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ONE-SIDED UNIT-REGULAR IDEALS OF REGULAR RINGS

Huanyin Chen

Abstract. In this paper, we investigate one-sided unit-regular ideals of regular
rings. Let I be a purely infinite, simple and essential ideal of a regular ring
R. It is shown that R is one-sided unit-regular if and only if so is R/I. Also
we prove that every square matrix over one-sided unit-regular ideals of regular
rings admits a diagonal matrix with idempotent entries.

Let R be an associative ring with identity. We say that R is a regular ring
provided that for every x ∈ R there exists y ∈ R such that x = xyx(cf. [10]). We
say that R is an one-sided unit-regular ring provided that for every x ∈ R there
exists right or left invertible u ∈ R such that x = xux(see [9]). In [6, Corollary
7], the author proved that one-sided unit-regularity is Morita invariant. In addition,
the author proved that a regular ring is one-sided unit-regular if and only if for all
finitely generated projective right R-modules A,B and C, if A ⊕ B ∼= A ⊕ C,
then B � C or C � B (see [6, Theorem 8]). Also the author proved that every
element in one-sided unit-regular rings is a product of an idempotent and a right or
left invertible element of R (see [5, Theorem 4]).

In this paper, we investigate one-sided unit-regular ideals of regular rings. Let
I be a purely infinite, simple and essential ideal of a regular ring R. Then I
is one-sided unit-regular. Furthermore, we show that R is one-sided unit-regular
if and only if so is R/I . Also we prove that every square matrix over one-sided
unit-regular ideals of regular rings admits a diagonal matrix with idempotent entries.

Throughout this paper, We assume that all rings are associative with identity
and all modules are right unital modules. We say that an element u ∈ R is weak-
invertible if there exist a, b ∈ R such that au = 1 or ub = 1. Let R−1

< denote the
set of all weak-invertible elements of R. If A and B are R-modules, the notation
B � A means that B is isomorphic to a submodule of A.

Lemma 1. Let R be a ring with u ∈ R. Then the following are equivalent:
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(1) u is weak-invertible.
(2) There exists v ∈ R such that uv = 1 or vu = 1.

Proof. (2) ⇒ (1) is trivial.
(1) ⇒ (2). Since u is weak-invertible, there exist a, b ∈ R such that ua = 1

or bu = 1. Set v = a + b − bua. Then v = b (if bu = 1) or v = a (if ua = 1).
Therefore either vu = 1 or uv = 1.

Let u ∈ R be weak-invertible. Then we have some v ∈ R such that uv = 1 or
vu = 1. We denote v by u−1

< . We note that u−1
< is not unique. In fact, if we have

a fixed weak-inverse u−1
< , then uv = 1 or vu = 1 if and only if there exist a, b ∈ R

such that v = u−1
< + a(1 − uu−1

< ) + (1 − u−1
< u)b. In the sequel, we will always

choose some fixed weak-inverse.
Suppose that I is an ideal of a regular ring R. We say that I is one-sided

unit-regular in case aR+ bR = R with a ∈ 1+ I, b ∈ R implies that a+ by ∈ R−1
<

for a y ∈ R. Obviously, The one-sided unit-regularity for ideals of regular rings
is a nontrivial generalization of the one-sided unit-regular rings. In [7, Theorem
2.9], the author showed that an ideal I of a regular ring R is one-sided unit-regular
if and only if eRe is one-sided unit-regular for all idempotents e ∈ I . Also I is
one-sided unit-regular if and only if for every x ∈ 1+ I , there exists u ∈ R−1

< such
that x = xux (cf. [7, Theorem 2.3]).

We say that a∼b via 1 + I provided that there exist x, y, z ∈ 1 + I such that
a = zbx, b = xay, x = xyx = xzx. We now extend [11, Theorem] and characterize
one-sided unit-regularity for ideals of regular rings by pseudo-similarity.

Lemma 2. Let R be a ring with a, b ∈ R. Then the following are equivalent:

(1) a∼b via 1 + I .
(2) There exist some x, y ∈ 1 + I such that a = xby, b = yax, x = xyx and

y = yxy.

Proof. (2)⇒(1) is trivial.
(1)⇒(2). Since a∼b via 1+I , there are x, y, z ∈ 1+I such that b = xay, zbx =

a and x = xyx = xzx. By replacing y with yxy and z with zxz, we can assume
y = yxy and z = zxz. Clearly, xazxy = xzbxzxy = xzbxy = xay = b, zxybx =
zxyxayx = zxayx = zbx = a, zxy = zxyxzxy and x = xzxyx. Obviously, 1+ I

is a submonoid of (R, ·) and so zxy ∈ 1 + I which completes the proof.

Theorem 3. Let I be an ideal of a regular ring R. Then the following are
equivalent:

(1) I is one-sided unit-regular.
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(2) Whenever a∼b via 1 + I , there exists weak-invertible u ∈ R such that a =
ubu−1

< .

Proof. (1)⇒(2). Suppose that a∼b via 1 + I . By Lemma 2, there exist
x, y ∈ 1 + I such that a = xby, b = yax, x = xyx and y = yxy. Since I is
one-sided unit-regular, we have u ∈ R−1

< such that y = yuy. Set w = y + (1 −
yu)u−1

< (1 − uy). Then yuw = y. Clearly, 1 − uw = (1 − uy)(1 − uu−1
< ) and

1 − wu = (1 − u−1
< u)(1 − yu). Set k = (1 − xy − uy)u(1 − yx − yu), l =

(1−yx−yu)w(1−xy−uy). Then 1−kl = (1−xy−uy)(1−uw)(1−xy−uy)
and 1− lk = (1− yx− yu)(1−wu)(1− xy − uy); hence, l = k−1

< . Furthermore,
kbk−1

< = (1−xy−uy)u(1− yx− yu)b(1−yx− yu)w(1−xy−uy) = (1−xy−
uy)(u− uyx− uyu)by = xyuby = xby = a, as required.

(2)⇒(1). Given any x ∈ 1 + I , there exists y ∈ R such that x = xyx and
y = yxy. Clearly, we have R = yxR ⊕ (1 − yx)R = xyR ⊕ (1 − xy)R and an
isomorphism η : xyR = xR ∼= yxR given by η(xr) = yxr for any r ∈ R. Clearly,
xy = x(yx)y, yx = y(xy)x, x = xyx, y = yxy and x, y ∈ 1 + I . Hence xy∼yx
via 1 + I , and then we have u ∈ R−1

< such that yx = uxyu−1
< . Construct maps

α : (1 − xy)R → (1 − yx)R given by (1 − xy)r → (1 − yx)u(1 − xy)r for any
r ∈ R and β : (1−yx)R→ (1−xy)R given by (1−yx)r → (1−xy)u−1

< (1−yx)r
for any r ∈ R. Define φ : R = xR ⊕ (1 − xy)R → yxR ⊕ (1 − yx)R given by
φ(x1 + x2) = η(x1) + α(x2) for any x1 ∈ xR, x2 ∈ (1 − xy)R and ψ : R =
yxR⊕ (1−yx)R → xR⊕ (1−xy)R = R given by ψ(y1 +y2) = η−1(y1)+β(y2)
for any y1 ∈ yxR, y2 ∈ (1 − yx)R.

If uu−1
< = 1, then (1−φψ)(y1+y2) = (1−yx)(1−uu−1

< )y2 for any y1 ∈ yxR
and y2 ∈ (1− yx)R. So φψ = 1.

If u−1
< u = 1, then (1−ψφ)(x1 +x2) = (1−xy)(1−u−1

< u)x2 for any x1 ∈ xR
and x2 ∈ (1 − xy)R. So ψφ = 1. Thus we see that φ ∈ R−1

< . One easily checks
that x = xφx. Therefore I is one-sided unit-regular by [7, Theorem 2.3].

Let e, f ∈ R be idempotents. It is well known that eR ∼= fR if and only if
there exist a ∈ eRf, b ∈ fRe such that e = ab and f = ba. If a, b ∈ 1 + I , we say
that eR ∼= fR via 1 + I .

Corollary 4. Let I be an ideal of a regular ring R. Then the following are
equivalent:

(1) I is one-sided unit-regular.
(2) For any idempotents e, f ∈ R, eR ∼= fR via 1 + I implies that there exists

u ∈ R−1
< such that e = ufu−1

< .

Proof. (1)⇒(2). Suppose that eR ∼= fR via 1+I . Then there exist a, b ∈ 1+I
such that e = ab and f = ba, where a ∈ eRf, b ∈ fRe. Clearly, e = afb, f =
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bea, a = aba and b = bab. That is, e∼f via 1 + I . According to Theorem 3, we
have u ∈ R−1

< such that e = ufu−1
< .

(2)⇒(1) is obtained by the proof of ”(2) ⇒ (1)” in Theorem 3.

Corollary 5. Let R be a regular ring. Then the following are equivalent:
(1) R is one-sided unit-regular.
(2) Whenever a∼b with a, b ∈ R, there exists weak-invertible u ∈ R such that

a = ubu−1
< .

(3) Whenever eR ∼= fR with idempotents e, f ∈ R, there exists weak-invertible
u ∈ R such that e = ufu−1

< .

Proof. We choose I = R. Then the result follows by Theorem 3 and Corol-
lary 4.

In order to investigate the diagonal reduction of matrices over one-sided unit-
regular ideals over regular rings, we extend [12, Lemma 1.1] as follows.

Lemma 6. Let I be an ideal of a regular ring R and x 1, x2, . . . , xm ∈ I .
Then there exists an idempotent e ∈ I such that x i ∈ eRe for all i = 1, 2, . . . , m.

Proof. Clearly there exist idempotents u, v ∈ I such that uR =
∑m

i=1 xiR
and Rv =

∑m
i=1 Rxi. It is enough to show that there exists e = e2 ∈ I with

eu = u = ue and ev = v = ve. Next, fR = uR + vR for some f = f2 ∈ I .
Clearly, fu = u and fv = v. Set g = f + u(1 − f). Obviously, g2 = g ∈ I ,
ug = u = gu and gv = v. It is enough to show that there exists e = e2 ∈ I with
eg = g = ge and ev = v = ve. Pick an idempotent h ∈ I with Rg + Rv = Rh.
Clearly, gh = g and vh = v. Set e = h + (1 − h)g. Obviously, e = e2 ∈ I ,
eg = g = ge and ev = v = ve because gv = v.

Theorem 7. Let I be an ideal of a regular ring R. If I is one-sided unit-
regular, then Mn(I) is one-sided unit-regular as an ideal of M n(R).

Proof. In view of [7, Theorem 2.9] it is enough to show that WMn(R)W is
one-sided unit-regular for any idempotent W = (wij)n

i,j=1 ∈ Mn(I). By Lemma
6 there exists an idempotent e ∈ I with ewije ∈ eRe for all i, j. Let E be the
idempotent of Mn(R) whose diagonal entries are equal to e while all the other ones
are equal to 0. Obviously, W ∈ EMn(R)E = Mn(eRe). Next, by [7, Theorem
2.9], eRe is one-sided unit-regular and so [6, Corollary 7] yields that Mn(eRe) is
one-sided unit-regular. As WMn(R)W = WEMn(R)EW = WMn(eRe)W , the
result follows from [7, Theorem 2.9].
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Corollary 8. Let I be an one-sided unit-regular ideal of a regular ring R.
Then for any A ∈ Mn(I), there exist idempotent matrix E and weak-invertible
matrix U such that A = EU .

Proof. Given A ∈Mn(I), then we have B ∈Mn(R) such that A = ABA and
B = BAB. Since

(
A+ (In − AB)

)
B + (In − AB)(In − B) = In, it follows by

Theorem 7 that A + (In − AB) + (In − AB)(In − B)Y = U ∈ Mn(R)−1
< such

that A = ABA = AB
(
A + (In − AB) + (In − AB)(In − B)Y

)
= EU , where

E = AB = E2 ∈Mn(I).

Denote by FP (I) the set of finitely generated projective right R-module P such
that P = PI .

Theorem 9. Let I be an ideal of a regular ring R. Then the following are
equivalent:

(1) I is one-sided unit-regular.
(2) For all A ∈ FP (I), A ⊕ B ∼= A ⊕ C implies B � C or C � B for any

right R-modules B and C.
(3) For any A,B, C ∈ FP (I), A⊕B ∼= A⊕C implies B � C or C � B.

Proof. (1) ⇒ (2) Given A ⊕ B ∼= A ⊕ C with A,B, C ∈ FP (I), we have
idempotents e1, · · · , en ∈ I such that A ∼= e1R⊕· · ·⊕enR ∼= diag(e1, · · · , en)Rn.
Clearly, EndR(A) ∼= diag(e1, · · · , en)Mn(R)diag(e1, · · · , en). By Theorem 7,
Mn(I) is one-sided unit-regular as an ideal of Mn(R). According to [7, Theorem
2.9], EndR(A) is one-sided unit-regular. It follows by [6, Proposition 2] that either
B � C or C � B.

(2) ⇒ (3) is trivial.
(3) ⇒ (1) Let e ∈ I be an idempotent. Suppose that A ⊕ B ∼= A ⊕ C with

A,B, C ∈ FP (eRe). Then we have A
⊗
eRe

eR⊕B
⊗
eRe

eR ∼= A
⊗
eRe

eR⊕C
⊗
eRe

eR.

Clearly, A ⊗eRe eR, B ⊗eRe eR, C ⊗eRe eR ∈ FP (I). By our assumption either
there exist an embedding of R-modules f : B ⊗eRe eR → C ⊗eRe eR or f :
C ⊗eRe eR → B ⊗eRe eR. Say, f : B ⊗eRe eR→ C ⊗eRe eR. Then

C ∼= C ⊗eRe eRe = (c⊗eRe eR)e ⊇ f(B ⊗eRe eR)e = f(B ⊗eRe eRe) ∼= B

and so B can be embedded into C. According to [6, Theorem 8], eRe is one-sided
unit-regular. Therefore I is one-sided unit-regular from [7, Theorem 2.9].

Set cr(R−1
< ) = {a ∈ R | If ax+ b = 1 in R, then there exists y ∈ R such that

a + by ∈ R−1
< }. An element e ∈ I is infinite if there exist orthogonal idempotents
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f, g ∈ I such that e = f + g while eR ∼= fR and g �= 0. A simple ideal I of a ring
R is said to be purely infinite if every nonzero right ideal of I (as a ring without
units) contains an infinite idempotent.

Lemma 10. Let I be a purely infinite, simple and essential ideal of a regular
ring R. Then I + R−1

< ⊆ cr(R−1
< ).

Proof. Suppose that ax + b = 1 with a ∈ I + R−1
< , x, b ∈ R. Then we have

c ∈ R such that a = aca. Assume that there exists u ∈ R−1
< such that a− u ∈ I .

If uv = 1 for a v ∈ R, then we have a = aca ∈ acu+ I , so av − ac ∈ I . Clearly,
1 − av ∈ I . Thus 1 − ac = (1 − av) + (av − ac) ∈ I . Assume that 1 − ac �= 0
and 1 − ca �= 0. Since I is essential and simple, we have (1 − ca)I(1− ca) �= 0.
As I is purely infinite and simple, we can find an infinite idempotent r ∈ R

such that (1 − ac)R ∼= rR ⊆ (1 − ca)R; hence, (1 − ac)R � (1 − ca)R. By
the regularity of R, there is an injection ψ : (1 − ac)R → (1 − ca)R. Clearly,
R = caR⊕ (1 − ca)R = acR ⊕ (1 − ac)R with φ : acR = aR ∼= caR given by
φ(are) = c(ar) for any ar ∈ aR. Define u ∈ EndR(R) so that u restricts to φ
and u restricts to ψ. Then a = aua with left invertible u ∈ R. Hence a ∈ R is
one-sided unit-regular.

If vu = 1 for a v ∈ R, then a = aca ∈ uca + I , so va − ca ∈ I . Clearly,
1−va ∈ I ; hence, 1−ca = (1−va)+(va−ca) ∈ I . Analogously to the discussion
above, we have either (1 − ca)R � (1 − ac)R or a ∈ R−1

< . Consequently, there
is a u ∈ R−1

< such that a = aua. Therefore we always have u ∈ R−1
< such that

a = aua. Set ua = e. Then ex + ub = u, so e(x + ub) + (1 − e)ub = u.
Since R is regular, we have a d ∈ R such that (1 − e)ub = (1 − e)ubd(1 − e)ub.
Set g = (1 − e)ubd(1 − e). Then e = e2, g = g2 and eg = ge = 0. Thus
e(x+ ub) + gub = u; hence e(x+ ub) = eu and gub = gu. Clearly,

u
(
a+ bd(1− e)

)(
1 − eubd(1− e)

)
u

=
(
e(1 − eubd(1− e)) + ubd(1− e)

)
u

=
(
e+ (1− e)ubd(1− e)

)
u

= (e+ g)u

= u.

As u ∈ R−1
< , a+ bd(1− e) ∈ R−1

< . That is, a ∈ cr(R−1
< ). so I +R−1

< ⊆ cr(R−1
< ).

Let I be a purely infinite, simple and essential ideal of a regular ring R. By
Lemma 10, 1 + I ⊆ cr(R−1

< ); hence I is one-sided unit-regular. Using Theorem
9, we conclude that for all A,B, C ∈ FP (I), A⊕ B ∼= A⊕ C implies B � C or
C � B.
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Lemma 11. Let I be an ideal of a regular ring R. Then R is one-sided
unit-regular if and only if the following hold:

(1) R/I is one-sided unit-regular.
(2) (I + R−1

< )/I = (R/I)−1
< .

(3) I +R−1
< ⊆ cr(R−1

< ).

Proof. Assume that R is one-sided unit-regular. It is easy to verify that R/I is
one-sided unit-regular too. Clearly, (I +R−1

< )/I ⊆ (R/I)−1
< . Let π : R→ R/I be

the quotient morphism. Given any π(a) ∈ (R/I)−1
< , we have some π(b) ∈ (R/I)−1

<

such that π(a)π(b) = π(1) or π(b)π(a) = π(1). Since R is one-sided unit-regular,
it follows from ab+(1−ab) = 1 that v = b+y(1−ab) ∈ R−1

< for a y ∈ R. Assume
that uv = 1 or vu = 1. Set w = u + a(1 − vu) + (1− uv)a. We see that wv = 1
or vw = 1. That is, w ∈ R−1

< . Since π(a)π(b) = π(1) or π(b)π(a) = π(1), we
show that

π(v)π(a)π(v) = π
(
(b+ y(1− ab))a(b+ y(1− ab))

)

= π
(
ba(b+ y(1 − ab))

)

= π
(
b+ y(1 − ab)

)

= π(v).

Clearly, π(w) = π(u) + π(a)
(
π(1)− π(v)π(u)

)
+

(
π(1)− π(u)π(v)

)
π(a).

If uv = 1, then

ψ(v)ψ(w) = ψ(v)π(u)+ ψ(v)π(a)
(
π(1)− π(v)π(u)

)

= ψ(v)π(u)+ ψ(v)π(a)− ψ(v)π(a)π(v)π(u)

= ψ(v)π(a).

So we have ψ(w) = ψ(a).
If vu = 1, then

ψ(w)ψ(v) = π(u)ψ(v)+
(
π(1)− π(u)π(v)

)
ψ(a)ψ(v)

= ψ(u)π(v) + ψ(a)π(v)− ψ(u)π(v)π(a)π(v)

= ψ(a)π(v).

We also have ψ(w) = ψ(a). Therefore (I + R−1
< )/I = (R/I)−1

< . Because R is
one-sided unit-regular, we easily get I + R−1

< ⊆ cr(R−1
< ).

Conversely, assume now that the three conditions are satisfied. Suppose that
ax + b = 1 in R. Then π(a)π(x) + π(b) = π(1) in R/I . Since R/I is one-sided
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unit-regular, we have some π(y) ∈ R/I such that π(a)+π(b)π(y) ∈ (R/I)−1
< . Thus

there exists w ∈ R−1
< such that π(a) + π(b)π(y) = π(w). Hence a+ by − w ∈ I ,

and then a+ by ∈ I +R−1
< . From ax+ b = 1, we have (a+ by)x+ b(1−yx) = 1.

Therefore a+ b
(
y + (1 − yx)z

)
= a+ by + b(1− yx)z ∈ R−1

< , as asserted.

In [4, Theorem 1.12], P. Ara et al. showed that if I is a purely infinite, simple
and essential exchange ideal, then R is a QB-ring if and only if R/I is a QB-
ring and (R/I)−1

q = (R/I)−1
r ∪ (R/I)−1

l . We now extend this result to one-sided
unit-regular rings as follows.

Theorem 12. Let I be a purely infinite, simple and essential ideal of a regular
ring R. Then R is one-sided unit-regular if and only if so is R/I .

Proof. One direction is clear. Conversely, assume now that R/I is one-sided
unit-regular. It suffices to to prove that one-sided invertible elements lift modulo
I . Assume that xy = 1 in R/I . Since R is regular, we have a z ∈ R such that
x = xzx and z = zxz. Clearly, xz = 1; hence 1 − xz ∈ I . If xz = 1 or zx = 1,
then x ∈ R−1

< . So we assume that the idempotents 1 − xz, 1 − zx are both non-
zero. As I is essential and simple, (1 − zx)I(1− zx) �= 0. On the other hand, I
is purely infinite and simple, we can find an infinite idempotent r ∈ R such that
(1− xz)R ∼= rR ⊆ (1− zx)R, whence (1− xz)R � (1− zx)R. By the regularity
of R, we can find s ∈ (1 − xz)R(1 − zx), t ∈ (1 − zx)R(1 − xz)R such that
1 − xz = st. Clearly, xt = sz = 0; hence, (x + s)(t + z) = xz + st = 1. That
is, x + s ∈ R is right invertible. Obviously, we have s ∈ (1 − xz)R(1− zx) ⊆ I ,
and then x = x+ s. That is, x can be lifted by a right invertible element modulo
I . Therefore we complete the proof by Lemma 10 and Lemma 11.

Corollary 13. Every purely infinite, simple regular ring is one-sided unit-
regular.

Proof. Since R is a purely infinitely, simple ideal of R, we get the result by
Theorem 12.

Lemma 14. Let I be an one-sided unit-regular ideal of a regular ring R. Then
the following hold:

(1) For any A,B ∈ Mn(I), AMn(R) = BMn(R) implies that there exists
U ∈Mn(R)−1

< such that A = BU .
(2) For any A,B ∈ Mn(I), Mn(R)A = Mn(R)B implies that there exists

U ∈Mn(R)−1
< such that A = UB.

Proof. (1) Suppose that AMn(R) = BMn(R) with A,B ∈ Mn(I). Then
A = BX andB = AY for X, Y ∈Mn(R). SinceR is regular, so isMn(R). Hence
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A and B are both regular, so we may assume that X, Y ∈Mn(I). Furthermore, we
have B

(
X+(In−XY )

)
= BX = A. Thus we may assume that X ∈ In +Mn(I).

Likewise, we may assume that Y ∈ In +Mn(I). Since XY +(In −XY ) = In, by
Theorem 7, we have Z ∈ Mn(R) such that X + (In −XY )Z = U ∈ Mn(R)−1

< .
Therefore A = BX = B

(
X + (In −XY )Z

)
= BU , as asserted.

(2) Clearly, I is one-sided unit-regular as an ideal of R if and only if Iop is
one-sided unit-regular as an ideal of the opposite ring Rop. Thus we get the result
by (1).

Theorem 15. Let I be an one-sided unit-regular ideal of a regular ring R.
Then for any matrix A ∈ Mn(I), there exist weak-invertible U, V ∈ Mn(R) such
that UAV = diag(e1, · · · , en) for idempotents e1, · · · , en ∈ I .

Proof. Let A ∈ Mn(I). Since R is regular, we have E = E2 ∈ Mn(I) such
that AMn(R) = EMn(R). Clearly, ERn is a generated projective right R-module;
hence, there are idempotents e1, · · · , en ∈ I such that ERn ∼= e1R⊕ · · · ⊕ enR ∼=
diag(e1, · · · , en)Rn as right R-modules, so we have ERn×1 ∼= diag(e1, · · · , en)

Rn×1, where Rn×1 = {




x1
...
xn


 | x1, · · · , xn ∈ R} is a right R-module and

a left Mn(R)-module. Let R1×n = {(x1, · · · , xn) | x1, · · · , xn ∈ R}. Then
R1×n is a left R-module and a right Mn(R)-module; hence, (ERn×1)

⊗
R

R1×n ∼=
diag(e1, · · · , en)Rn×1

⊗
R

R1×n. One easily checks that Rn×1
⊗
R1×n ∼= Mn(R)

as right Mn(R)-modules. So ψ : AMn(R) ∼= diag(e1, · · · , en)Mn(R) with all ei ∈
R. Clearly, Mn(R)A = Mn(R)ψ(A) and ψ(A)Mn(R) = diag(e1, · · · , en)Mn(R).
It follows by Lemma 14 that UA = ψ(A) and ψ(A)V = diag(e1, · · · , en) for some
U, V ∈Mn(R)−1

< . Therefore UAV = diag(e1, · · · , en), as asserted.

Corollary 16. Let I be a purely infinite, simple and essential ideal of a regular
ring R. Then for any A ∈Mn(I), there exist weak-invertible U, V ∈Mn(R) such
that UAV = diag(e1, · · · , en) for idempotents e1, · · · , en ∈ I .

Proof. In view of Lemma 10, I is one-sided unit-regular. So the proof is true
from Theorem 15.

Corollary 17. Let R be an one-sided unit-regular ring. Then for any A ∈
Mn(R), there exist weak-invertible U, V ∈Mn(R) such that UAV = diag(e1, · · · ,
en) for idempotents e1, · · · , en ∈ R.

Proof. Letting I = R, we get the result by Theorem 15.
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