EQUITABLE LIST COLORING OF GRAPHS

Wei-Fan Wang and Ko-Wei Lih

Abstract

A graph G is equitably k-choosable if, for any k-uniform list assignment L, G admits a proper coloring π such that $\pi(v) \in L(v)$ for all $v \in$ $V(G)$ and each color appears on at most $\lceil|G| / k\rceil$ vertices. It was conjectured in [8] that every graph G with maximum degree Δ is equitably k-choosable whenever $k \geq \Delta+1$. We prove the conjecture for the following cases: (i) $\Delta \leq 3$; (ii) $k \geq(\Delta-1)^{2}$. Moreover, equitably 2-choosable graphs are completely characterized.

1. Introduction

We only consider simple graphs in this paper unless otherwise stated. For a graph G, we denote its vertex set, edge set, order, maximum degree, and minimum degree by $V(G), E(G),|G|, \Delta(G)$, and $\delta(G)$, respectively. For a vertex $v \in V(G)$, let $N_{G}(v)$ denote the set of neighbors of v in G and $d_{G}(v)$ the degree of v in G. For $S \subseteq V(G)$, we use $G[S]$ to denote the subgraph of G induced by S and simply write $G-S$ for $G[V(G) \backslash S]$. If $G[S]$ does not contain edges, then S is called an independent set of G. Let $\alpha(G)$ denote the maximal cardinality of an independent set of G.

A k-coloring of a graph G is a mapping π from the vertex set $V(G)$ to the set of colors $\{1,2, \ldots, k\}$ such that $\pi(x) \neq \pi(y)$ for every edge $x y \in E(G)$. The graph G is k-colorable if it has a k-coloring. The chromatic number $\chi(G)$ of G is the smallest integer k such that G is k-colorable. A k-coloring π is called m-bounded if every color appears on at most m vertices. A coloring π is called equitable if the sizes of any two color classes differ by at most 1 . Obviously, every equitable k-coloring of a graph G is $\lceil|G| / k\rceil$-bounded.

In 1973, Meyer [11] introduced the notion of equitable coloring of graphs and conjectured that the equitable chromatic number of a connected graph G, which

[^0]is neither a complete graph nor an odd cycle, is at most $\Delta(G)$. This conjecture has been confirmed for trees [2], [11], bipartite graphs [9], and graphs satisfying $\Delta(G) \leq 3$ or $\Delta(G) \geq|G| / 2$ (see [3].) An earlier result of Hajnal and Szemerédi [6] showed that every graph G is equitably k-colorable for all $k>\Delta(G)$. The reader is referred to [10] for a survey of research on equitable coloring of graphs.

The mapping L is said to be a list assignment for the graph G if it assigns a list $L(v)$ of possible colors to each vertex v of G. A list assignment L for G is k-uniform if $|L(v)|=k$ for all $v \in V(G)$. If G has a proper coloring π such that $\pi(v) \in L(v)$ for all vertices v, then we say that G is L-colorable or π is an L-coloring of G. We call $G k$-choosable if it is L-colorable for every k-uniform list assignment L; equitably L-colorable if it has a $\lceil|G| / k\rceil$-bounded L-coloring for a k-uniform list assignment L; equitably list k-colorable or equitably k-choosable if it is equitably L-colorable for every k-uniform list assignment L.

The concept of list-coloring was introduced by Vizing [13] and independently by Erdős, Rubin and Taylor [4]. Quite a number of interesting results have been obtained in recent years, e.g., [1,5,7,12,14]. Combining m-bounded coloring and list coloring of graphs, Kostochka, Pelsmajer, and West [8] investigated the equitable list coloring of graphs. They proposed the following conjectures.

Conjecture 1. Every graph G is equitably k-choosable whenever $k>\Delta(G)$.

Conjecture 2. If G is a connected graph with maximum degree $\Delta \geq 3$ other than $K_{\Delta+1}$ and $K_{\Delta, \Delta}$, then G is equitably Δ-choosable.

It was proved in [8] that a graph G of maximum degree Δ is equitably k choosable if either $k \geq \max \{\Delta,|G| / 2\}$ and $G \neq K_{k+1}, K_{k, k}$, or $k \geq 1+\Delta / 2$ and G is a forest, or $k \geq \Delta$ and G is a connected interval graph, or $k \geq \max \{\Delta, 5\}$ and G is a 2 -degenerate graph. In this paper, we will prove that the conjecture 2 holds for graphs with maximum degree at most 3 . Moreover, we prove that every graph G with $\Delta(G) \geq 3$ is equitably k-choosable for any $k \geq(\Delta(G)-1)^{2}$.

2. Equitably 2-Choosable Graphs

Let G be a graph with a (not necessarily uniform) list assignment L. Suppose that π is an L-coloring of G. We use $B(\pi)$ to denote the maximum size of a color class in the coloring π. Let $B(G ; L)=\min \{B(\pi) \mid \pi$ is an L-coloring of $G\}$. If L is k-uniform and $B(G ; L) \leq\lceil|G| / k\rceil$, then G is equitably L-colorable.

A generalized Brooks' theorem by Erd"́s, Rubin and Taylor [4] asserts that a connected graph G that is neither a complete graph nor an odd cycle is $\Delta(G)$ choosable. Applying this result, we immediately get the following.

Lemma 3. Let $k \geq 1$ be an integer. If a graph G is k-choosable and $\alpha(G) \leq$ $\lceil|G| / k\rceil$, then G is equitably k-choosable. In particular, if $\alpha(G) \leq\lceil|G| / k\rceil$ and G is neither a complete graph nor an odd cycle, then G is equitably k-choosable whenever $k \geq \Delta(G)$.

If we remove vertices of degree 1 recursively from a graph G, then the final graph has no vertices of degree 1 and is called the core of G. A graph is called a $\theta_{2,2, p}$-graph if it consists of two vertices x and y and three internally disjoint paths of lengths 2,2 , and p joining x and y. Using these two concepts, Erd6ss, Rubin and Taylor [4] established the following characterization for the 2-choosability of a graph.

Lemma 4. A connected graph G is 2-choosable if and only if the core of G

Theorem 5. A connected graph G is equitably 2-choosable if and only if G is a bipartite graph satisfying the following two conditions.
(i) The core of G is either a K_{1}, an even cycle, or a $\theta_{2,2,2 r \text {-graph, where } r} \geq 1$.
(ii) G has two parts X and Y such that $||X|-|Y|| \leq 1$.

Proof. Suppose that G is equitably 2-choosable, hence 2-choosable. Thus G is a bipartite graph with two parts, say X and Y. Statement (i) follows from Lemma 4. Let L be a 2-uniform list assignment for G with $L(v)=\{1,2\}$ for all $v \in V(G)$. Then G has a unique equitable L-coloring π such that $\pi(x)=1$ for all $x \in X$ and $\pi(y)=2$ for all $y \in Y$. Thus $|X| \leq\lceil|G| / 2\rceil=\lceil(|X|+|Y|) / 2\rceil$ and $|Y| \leq\lceil(|X|+|Y|) / 2\rceil$. It follows that $\| X|-|Y|| \leq 1$, therefore (ii) holds.

Now suppose that G is a bipartite graph with two parts X and Y satisfying (i) and (ii). By (i) and Lemma 4, G is 2-choosable. For any 2-uniform list assignment L for G, we know that G has an L-coloring π. By (ii), $B(\pi) \leq \alpha(G) \leq$ $\max \{|X|,|Y|\} \leq\lceil|G| / 2\rceil$. Hence π is equitable by Lemma 3 .

3. Graphs with Maximum Degree 3

The following basic result was proved in [8], which will be frequently used in the subsequent sections.

Lemma 6. Let G be graph with a k-uniform list assignment L. Let $S=$ $\left\{x_{1}, x_{2}, \ldots, x_{k}\right\}$ be a set of k vertices in G such that $G-S$ has an equitable L-coloring. If

$$
\begin{equation*}
\left|N_{G}\left(x_{i}\right) \backslash S\right|+(i-1) \leq k-1 \tag{*}
\end{equation*}
$$

for $1 \leq i \leq k$, then G has an equitable L-coloring.

We can generalize Lemma 6 to the following.
Lemma 7. Let G be graph with a k-uniform list assignment L. Let $\emptyset \neq A \subseteq$ $V(G)$ such that $G-A$ has an equitable L-coloring π. For every vertex $v \in A$, define a list assignment

$$
L_{\pi}(v)=L(v) \backslash\left\{\pi(x) \mid x \in N_{G}(v) \cap(V(G) \backslash A)\right\} .
$$

If $G[A]$ has an L_{π}-coloring σ such that $B(\sigma) \leq\lfloor|A| / k\rfloor$, then G has an equitable L-coloring.

Proof. Clearly, by combining the colorings π and σ, we can set up an L-coloring ϕ of G. Furthermore, $B(G ; L) \leq B(G-A ; L)+B\left(G[A] ; L_{\pi}\right) \leq\lceil|G-A| / k\rceil+$ $\lfloor A \mid / k\rfloor=\lceil(|G|-|A|) / k\rceil+\lfloor|A| / k\rfloor \leq\lceil|G| / k\rceil$. Thus ϕ is an equitable L-coloring of G.

In the sequel, L_{π} is called an induced list assignment of the set A for the coloring π.

Lemma 8. Let H be a graph with $V(H)=\left\{u_{1}, u_{2}, u_{3}, u_{4}\right\}$, and let L be a list assignment for H.

If L satisfies one of the following conditions, then H has an L-coloring such that $B(H ; L)=1$.
(1) $\left|L\left(u_{i}\right)\right| \geq i$ for $i=1,2,3,4$;
(2) $\left|L\left(u_{1}\right)\right| \geq 1,\left|L\left(u_{2}\right)\right| \geq 2,\left|L\left(u_{3}\right)\right|=\left|L\left(u_{4}\right)\right|=3$, and $L\left(u_{3}\right) \neq L\left(u_{4}\right)$;
(3) $\left|L\left(u_{4}\right)\right|=4,\left|L\left(u_{1}\right)\right| \geq 1,\left|L\left(u_{2}\right)\right|=\left|L\left(u_{3}\right)\right|=2$, and $L\left(u_{2}\right) \neq L\left(u_{3}\right)$.

Proof. The result is obvious if (1) holds. Suppose now that (2) holds. We first color u_{1} with a color $a \in L\left(u_{1}\right)$, and u_{2} with $b \in L\left(u_{2}\right) \backslash\{a\}$. Since $\left|L\left(u_{3}\right)\right|=$ $\left|L\left(u_{4}\right)\right|=3$ and $L\left(u_{3}\right) \neq L\left(u_{4}\right)$, it follows that $L\left(u_{3}\right) \backslash\{a, b\} \neq L\left(u_{4}\right) \backslash\{a, b\}$ and $\left|L\left(u_{i}\right) \backslash\{a, b\}\right| \geq 1$ for $i=3,4$. Thus there exist $c \in L\left(u_{3}\right) \backslash\{a, b\}$ and $d \in L\left(u_{4}\right) \backslash\{a, b\}$ such that $c \neq d$. We further color u_{3} with c and u_{4} with d. Since a, b, c, and d are distinct, we have $B(H ; L)=1$.

Finally suppose that (3) holds. First we color u_{1} with some color a from $L\left(u_{1}\right)$. Since $\left|L\left(u_{2}\right)\right|=\left|L\left(u_{3}\right)\right|=2$ and $L\left(u_{2}\right) \neq L\left(u_{3}\right)$, there exist $b \in L\left(u_{2}\right) \backslash\{a\}$ and $c \in L\left(u_{3}\right) \backslash\{a\}$ such that $b \neq c$. We color u_{2} with b and u_{3} with c. Afterwards, we color u_{4} with some color from $L\left(u_{4}\right) \backslash\{a, b, c\}$. Therefore $B(H ; L)=1$, and the proof is complete.

Let H^{*} denote the graph consisting of a 4 -cycle $C=u_{1} u_{2} u_{3} u_{4} u_{1}$ and four pendant edges $u_{i} v_{i}, i=1,2,3,4$, such that all the vertices, u_{i} 's and v_{j} 's, are distinct.

Lemma 9. Let L be a list assignment for H^{*} that satisfies $\left|L\left(u_{i}\right)\right|=4$ and $\left|L\left(v_{i}\right)\right| \geq 2$ for $i=1,2,3,4$. Then H^{*} has an L-coloring such that $B\left(H^{*} ; L\right) \leq 2$.

Proof. We first give a partial L-coloring π for the vertices v_{1}, v_{2}, v_{3} and v_{4} such that every color is used at most twice. Such a coloring exists obviously as $\left|L\left(v_{i}\right)\right| \geq 2$ for all $i=1,2,3,4$. There are several possibilities as follows.

Case 1. $\left\{\pi\left(v_{1}\right), \pi\left(v_{2}\right), \pi\left(v_{3}\right), \pi\left(v_{4}\right)\right\}=\{1,2\}$.
Define a list assignment $L^{\prime}\left(u_{i}\right)=L\left(u_{i}\right) \backslash\{1,2\}$ for $i=1,2,3,4$. It is easy to see that $\left|L^{\prime}\left(u_{i}\right)\right| \geq 2$ and the 4 -cycle $u_{1} u_{2} u_{3} u_{4} u_{1}$ is L^{\prime}-colorable. We note that every color appears on the 4 -cycle at most twice. Thus $B\left(H^{*} ; L\right) \leq 2$.

Case 2. $\left|\left\{\pi\left(v_{1}\right), \pi\left(v_{2}\right), \pi\left(v_{3}\right), \pi\left(v_{4}\right)\right\}\right|=4$.
We may suppose that $\pi\left(v_{i}\right)=i$ for $i=1,2,3,4$. Let $L^{\prime}\left(u_{i}\right)=L\left(u_{i}\right) \backslash\{1,2\}$ for $i=1,2$ and $L^{\prime}\left(u_{i}\right)=L\left(u_{i}\right) \backslash\{3,4\}$ for $i=3,4$. Since $\left|L^{\prime}\left(u_{i}\right)\right| \geq 2$, the 4-cycle $u_{1} u_{2} u_{3} u_{4} u_{1}$ has an L^{\prime}-coloring such that each of the colors $1,2,3,4$ is used at most once on this cycle and other colors at most twice. Hence $B\left(H^{*} ; L\right) \leq 2$.

Case 3. $\left|\left\{\pi\left(v_{1}\right), \pi\left(v_{2}\right), \pi\left(v_{3}\right), \pi\left(v_{4}\right)\right\}\right|=3$.
Subcase 3.1. $\pi\left(v_{1}\right)=\pi\left(v_{2}\right)=1, \pi\left(v_{3}\right)=2$, and $\pi\left(v_{4}\right)=3$.
If $3 \in L\left(u_{3}\right)$, we color u_{3} with 3 , u_{2} with a color $a \in L\left(u_{2}\right) \backslash\{1,2,3\}$, u_{1} with $b \in L\left(u_{1}\right) \backslash\{1,3, a\}$, and u_{4} with $c \in L\left(u_{4}\right) \backslash\{1,3, b\}$. If $2 \in L\left(u_{4}\right)$, we have a similar proof. Hence suppose that $3 \notin L\left(u_{3}\right)$ and $2 \notin L\left(u_{4}\right)$. In this case, we color u_{4} with $a \in L\left(u_{4}\right) \backslash\{1,3\}$, u_{3} with $b \in L\left(u_{3}\right) \backslash\{1,2, a\}$, u_{2} with $c \in L\left(u_{2}\right) \backslash\{1, b\}$, and u_{1} with $d \in L\left(u_{1}\right) \backslash\{1, a, c\}$. It is easy to observe that every color is used at most twice, thus $B\left(H^{*} ; L\right) \leq 2$.

Subcase 3.2. $\pi\left(v_{1}\right)=\pi\left(v_{3}\right)=1, \pi\left(v_{2}\right)=2$, and $\pi\left(v_{4}\right)=3$.
If $2 \in L\left(u_{1}\right)$, we color u_{1} with $2, u_{4}$ with a color $a \in L\left(u_{4}\right) \backslash\{1,2,3\}, u_{3}$ with $b \in L\left(u_{3}\right) \backslash\{1,2, a\}$, and u_{2} with $c \in L\left(u_{2}\right) \backslash\{1,2, b\}$. We can establish a similar coloring for cases $2 \in L\left(u_{3}\right)$ or $3 \in L\left(u_{1}\right) \cup L\left(u_{3}\right)$. Thus we assume that $2,3 \notin L\left(u_{1}\right) \cup L\left(u_{3}\right)$. Color u_{2} with a color $a \in L\left(u_{2}\right) \backslash\{1,2\}$, u_{4} with $b \in L\left(u_{4}\right) \backslash\{1,3\}$, u_{1} with $c \in L\left(u_{1}\right) \backslash\{1, a, b\}$, and u_{3} with $d \in L\left(u_{3}\right) \backslash\{1, a, b\}$. It is not difficult to see that every color is used at most twice in the previous colorings. Therefore $B\left(H^{*} ; L\right) \leq 2$. The proof of the lemma is complete.

Lemma 10. If G is a graph with $\Delta(G) \leq 2$, then G is equitably k-choosable for any $k \geq 3$.

Proof. If $k \geq 5$ or G is a forest, the result follows from Theorems 2 or 4 of [8]. Thus suppose that $k \leq 4$ and G contains a cycle. We do induction on the order
$|G|$. If $|G| \leq k$, the conclusion holds clearly because we may color all vertices with distinct colors. Let G be a graph with $\Delta(G) \leq 2$ and $|G| \geq k+1$. Let $C=u_{1} u_{2} \cdots u_{n} u_{1}$ be a cycle of G, where $n \geq 3$. Suppose that L is a k-uniform list assignment for G. If $k=3$, we let $x_{3}=u_{2}, x_{2}=u_{1}$, and $x_{1}=u_{3}$. Suppose $k=4$. If $n \geq 4$, we let $x_{4}=u_{2}, x_{3}=u_{3}, x_{2}=u_{1}$, and $x_{1}=u_{4}$. If $n=3$, we let $x_{4}=u_{1}, x_{3}=u_{2}, x_{2}=u_{3}$, and $x_{1} \in V(G) \backslash V(C)$. It is easy to check that the set $S=\left\{x_{1}, x_{2}, \ldots, x_{4}\right\}$ satisfies (*). By the induction assumption, $G-S$ is equitably L-colorable. By Lemma $6, G$ is equitably L-colorable. This completes the proof.

Lemma 11. Let G be a graph with $\Delta(G)=3$. Then, for any $k \geq 5, G$ is equitably k-choosable.

Proof. We do induction on the order $|G|$. If $|G| \leq k$, the result is straightforward. Let G be a graph with $\Delta(G)=3$ and $|G| \geq k+1$. Suppose that L is a k-uniform list assignment for G. We are going to construct a set $S=$ $\left\{x_{1}, x_{2}, \ldots, x_{k}\right\} \subset V(G)$ which satisfies $(*)$. Since $\Delta(G)=3, G$ contains a vertex u of degree 3 with neighbors v, w, and y. We need to treat the following cases.

Case 1. $G[\{u, v, w, y\}]$ is a component of G.
In this case, it suffices to let $x_{k}=u, x_{k-1}=v, x_{k-2}=w, x_{k-3}=y$, $x_{k-4}, \ldots, x_{1} \in V(G) \backslash\{u, v, w, y\}$. In fact, when $k-3 \leq i \leq k$, we have $N_{G}\left(x_{i}\right) \backslash S=\emptyset$. Thus $\left|N_{G}\left(x_{i}\right) \backslash S\right|+(i-1)=i-1 \leq k-1$. When $1 \leq$ $i \leq k-4,\left|N_{G}\left(x_{i}\right) \backslash S\right| \leq\left|N_{G}\left(x_{i}\right)\right|=d_{G}\left(x_{i}\right) \leq \Delta(G)=3$ and furthermore $\left|N_{G}\left(x_{i}\right) \backslash S\right|+(i-1) \leq 3+(i-1) \leq 3+(k-4-1)=k-2$. Hence the set $S=\left\{x_{1}, x_{2}, \ldots, x_{k}\right\}$ satisfies ($*$).

Case 2. $G[\{u, v, w, y\}]$ is not a component of G.
Without loss of generality, suppose that v is adjacent to a vertex t that is different from u, w, and y. We define $x_{k}=u, x_{k-1}=v, x_{k-2}=t, x_{k-3}=w, x_{k-4}=y$, and $x_{k-5}, \ldots, x_{1} \in V(G) \backslash\{u, v, w, y, t\}$. It is easy to see that, if $i \leq k-3$, then $\left|N_{G}\left(x_{i}\right) \backslash S\right|+(i-1) \leq 3+(i-1) \leq 3+(k-3-1)=k-1$. Since $v \in S$ and t is adjacent to v in G, we derive that $\left|N_{G}\left(x_{k-2}\right) \backslash S\right|+(k-2-$ 1) $\leq 2+(k-3)=k-1$. Since $u, t \in S$ and v is adjacent to u and t, so $\left|N_{G}\left(x_{k-1}\right) \backslash S\right|+(k-1-1) \leq 1+(k-2)=k-1$. Similarly, since $N_{G}\left(x_{k}\right) \subseteq S$, we get $\left|N_{G}\left(x_{k-1}\right) \backslash S\right|+(k-1)=k-1$. The argument implies that the set $S=\left\{x_{1}, x_{2}, \ldots, x_{k}\right\}$ satisfies $(*)$.

Now let $H=G-S$. If $\Delta(H) \leq 2, H$ is equitably L-colorable by Lemma 10 . If $\Delta(H)=3$, the induction hypothesis asserts that H is equitably L-colorable. By Lemma $6, G$ is equitably L-colorable. The proof is complete.

Lemma 12. Every graph G with $\Delta(G)=3$ is equitably 4-choosable.
Proof. Suppose that the lemma is false. Let G be a counterexample graph with the fewest vertices. Let L be a 4-uniform list assignment such that G is not equitably L-colorable. Then G possesses the properties stated in the following claims.

Claim 1. The minimum degree $\delta(G)$ is 3 .
Proof. Since an isolated vertex can be assigned any color from its list, we see that $\delta(G) \geq 1$. Assume that G contains a vertex u of degree 1 . Let v denote the unique neighbor of u. If $d_{G}(v)=1$, let $x_{4}=u, x_{3}=v, x_{1}, x_{2} \in V(G) \backslash\{u, v\}$ with $x_{1} x_{2} \in E(G)$. If $d_{G}(v) \geq 2$, let $x_{4}=u, x_{3}=v, x_{2} \in N_{G}(v) \backslash\{u\}$, and $x_{1} \in V(G) \backslash\left\{x_{2}, x_{3}, x_{4}\right\}$. It is easy to verify that $S=\left\{x_{1}, x_{2}, x_{3}, x_{4}\right\}$ satisfies (*). By the minimality of G or Lemma $10, G-S$ is equitably L-colorable. Furthermore, it follows from Lemma 6 that G is equitably L-colorable, contradicting the assumption on G. Thus $\delta(G) \geq 2$.

Suppose that G contains a vertex u of degree 2 with two neighbors y and z. If $G[\{u, y, z\}]$ forms a component of G, we let $x_{4}=u, x_{3}=y, x_{2}=z$, and $x_{1} \in V(G) \backslash\{u, y, z\}$. Otherwise, we suppose that y is adjacent to a vertex t different from u and z. Let $x_{4}=u, x_{3}=y, x_{2}=z$, and $x_{1}=t$. It is easy to check that $S=\left\{x_{1}, x_{2}, x_{3}, x_{4}\right\}$ satisfies ($*$). A similar contradiction will follow. Therefore $\delta(G)=3$.

Claim 2. There are no 3 -cycles in G.
Proof. Suppose that G contains a 3 -cycle $C=u_{1} u_{2} u_{3} u_{1}$. Let $A=\left\{u_{1}, u_{2}\right.$, $\left.u_{3}, u_{4}\right\}$, where u_{4} is a neighbor of u_{1} that differs from u_{2} and u_{3}. Thus $G-A$ admits an equitable L-coloring π. The induced assignment L_{π} of A for π satisfies the following: $\left|L_{\pi}\left(u_{1}\right)\right|=4,\left|L_{\pi}\left(u_{i}\right)\right| \geq 3$ for $i=2,3$, and $\left|L_{\pi}\left(u_{4}\right)\right| \geq 2$. By Lemma 8, we know that $G[A]$ has an L_{π}-coloring such that $B\left(G[A] ; L_{\pi}\right)=1$. By Lemma 7, it follows that G is equitably L-colorable. This contradiction proves Claim 2.

Claim 3. There are no 4-cycles in G.
Proof. Suppose that G contains a 4 -cycle $C=u_{1} u_{2} u_{3} u_{4} u_{1}$. As G does not contain 3 -cycles by Claim 2, $u_{1} u_{3}, u_{2} u_{4} \notin E(G)$. Let $v_{i} \in N_{G}\left(u_{i}\right) \backslash V(C)$ for $i=1,2,3,4$. So $v_{1} \neq v_{2}, v_{2} \neq v_{3}, v_{3} \neq v_{4}$, and $v_{4} \neq v_{1}$. The proof is divided into two subcases.

Subcase 3.1. Assume that $v_{1}=v_{3}$.
If $v_{2}=v_{4}$, a similar proof can be established. Let $A=\left\{u_{1}, u_{2}, u_{3}, u_{4}, v_{1}\right\}$ and let π be an equitable L-coloring of $G-A$. Obviously, $\left|L_{\pi}\left(u_{1}\right)\right|=\left|L_{\pi}\left(u_{3}\right)\right|=4$, and $\left|L_{\pi}(t)\right| \geq 3$ for each $t \in\left\{u_{2}, u_{4}, v_{1}\right\}$. If there exists a color $a \in\left(L_{\pi}\left(u_{2}\right) \cup\right.$ $\left.L_{\pi}\left(u_{4}\right) \cup L_{\pi}\left(v_{1}\right)\right) \backslash L_{\pi}\left(u_{j}\right)$ for $j=1$, or 3 , say $a \in L_{\pi}\left(v_{1}\right) \backslash L_{\pi}\left(u_{1}\right)$, then we color
v_{1} with the color a, u_{2} with $b \in L_{\pi}\left(u_{2}\right) \backslash\{a\}, u_{4}$ with $c \in L_{\pi}\left(u_{4}\right) \backslash\{a, b\}$, u_{3} with $d \in L_{\pi}\left(u_{3}\right) \backslash\{a, b, c\}$, and u_{1} with a color from $L_{\pi}\left(u_{1}\right) \backslash\{b, c, d\}$. Thus an $L_{\pi^{-}}$ coloring of $G[A]$ is constructed with the property that $B\left(G[A] ; L_{\pi}\right) \leq 1$. By Lemma 7, G is equitably L-colorable. This is a contradiction. Hence suppose $L_{\pi}\left(u_{2}\right) \cup$ $L_{\pi}\left(u_{4}\right) \cup L_{\pi}\left(v_{1}\right) \subseteq L_{\pi}\left(u_{1}\right) \cap L_{\pi}\left(u_{3}\right)$. If there exists a color $a \in L_{\pi}\left(u_{1}\right) \backslash L_{\pi}\left(u_{3}\right)$, clearly $a \notin L_{\pi}\left(u_{2}\right) \cup L_{\pi}\left(u_{4}\right) \cup L_{\pi}\left(v_{1}\right)$, an L_{π}-coloring of $G[A]$ can be constructed similarly to satisfy $B\left(G[A] ; L_{\pi}\right) \leq 1$. So suppose $L_{\pi}\left(u_{1}\right)=L_{\pi}\left(u_{3}\right)=\{1,2,3,4\}$, and $L_{\pi}(t) \subseteq\{1,2,3,4\}$ for all $t \in\left\{u_{2}, u_{4}, v_{1}\right\}$. It suffices to show that $G[A]$ has an L_{π}-coloring such that some color, say 1 , is used twice on vertices of A and each of the remaining colors, $2,3,4$, occurs exactly once on A. In fact, if the color 1 belongs to two of the sets $L_{\pi}\left(u_{2}\right), L_{\pi}\left(u_{4}\right)$, and $L_{\pi}\left(v_{1}\right)$, say $1 \in L_{\pi}\left(u_{2}\right) \cap L_{\pi}\left(u_{4}\right)$, we color u_{2} and u_{4} with $1, v_{1}$ with $a \in L_{\pi}\left(v_{1}\right) \backslash\{1\}, u_{1}$ with $b \in L_{\pi}\left(u_{1}\right) \backslash\{1, a\}$, and u_{3} with a color from $L_{\pi}\left(u_{3}\right) \backslash\{1, a, b\}$. Otherwise, suppose $1 \notin L_{\pi}\left(u_{2}\right) \cup L_{\pi}\left(u_{4}\right)$. Color u_{1} and u_{3} with $1, v_{1}$ with $a \in L_{\pi}\left(v_{1}\right) \backslash\{1\}$, u_{2} with $b \in L_{\pi}\left(u_{2}\right) \backslash\{a\}$, and u_{4} with a color from $L_{\pi}\left(u_{4}\right) \backslash\{a, b\}$. It is easy to check that the current L_{π}-coloring satisfies our requirements.

Subcase 3.2. Assume that $v_{1} \neq v_{3}$ and $v_{2} \neq v_{4}$.
Let $A=\left\{u_{1}, \ldots, u_{4}, v_{1}, \ldots, v_{4}\right\}$. Then $G[A]$ is a graph H^{*} as defined in Lemma 9. For any L-coloring π of $G-A$, the induced assignment L_{π} of A satisfies $\left|L_{\pi}\left(u_{i}\right)\right|=4$ and $\left|L_{\pi}\left(v_{i}\right)\right| \geq 2$ for all $i=1,2,3,4$. By Lemma 9, $G[A]$ has an L_{π}-coloring such that $B\left(G[A] ; L_{\pi}\right) \leq 2$. It follows from Lemma 7 that G is equitably L-colorable, which is absurd. The proof of Claim 3 is complete.

Claim 4. For each edge $x y \in E(G),|L(x) \backslash L(y)|=1$.
Proof. Suppose that G has an edge $x y$ such that $|L(x) \backslash L(y)| \neq 1$, i.e., $L(x)=$ $L(y)$ or $|L(x) \backslash L(y)| \geq 2$. Let $u_{1}, u_{2} \in N_{G}(x) \backslash\{y\}$ and $v_{1}, v_{2} \in N_{G}(y) \backslash\{x\}$. Since G contains neither 3-cycles nor 4-cycles, $x, y, u_{1}, u_{2}, v_{1}$, and v_{2} are distinct and $u_{2} v_{2} \notin E(G)$. Let $A=\left\{u_{1}, x, y, v_{1}\right\}$ and $H=G-A+u_{2} v_{2}$. By the minimality of G, H has an equitable L-coloring π. Thus the induced assignment of A for π satisfies the following: $\left|L_{\pi}\left(u_{1}\right)\right| \geq 2,\left|L_{\pi}\left(v_{1}\right)\right| \geq 2,\left|L_{\pi}(x)\right| \geq 3$, and $\left|L_{\pi}(y)\right| \geq 3$. Noting that u_{2} is adjacent to v_{2} in H, we derive $\pi\left(u_{2}\right) \neq \pi\left(v_{2}\right)$. Together with the assumption that $|L(x) \backslash L(y)| \neq 1$, this implies that $L_{\pi}(x) \neq L_{\pi}(y)$. So $G[A]$ has an L_{π}-coloring with $B\left(G[A] ; L_{\pi}\right)=1$ by Lemma 8 . We have arrived at a contradiction.

Claim 5. There are no 5-cycles in G.
Proof. Suppose that G contains a 5 -cycle $C=u_{1} u_{2} \cdots u_{5} u_{1}$. Since G does not contain 3 -cycles by Claim 2, u_{1} is adjacent to a vertex v outside $V(C)$. We use w_{1} and w_{2} to denote the neighbors of v that are different from u_{1}. Let $A=$ $\left\{v, w_{1}, w_{2}, u_{1}, u_{2}, \ldots, u_{5}\right\}$. By Claims 2 and $3,|A|=8$ and there do not exist
edges between the set $\left\{u_{2}, u_{5}\right\}$ and the set $\left\{w_{1}, w_{2}\right\}$. Let π denote an equitable L-coloring of $G-A$. We are going to construct an L_{π}-coloring of $G[A]$ such that $B\left(G[A] ; L_{\pi}\right) \leq 2$. Consequently, a contradiction follows from Lemma 7 and the minimality of G.

Assume that $u_{3} w_{2} \in E(G)$. Then $u_{4} w_{2} \notin E(G)$ for, otherwise, G would contain a 3-cycle $u_{3} u_{4} w_{2} u_{3}$, contradicting Claim 2. Note that $\left|L_{\pi}\left(w_{1}\right)\right| \geq 2$, $\left|L_{\pi}(t)\right| \geq 3$ for each $t \in\left\{u_{2}, u_{4}, u_{5}, w_{2}\right\}$, and $L_{\pi}(s)=L(s)$ for each $s \in$ $\left\{u_{1}, u_{3}, v\right\}$. Moreover, $L_{\pi}\left(u_{1}\right) \backslash L_{\pi}\left(u_{2}\right) \neq \emptyset$ because $L\left(u_{1}\right) \neq L\left(u_{2}\right)$ by Claim 4. We color u_{1} with a color $a \in L_{\pi}\left(u_{1}\right) \backslash L_{\pi}\left(u_{2}\right), w_{1}$ with $b \in L_{\pi}\left(w_{1}\right) \backslash\{a\}, u_{5}$ with $c \in L_{\pi}\left(u_{5}\right) \backslash\{a, b\}, v$ with $d \in L_{\pi}(v) \backslash\{a, b, c\}$, u_{4} with $a^{\prime} \in L_{\pi}\left(u_{4}\right) \backslash\{b, c\}$, w_{2} with $b^{\prime} \in L_{\pi}\left(w_{2}\right) \backslash\left\{d, a^{\prime}\right\}, u_{2}$ with $c^{\prime} \in L_{\pi}\left(u_{2}\right) \backslash\left\{a^{\prime}, b^{\prime}\right\}$, and u_{3} with $d^{\prime} \in L_{\pi}\left(u_{3}\right) \backslash\left\{a^{\prime}, b^{\prime}, c^{\prime}\right\}$. We note that a, b, c, and d are distinct, and so are $a^{\prime}, b^{\prime}, c^{\prime}$, and d^{\prime}. It follows that $B\left(G[A] ; L_{\pi}\right) \leq 2$.

The above argument works if one of $u_{3} w_{1}, u_{4} w_{1}$, and $u_{4} w_{2}$ belongs to $E(G)$.
Assume now that $u_{3} w_{1}, u_{3} w_{2}, u_{4} w_{1}, u_{4} w_{2} \notin E(G)$. Then $\left|L_{\pi}\left(w_{i}\right)\right| \geq 2$ for $i=1,2, L_{\pi}(t)=L(t)$ for $t \in\left\{u_{1}, v\right\}$, and $\left|L_{\pi}\left(u_{i}\right)\right| \geq 3$ for all $i=2,3,4,5$. Without loss of generality, we suppose that $\left|L_{\pi}\left(u_{i}\right)\right|=3$ for $i \geq 2$. (If $\left|L_{\pi}\left(u_{i}\right)\right|=4$, we may take a 3-set of $L_{\pi}\left(u_{i}\right)$.) If $L_{\pi}\left(u_{2}\right) \neq L_{\pi}\left(u_{3}\right)$, we first color w_{1}, w_{2}, u_{5}, and v with mutually distinct colors. Based on this coloring, we further color u_{1}, u_{4}, u_{2}, and u_{3} with distinct colors by Lemma 8 . If $L_{\pi}\left(u_{4}\right) \neq L_{\pi}\left(u_{5}\right)$, a similar coloring can be established. If $L_{\pi}\left(u_{3}\right) \neq L_{\pi}\left(u_{4}\right)$, we color w_{1}, w_{2}, u_{1}, and v with distinct colors. Afterwards, we color u_{2}, u_{5}, u_{3}, and u_{4} with distinct colors. It is easy to see that $B\left(G[A] ; L_{\pi}\right) \leq 2$ for the current colorings.

Now suppose $L_{\pi}\left(u_{2}\right)=L_{\pi}\left(u_{3}\right)=L_{\pi}\left(u_{4}\right)=L_{\pi}\left(u_{5}\right)=L^{*}$. If $L_{\pi}\left(w_{1}\right) \cap$ $L_{\pi}\left(w_{2}\right) \neq \emptyset$, we color w_{1} and w_{2} with a color $a \in L_{\pi}\left(w_{1}\right) \cap L_{\pi}\left(w_{2}\right), u_{2}$ and u_{4} with $b \in L^{*} \backslash\{a\}$, and u_{3} and u_{5} with $c \in L^{*} \backslash\{a, b\}$. Because $L\left(u_{1}\right) \neq L(v)$ by Claim 4, it follows that $L\left(u_{1}\right) \backslash\{a, b, c\} \neq L(v) \backslash\{a, b, c\}$. We can color u_{1} with $d \in L\left(u_{1}\right) \backslash\{a, b, c\}$ and v with $d^{\prime} \in L(v) \backslash\{a, b, c\}$ such that $d \neq d^{\prime}$. Thus $B\left(G[A] ; L_{\pi}\right) \leq 2$.

So suppose $L_{\pi}\left(w_{1}\right) \cap L_{\pi}\left(w_{2}\right)=\emptyset$. Since $\left|\left(L_{\pi}\left(w_{1}\right) \cup L_{\pi}\left(w_{2}\right)\right) \backslash L^{*}\right| \geq\left|L_{\pi}\left(w_{1}\right)\right|+$ $\left|L_{\pi}\left(w_{2}\right)\right|-\left|L^{*}\right| \geq 2+2-3=1$, there exists a color $a \in\left(L_{\pi}\left(w_{1}\right) \cup L_{\pi}\left(w_{2}\right)\right) \backslash L^{*}$. Assume that $a \in L_{\pi}\left(w_{1}\right) \backslash L^{*}$ and let $\beta \in L\left(u_{1}\right) \backslash L(v)$ by Claim 4. Color w_{1} with a, u_{5} with $b \in L^{*} \backslash\{\beta\}, u_{4}$ with $c \in L^{*} \backslash\{b\}$, and u_{3} with $d \in L^{*} \backslash\{b, c\}$. Now let us define a list assignment L^{\prime} for the set $A^{\prime}=\left\{u_{1}, u_{2}, v, w_{2}\right\}$ with $L^{\prime}\left(u_{1}\right)=$ $L\left(u_{1}\right) \backslash\{b\}, L^{\prime}\left(u_{2}\right)=L^{*} \backslash\{d\}, L^{\prime}(v)=L(v) \backslash\{a\}$, and $L^{\prime}\left(w_{2}\right)=L_{\pi}\left(w_{2}\right)$. It is easy to see that $\left|L^{\prime}\left(u_{1}\right)\right| \geq 3,\left|L^{\prime}(v)\right| \geq 3,\left|L^{\prime}\left(u_{2}\right)\right| \geq 2$, and $\left|L^{\prime}\left(w_{2}\right)\right| \geq 2$. Since $\beta \in L^{\prime}\left(u_{1}\right)$, but $\beta \notin L^{\prime}(v)$, we see $L^{\prime}\left(u_{1}\right) \neq L^{\prime}(v)$. Lemma 8 asserts that the induced subgraph $G\left[A^{\prime}\right]$ has an L^{\prime}-coloring with $B\left(G\left[A^{\prime}\right] ; L^{\prime}\right)=1$. Hence $B\left(G[A] ; L_{\pi}\right) \leq 2$. The proof of Claim 5 is complete.

Suppose that $x y$ is an edge of G with $u, v \in N_{G}(x) \backslash\{y\}$ and $w, z \in N_{G}(y) \backslash$
$\{x\}$. By Claim 4, we assume that $L(x)=\{1,2,3,4\}$ and $L(y)=\{1,2,3,5\}$. We simply write P for $L(u) \cup L(v) \cup L(w) \cup L(z)$ and Q for $L(u) \cap L(v) \cap L(w) \cap L(z)$.

Observation 1. $4 \in L(u) \cup L(v)$ and $5 \in L(w) \cup L(z)$.
Suppose to the contrary that $4 \notin L(u)$. (A similar argument can be given in other cases.) Let $A=\{v, x, y, z\}$. So $G-A$ has an equitable L-coloring π, and A admits an induced assignment L_{π} such that $\left|L_{\pi}(v)\right| \geq 2,\left|L_{\pi}(z)\right| \geq 2,\left|L_{\pi}(x)\right| \geq 3$, and $\left|L_{\pi}(y)\right| \geq 3$. Since $4 \notin L(u), \pi$ gives u a color different from 4 . Hence $4 \in L_{\pi}(x)$. On the other hand, it is obvious that $4 \notin L_{\pi}(y)$ as $4 \notin L(y)$. It follows that $L_{\pi}(x) \neq L_{\pi}(y)$ and hence $G[A]$ has an L_{π}-coloring with $B\left(G[A] ; L_{\pi}\right)=1$ by Lemma 8. However, G is equitably L-colorable by Lemma 7. A contradiction is obtained.

Observation 2. $1,2,3 \in P$.
Suppose that $1 \notin P$. (A similar proof can be established for other cases.) Let z^{\prime} denote a neighbor of z and $z^{\prime} \neq y$. Let $A=\left\{x, y, z, z^{\prime}\right\}$. For each L-coloring π of $G-A, A$ has an induced assignment L_{π} such that $\left|L_{\pi}\left(z^{\prime}\right)\right| \geq 2,\left|L_{\pi}(x)\right| \geq 2$, $\left|L_{\pi}(y)\right| \geq 3$, and $\left|L_{\pi}(z)\right| \geq 3$. Since $\pi(w) \neq 1$ and $1 \notin L(z)$, it follows that $1 \in L_{\pi}(y) \backslash L_{\pi}(z)$. Thus $L_{\pi}(y) \neq L_{\pi}(z)$. A contradiction follows again from Lemmas 7 and 8.

Observation 3. $|Q \cap\{1,2,3\}| \leq 1$.
Suppose that $|Q \cap\{1,2,3\}| \geq 2$, say, $1,2 \in Q$. Since $4 \in L(u)$ by Observation 1 and $|L(u) \backslash L(x)|=1$ by Claim 4, we see that $3 \notin L(u)$. Similarly, we can derive $3 \notin L(t)$ for each $t \in\{v, w, z\}$. This implies that $3 \notin P$, which contradicts Observation 2.

Observation 4. There exist $s^{*} \in\{u, v\}$ and $t^{*} \in\{w, z\}$ such that $\mid L\left(s^{*}\right) \cap$ $L\left(t^{*}\right) \cap\{1,2,3\} \mid=1$.

By Observation 1 and Claim 4, $L(r)$ contains exactly two of the colors 1, 2, and 3 for each $r \in\{u, v, w, z\}$. So we suppose $\{1,2\} \subseteq L(u)$. If $\{1,2\} \subseteq L(w) \cap L(z)$, then $\{1,2\} \backslash L(v) \neq \emptyset$ by Observation 3. We thus take $s^{*}=v$ and $t^{*}=w$. Otherwise, suppose $\{1,2\} \backslash L(z) \neq \emptyset$. It suffices to take $s^{*}=u$ and $t^{*}=z$. We always have $L\left(s^{*}\right) \cap L\left(t^{*}\right) \cap\{1,2,3\}=\{1\}$ or $\{2\}$. The proof of Observation 4 is complete.

By Observation 4, we suppose that $L(u)=\{1,2,4, a\}$ and $L(w)=\{2,3,5, b\}$, where $a \neq 3$ and $b \neq 1$. Let $u^{\prime} \in N_{G}(u) \backslash\{x\}$ and $w^{\prime} \in N_{G}(w) \backslash\{y\}$. Let $A=\left\{u, u^{\prime}, v, w, w^{\prime}, x, y, z\right\}$. Since G does not contain cycles of lengths at most 5, the vertices in A are distinct. Moreover, if $u^{\prime} w^{\prime} \notin E(G)$, then $G[A]$ is a tree. For any equitable L-coloring π of $G-A, A$ has an induced assignment L_{π} such that $L_{\pi}(x)=L(x), L_{\pi}(y)=L(y),\left|L_{\pi}(u)\right| \geq 3,\left|L_{\pi}(w)\right| \geq 3$, and $\left|L_{\pi}(t)\right| \geq 2$ for
all $t \in\left\{v, z, u^{\prime}, w^{\prime}\right\}$. If u^{\prime} is adjacent to w^{\prime} in G, then both $\left|L_{\pi}\left(u^{\prime}\right)\right|$ and $\left|L_{\pi}\left(w^{\prime}\right)\right|$ are at least 3. Without loss of generality, suppose that $\left|L_{\pi}(u)\right|=\left|L_{\pi}(w)\right|=$ 3. In the following, we are going to construct an L_{π}-coloring of $G[A]$ such that $B\left(G[A] ; L_{\pi}\right) \leq 2$. Thus a contradiction will be derived.

Assume that $a \in L_{\pi}(u)$. At first, we color z, w^{\prime}, w, and y with four different colors, and use β to denote the color assigned to y. If $a \in L_{\pi}(v)$, we further color v with a, u^{\prime} with $b \in L_{\pi}\left(u^{\prime}\right) \backslash\{a\}, u$ with $c \in L_{\pi}(u) \backslash\{a, b\}$, and x with $d \in L(x) \backslash\{b, c, \beta\}$. If $a \notin L_{\pi}(v)$, we color u with a, u^{\prime} with $b \in L_{\pi}\left(u^{\prime}\right) \backslash\{a\}$, v with $c \in L_{\pi}(v) \backslash\{b\}$, and x with $d \in L(x) \backslash\{b, c, \beta\}$. Because $a \notin L(x)$, the current colorings satisfy our requirements.

If $b \in L_{\pi}(w)$, an analogous proof can be given. Thus suppose that $L_{\pi}(u)=$ $\{1,2,4\}$ and $L_{\pi}(w)=\{2,3,5\}$. If there exists a color $a \in L_{\pi}(v) \backslash\{1,2,4\}$, we first color z, w^{\prime}, w, and y with distinct colors. Let β denote the color of y. Afterwards, we color v with a, u^{\prime} with $b \in L_{\pi}\left(u^{\prime}\right) \backslash\{a\}, x$ with $c \in L_{\pi}(x) \backslash\{a, b, \beta\}$, and u with $d \in L_{\pi}(u) \backslash\{b, c\}$. If there exists $a \in L_{\pi}\left(u^{\prime}\right) \backslash\{1,2,4\}$ and $a \notin L_{\pi}(v)$, we color z, w^{\prime}, w, and y with distinct colors, then color u^{\prime} with a, x with $4, v$ with $b \in L_{\pi}(v) \backslash\{4\}$, and u with a color from $L_{\pi}(u) \backslash\{4, b\}$. Since $4 \notin L(y)$, the coloring is available.

Finally, suppose $L_{\pi}(v) \cup L_{\pi}\left(u^{\prime}\right) \subseteq\{1,2,4\}$ and, similarly, $L_{\pi}(z) \cup L_{\pi}\left(w^{\prime}\right) \subseteq$ $\{2,3,5\}$. First color x with 3 and y with 1 . Then we color u, u^{\prime}, and v with $1,2,4$ and w, w^{\prime}, and z with $2,3,5$ such that all these vertices receive distinct colors. The proof of Lemma 12 is complete.

Combining Lemmas 11 and 12, we can derive the following.
Theorem 13. Conjecture 1 holds for a graph with maximum degree at most 3 .

4. Equitable $(\Delta-1)^{2}$-Choosability

The distance between two vertices in a graph G is the length of a shortest path connecting them. For $v \in V(G)$, let $M_{G}(v)$ denote the set of vertices which have distance 2 to the vertex v.

Theorem 14. Let G be a graph with $\Delta(G) \geq 3$. If $k \geq(\Delta(G)-1)^{2}$, then G is equitably k-choosable.

Proof. If $\Delta(G)=3$, then $k \geq(3-1)^{2}=4$. By Theorem 13, G is equitably k-choosable. Suppose that the theorem holds for all graphs with maximum degree less than $m, m \geq 4$. We will prove the theorem for graphs with maximum degree m. Once m is fixed, we further use induction on the order $|G|$. If $|G| \leq k$, the conclusion is evident. Let G be a graph with $\Delta(G)=m$ and $|G| \geq k+1$. Suppose that L is a k-uniform list assignment for G, where $k \geq(m-1)^{2}$. We are going to
define a set $S=\left\{x_{1}, x_{2}, \ldots, x_{k}\right\}$ satisfying $(*)$. Afterwards, we let $H=G-S$. If $\Delta(H)<\Delta(G)$, then $k \geq(\Delta(G)-1)^{2}>(\Delta(H)-1)^{2}$. By the induction hypothesis on the maximum degree, H is equitably L-colorable. If $\Delta(H)=\Delta(G)$, H is equitably L-colorable by the induction hypothesis on the number of vertices. Therefore, G is equitably L-colorable by Lemma 6.

Suppose that u is a vertex of maximum degree in G. We see that $\left|N_{G}(u)\right|=$ $d_{G}(u)=m$. Since $m \geq 4$, we have $k \geq(m-1)^{2}>m+1$. Define $x_{k}=u$, and let $x_{k-1}, x_{k-2} \ldots, x_{k-m}$ be the m neighbors of u. Let

$$
Y_{i}=M_{G}(u) \cap N_{G}\left(x_{i}\right),
$$

for $i=k-m, k-m+1, \ldots, k-1$. Then let

$$
Y=\bigcup_{i=k-m+3}^{k-1} Y_{i}
$$

and $p=|Y|$. Take $x_{k-m-1}, x_{k-m-2}, \ldots, x_{k-m-p} \in Y, x_{k-m-p-1} \in Y_{k-m+2}$, and $x_{k-m-p-2}, x_{k-m-p-3}, \ldots, x_{1} \in V(G) \backslash\left\{x_{k-m-p-1}, x_{k-m-p}, \ldots, x_{k}\right\}$. Since $m \geq 4$ and

$$
p=|Y| \leq \sum_{i=k-m+3}^{k-1}\left|Y_{i}\right| \leq(m-3)(m-1)
$$

we derive

$$
k-m-p-1 \geq(m-1)^{2}-m-(m-3)(m-1)-1=m-3 \geq 1
$$

This implies that $Y \subseteq S$, and $x_{k-m-p-1} \in Y_{k-m+2}$. Hence S is well-defined. It remains to check that S satisfies (*). First we note that $\left|N_{G}\left(x_{i}\right) \backslash S\right| \leq\left|N_{G}\left(x_{i}\right)\right|=$ $d_{G}\left(x_{i}\right) \leq \Delta(G)=m$ for any $x_{i} \in S$. Thus, when $i \leq k-m$, we have $\left|N_{G}\left(x_{i}\right)\right|$ $S \mid+(i-1) \leq m+(k-m-1)=k-1$.

Assume that $i=k-m+1$. Since x_{k-m+1} is adjacent to x_{k} and $x_{k} \in S$, it follows that $\left|N_{G}\left(x_{k-m+1}\right) \backslash S\right| \leq m-1$ and thus $\left|N_{G}\left(x_{k-m+1}\right) \backslash S\right|+(k-m+$ $1-1) \leq m-1+(k-m)=k-1$.

Assume that $i=k-m+2$. Since $x_{k-m+2} x_{k}, x_{k-m+2} x_{k-m-p-1} \in E(G)$ and $x_{k}, x_{k-m-p-1} \in S$, we have $\left|N_{G}\left(x_{k-m+2}\right) \backslash S\right| \leq m-2$. Thus $\mid N_{G}\left(x_{k-m+2}\right) \backslash$ $S \mid+(k-m+2-1) \leq m-2+(k-m+1)=k-1$.

Assume that $k-m+3 \leq i \leq k$. It is easy to see that $N_{G}\left(x_{i}\right) \subseteq S$ by definition, so $\left|N_{G}\left(x_{i}\right) \backslash S\right|=0$. Therefore $\left|N_{G}\left(x_{i}\right) \backslash S\right|+(i-1)=(i-1) \leq k-1$.

References

1. N. Alon and M. Tarsi, Colorings and orientations of graphs, Combinatorica 12 (1992), 125-134.
2. Bor-Liang Chen and Ko-Wei Lih, Equitable coloring of trees, J. Combin. Theory Ser. B61 (1994), 83-87.
3. Bor-Liang Chen, Ko-Wei Lih and Pou-Lin Wu, Equitable coloring and the maximum degree, Europ. J. Combin. 15 (1994), 443-447.
4. P. Erdős, A. L. Rubin and H. Taylor, Choosability in graphs, Congr. Numer. 26 (1980), 125-157.
5. F. Galvin, The list chromatic index of a bipartite multigraph, J. Combin. Theory Ser. B63 (1995), 153-158.
6. A. Hajnal and E. Szemeredi, Proof of a conjecture of Erd"bs. in: Combinatorial Theory and Its Applications, Vol. 2, Colloq. Math. Soc. Janos Bolyai 4, NorthHolland, Amsterdam, 1970, pp. 601-623.
7. T. R. Jensen and B. Toft, Graph Coloring Problems, Wiley, New York, 1995.
8. A. V. Kostochka, M. J. Pelsmajer and D. B. West, A list analogue of equitable coloring, J. Graph Theory, 44 (2003), 166-177.
9. Ko-Wei Lih and Pou-Lin Wu, On equitable coloring of bipartite graphs, Discrete Math. 151 (1996), 155-160.
10. Ko-Wei Lih, The equitable coloring of graphs, in: D. Z. Du and P. Pardalos, eds. Handbook of Combinatorial Optimization, Vol. 3, Kluwer, Dordrecht, 1998, 543566.
11. W. Meyer, Equitable coloring, Amer. Math. Monthly 80 (1973), 920-922.
12. C. Thomassen, Every planar graph is 5-choosable, J. Combin. Theory Ser. B62 (1994), 180-181.
13. V. G. Vizing, Coloring the vertices of a graph in prescribed colors, Diskret. Analiz. 29 (1976), 3-10. (in Russian.)
14. M. Voigt, List colorings of planar graphs, Discrete Math. 120 (1993), 215-219.

Wei-Fan Wang
Department of Mathematics,
Zhejiang Normal University,
Jinhua, Zhejiang 321004,
P. R. China
E-mail: wangwf0062@sina.com.cn
Ko-Wei Lih
Institute of Mathematics,
Academia Sinica,
Nankang, Taipei 115,
Taiwan
E-mail: makwlih@sinica.edu.tw

[^0]: Received May 26, 2003; accepted September 2, 2003.
 Communicated by Gerard J. Chang.
 2000 Mathematics Subject Classification: 05C15.
 Key words and phrases: List coloring, Choosability, Equitable coloring.

