

i≤j≤k

ajXj

bj
.
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Note that (1/bk)
∑k

j=1(bj − bj−1) = 1. So

{|Sk

bk
| ≥ ε} ⊂ {max

1≤i≤k
|

∑

i≤j≤k

ajXj

bj
| ≥ ε}.

Therefore

{ max
1≤k≤n

|Sk

bk
| ≥ ε} ⊂ { max

1≤k≤n
max
1≤i≤k

|
∑

i≤j≤k

ajXj

bj
| ≥ ε}

= { max
1≤i≤k≤n

|
∑

j≤k

ajXj

bj
−

∑

j<i

ajXj

bj
| ≥ ε}

⊂ { max
1≤i≤n

|
i∑

j=1

ajXj

bj
| ≥ ε

2
}.

By Theorem 2.3, we obtain (11).

From Theorem 2.4 we can get the following more generalized Hájeck-Rènyi

type inequality.

Theorem 2.5. Let {an, n ≥ 1} be a positive sequence of real numbers and
{bn, n ≥ 1} a positive sequence of nondecreasing real numbers. Let {Xn, n ≥ 1}
be a sequence of AANA random variables with EXk = 0 and EX2

k < ∞. Suppose
that condition (2) is satisfied and A is defined as in Lemma 2.2. Then for any ε > 0
and any positive integer m < n,

(12)

P

{
max

m≤k≤n

∣∣∣∣∣

∑k
i=1 aiXi

bk

∣∣∣∣∣ ≥ ε

}

≤ 8ε−2(A + (1 + A2)
1
2 )2




n∑

j=m+1

a2
jσ

2
j

b2
j

+
m∑

j=1

a2
jσ

2
j

b2
m


 .

Theorem 2.6. Let {an, n ≥ 1} be a positive sequence of real numbers and
{bn, n ≥ 1} a positive sequence of nondecreasing real numbers. Let {Xn, n ≥ 1}
be a sequence of AANA random variables with EXk = 0 and EX2

k < ∞. Suppose
that condition (2) is satisfied and that

(13)
∞∑

n=1

(
an

bn
)2σ2

n < ∞

and

(14) (
∞∑

k=1

qM(k))1/M < ∞ for M ≥ 2
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hold. Then,

(A) for any 0 < r < 2, E supn(|Sn|/bn)r < ∞,
(B) 0 < bn ↑ ∞ implies Sn/bn → 0 a.s. as n → ∞,

where Sn =
∑n

i=1 aiXi, n ≥ 1.

Proof. Let B = D(
∑∞

k=1 qM (k))1/M .

(A): Note that, for any 0 < r < 2

E sup
n

( |Sn|
bn

)r
< ∞ ⇐⇒

∫ ∞

1

P

{
sup

n

|Sn|
bn

> t
1
r

}
dt < ∞.

By Theorem 2.4 it follows from (13) and (14) that
∫ ∞

1
P

{
sup

n

|Sn|
bn

> t
1
r

}
dt

≤ 2
∫ ∞

1
t−

2
r (B + (1 + B2)

1
2 )2

∞∑

n=1

(
an

bn
)2σ2

ndt

= 2(B + (1 + B2)
1
2 )2

∞∑

n=1

(
an

bn
)2σ2

n

∫ ∞

1
t−

2
r dt < ∞.

Hence, the proof of (A) is complete.

(B): By Theorem 2.5, we have

P{ max
m≤k≤n

∣∣∣∣∣

∑k
i=1 aiXi

bk

∣∣∣∣∣ ≥ ε}

≤ 8ε−2(B + (1 + B2)
1
2 )2




n∑

j=m+1

a2
jσ

2
j

b2
j

+
m∑

j=1

a2
jσ

2
j

b2
m


 .

But

(15)

P

{
supk≥m

∣∣∣∣∣

∑k
i=1 aiXi

bk

∣∣∣∣∣ ≥ ε

}

= lim
n→∞

P

{
max

m≤j≤n

∣∣∣∣∣

∑j
i=1 aiXi

bj

∣∣∣∣∣ ≥ ε

}

≤ 8ε−2(B + (1 + B2)
1
2 )2




∞∑

j=m+1

a2
jσ

2
j

b2
j

+
m∑

j=1

a2
jσ

2
j

b2
m




< ∞

by (13) and (14). By the Kronecker lemma, it follows from (13) that
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(16)
m∑

j=1

a2
jσ

2
j

b2
m

→ 0 as m → ∞.

Hence, combining (13)-(16) yields

lim
n→∞

P

{
sup
k≥n

∣∣∣∣∣

∑k
i=1 aiXi

bk

∣∣∣∣∣ ≥ ε

}
= 0,

which completes the proof of (B).

Remark. 2.3. Theorem 2.6 (B) shows that Theorem 2 of Matula (1996)

remains true if the assumption of negatively associated random variables is relaxed

to AANA random variables satisfying (2) and (14).

Corollary 2.7. Let {an, n ≥ 1} be a positive sequence of real numbers
satisfying supn a2

n < ∞ and let {Xn, n ≥ 1} be a sequence of AANA random
variables with EXk = 0 and EX2

k < ∞. Suppose that conditions (2) and (14) are
satisfied and supn σ2

n < ∞. Then, for 0 < t < 2, and for all ε > 0, m ≥ 1,

P{supn≥m

∣∣∣∣
∑n

i=1 aiXi

n
1
t

∣∣∣∣ ≥ ε}

≤ 8ε−2(B′ + (1 + B′2)
1
2 )2 2

2−t(supn σ2
n)(supn a2

n)m(t−2)/t

where B
′
= BD.

Corollary 2.8. Let {an, n ≥ 1} be a positive sequence of real numbers
satisfying supn a2

n < ∞ and let {Xn, n ≥ 1} be a sequence of AANA random
variables withEXk = 0 andEX2

k < ∞ and supn σ2
n < ∞. Assume that conditions

(2) and (14) hold. Then, for 0 < t < 2,
(A)

∑n
i=1 aiXi/n

1
t −→ 0 a.s. as n → ∞.

(B) E supn

(
|
∑n

i=1 aiXi|/n
1
t

)r
< ∞ for any 0 < r < 2.

Example 2.9. Let {Xn, n ≥ 1} be a sequence of AANA random variables
with EXk = 0 and EX2

k < ∞. Assume that
∞∑

n=1

V ar(Xn)
n4

< ∞

and (2) and (14) hold. Then, as n → ∞

n−1
n∑

k=1

Xk/k −→ 0 a.s.
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Proof. By taking ak = 1/k and bn = n from Theorem 2.6 the desired result

follows.

Example 2.10. Let {Xn, n ≥ 1} be a sequence of mean zero, square integrable
AANA random variables. Assume that

∞∑

n=1

(log n)−2 V ar(Xn)
n2

< ∞

and (2) and (14) hold. Then, as n → ∞

(log n)−1
n∑

k=1

Xk/k −→ 0 a.s.

Proof. By taking ak = 1
k and bn = log n from Theorem 2.6 the result follows.

3. MARCINKIEWIZ SLLN FOR AANA RANDOM VARIABLES

Now we prove the Marcinkiewicz strong law of large numbers for the identically

distributed AANA random variables.

Theorem 3.1. Let {Xn, n ≥ 1} be a sequence of identically distributed AANA
random variables. Assume that conditions (2) and (14) are satisfied.

(1). If E|X1|t < ∞ for some 0 < t < 1, then

n∑

i=1

Xi

n1/t
→ 0. a.s.

(2). If E|X1|t < ∞ for some 1 ≤ t < 2, then

n∑

i=1

(Xi − EXi)

n1/t
→ 0. a.s.

Proof. The method of proof is the same as that used in the classical Marcinkiewicz

strong law of large numbers for the independent and identically distributed random

variables (see Stout, 1972, Theorem 3.2.3). We give the main step of the proof,

omitting some details.

Assume that E|X1|t < ∞ for some 0 < t < 2. To prove (1), it suffices to show
that



Hájeck-Rènyi Inequality for AANA Variables 119

(17)

n∑

i=1

X+
i

n1/t
→ 0. a.s.

(18)

n∑

i=1

X−
i

n1/t
→ 0. a.s.

To prove (2), it suffices to show that

(19)

n∑

i=1

(X+
i − EX+

i )

n1/t
→ 0. a.s.

(20)

n∑

i=1

(X−
i EX−

i )

n1/t
→ 0. a.s.

where X+
i = max(Xi, 0), X−

i = max(−Xi, 0).
Note that {X+

i , i ≥ 1}, {X−
i , i ≥ 1} are AANA random variables by Lemma 2.1,

we only prove (17) and (19). (18) and (20) can be proved similarly.

Set Yi = X+
i ∧ n1/t, i = 1, · · · , n. By Lemma 2.1 {Yi, 1 ≤ i ≤ n} are iden-

tically distributed AANA random variables. Notice that E|X1|t < ∞ implies∑∞
n=1 P (|X1| > n1/t) < ∞ and on the other hand,

P (Yi 6= X+
i ) = P (X+

1 ∧ n1/t 6= X+
i ) ≤ P (X+

1 > n1/t) ≤ P (|X1| > n1/t).

So

(21) P (Yi 6= X+
1 i.o.) = 0.

We will prove first

(22)

n∑

i=1

EYi

n1/t
→ 0 for 0 < t < 1,

(23)

n∑

i=1

(EX+
i − EYi)

n1/t
→ 0 for 1 ≤ t < 2

Proof of (22). Notice that

∞∑

n=1

EYn

n1/t
=

∞∑

n=1

n−1/t{EX+
1 I(X+

1 ≤ n1/t) + n1/tP (X+
1 > n1/t)}
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=
∞∑

n=1

n−1/tEX+
1 I(X+

1 ≤ n1/t) +
∞∑

n=1

P (X+
1 > n1/t)

≤
∞∑

n=1

n−1/t
n∑

k=1

EX+
1 I((k − 1)1/t < X+

1 ≤ k1/t)

+
∞∑

n=1

P (|X1| > n1/t)

≤
∞∑

k=1

EX+
1 I((k − 1)1/t < X+

1 ≤ k1/t)
∞∑

n=k

n−1/t + E|X1|t

≤ C

∞∑

k=1

k−(1/t)+1EX+
1 I((k − 1)1/t < X+

1 ≤ k1/t) + E|X1|t

≤ C
∞∑

k=1

E(X+
1 )tI((k − 1)1/t < X+

1 ≤ k1/t) + E|X1|t

≤ CE|X1|t < ∞.

By Kronecker’s Lemma (22) is true.

Proof of (23). Since |EX+
n − EYn| ≤ EX+

n I(X+
n > n1/t) + n1/tP (X+

n >

n1/t), it follows in a similar way that

∞∑

n=1

n−1/t|EX+
n − EYn| < ∞.

Hence, (23) is proved.

From (21), (22) and (23) it suffices to show that

(24)
∑n

i=1(Yi − EYi)
n1/t

→ 0 a.s.

By Theorem 2.6 taking bn = n1/t, we have

∞∑

n=1

n−2/tE(Yn − EYn)2

≤
∞∑

n=1

n−2/tEY 2
n

=
∞∑

n=1

n−2/tE(X+
1 ∧ n1/t)2
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=
∞∑

n=1

n−2/tE(X+
1 )2I(X+

1 ≤ n1/t) +
∞∑

n=1

P (X+
1 > n1/t)

≤
∞∑

n=1

n−2/t
n∑

k=1

E(X+
1 )2I((k − 1)1/t < X+

1 ≤ k1/t) + E|X1|t

=
∞∑

n=1

n−2/t
n∑

k=1

E(X+
1 )2I((k − 1)1/t < X+

1 ≤ k1/t)
∞∑

n=k

n−2/t + E|X1|t

≤ C

∞∑

k=1

k−(2/t)+1E(X+
1 )2I((k − 1)1/t < X+

1 ≤ k1/t) + E|X1|t

≤ C
∞∑

k=1

k−(2/t)+1k(2/t)−1E(X+
1 )tI((k − 1)1/t < X+

1 ≤ k1/t) + E|X1|t

≤ CE|X1|t < ∞.

The proof is complete.
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