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EQUITABLE LIST COLORING OF GRAPHS

Wei-Fan Wang and Ko-Wei Lih

Abstract. A graph G is equitably k-choosable if, for any k-uniform list
assignment L, G admits a proper coloring π such that π(v) ∈ L(v) for all v ∈
V (G) and each color appears on at most �|G|/k� vertices. It was conjectured
in [8] that every graph G with maximum degree ∆ is equitably k-choosable
whenever k ≥ ∆ + 1. We prove the conjecture for the following cases: (i)
∆ ≤ 3; (ii) k ≥ (∆ − 1)2. Moreover, equitably 2-choosable graphs are
completely characterized.

1. INTRODUCTION

We only consider simple graphs in this paper unless otherwise stated. For a
graph G, we denote its vertex set, edge set, order, maximum degree, and minimum
degree by V (G), E(G), |G|, ∆(G), and δ(G), respectively. For a vertex v ∈ V (G),
let NG(v) denote the set of neighbors of v in G and dG(v) the degree of v in G.
For S ⊆ V (G), we use G[S] to denote the subgraph of G induced by S and simply
write G − S for G[V (G) \ S]. If G[S] does not contain edges, then S is called an
independent set of G. Let α(G) denote the maximal cardinality of an independent
set of G.

A k-coloring of a graph G is a mapping π from the vertex set V (G) to the set of
colors {1, 2, . . . , k} such that π(x) �= π(y) for every edge xy ∈ E(G). The graph
G is k-colorable if it has a k-coloring. The chromatic number χ(G) of G is the
smallest integer k such that G is k-colorable. A k-coloring π is called m-bounded
if every color appears on at most m vertices. A coloring π is called equitable if
the sizes of any two color classes differ by at most 1. Obviously, every equitable
k-coloring of a graph G is �|G|/k�-bounded.

In 1973, Meyer [11] introduced the notion of equitable coloring of graphs and
conjectured that the equitable chromatic number of a connected graph G, which
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is neither a complete graph nor an odd cycle, is at most ∆(G). This conjecture
has been confirmed for trees [2], [11], bipartite graphs [9], and graphs satisfying
∆(G) ≤ 3 or ∆(G) ≥ |G|/2 (see [3].) An earlier result of Hajnal and Szemerédi
[6] showed that every graph G is equitably k-colorable for all k > ∆(G). The
reader is referred to [10] for a survey of research on equitable coloring of graphs.

The mapping L is said to be a list assignment for the graph G if it assigns a
list L(v) of possible colors to each vertex v of G. A list assignment L for G is
k-uniform if |L(v)| = k for all v ∈ V (G). If G has a proper coloring π such
that π(v) ∈ L(v) for all vertices v, then we say that G is L-colorable or π is an
L-coloring of G. We call G k-choosable if it is L-colorable for every k-uniform
list assignment L; equitably L-colorable if it has a �|G|/k�-bounded L-coloring for
a k-uniform list assignment L; equitably list k-colorable or equitably k-choosable
if it is equitably L-colorable for every k-uniform list assignment L.

The concept of list-coloring was introduced by Vizing [13] and independently
by Erdo′′s, Rubin and Taylor [4]. Quite a number of interesting results have been
obtained in recent years, e.g., [1,5,7,12,14]. Combining m-bounded coloring and list
coloring of graphs, Kostochka, Pelsmajer, and West [8] investigated the equitable
list coloring of graphs. They proposed the following conjectures.

Conjecture 1. Every graph G is equitably k-choosable whenever k > ∆(G).

Conjecture 2. If G is a connected graph with maximum degree ∆ ≥ 3 other
than K∆+1 and K∆,∆, then G is equitably ∆-choosable.

It was proved in [8] that a graph G of maximum degree ∆ is equitably k-
choosable if either k ≥ max{∆, |G|/2} and G �= Kk+1, Kk,k, or k ≥ 1+ ∆/2 and
G is a forest, or k ≥ ∆ and G is a connected interval graph, or k ≥ max{∆, 5}
and G is a 2-degenerate graph. In this paper, we will prove that the conjecture 2
holds for graphs with maximum degree at most 3. Moreover, we prove that every
graph G with ∆(G) ≥ 3 is equitably k-choosable for any k ≥ (∆(G)− 1)2.

2. EQUITABLY 2-CHOOSABLE GRAPHS

Let G be a graph with a (not necessarily uniform) list assignment L. Suppose
that π is an L-coloring of G. We use B(π) to denote the maximum size of a color
class in the coloring π. Let B(G; L) = min{B(π) | π is an L-coloring of G}. If
L is k-uniform and B(G; L) ≤ �|G|/k�, then G is equitably L-colorable.

A generalized Brooks’ theorem by Erdo′′s, Rubin and Taylor [4] asserts that a
connected graph G that is neither a complete graph nor an odd cycle is ∆(G)-
choosable. Applying this result, we immediately get the following.
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Lemma 3. Let k ≥ 1 be an integer. If a graph G is k-choosable and α(G) ≤
�|G|/k�, then G is equitably k-choosable. In particular, if α(G) ≤ �|G|/k� and
G is neither a complete graph nor an odd cycle, then G is equitably k-choosable
whenever k ≥ ∆(G).

If we remove vertices of degree 1 recursively from a graph G, then the final
graph has no vertices of degree 1 and is called the core of G. A graph is called a
θ2,2,p-graph if it consists of two vertices x and y and three internally disjoint paths
of lengths 2, 2, and p joining x and y. Using these two concepts, Erdo′′s, Rubin
and Taylor [4] established the following characterization for the 2-choosability of a
graph.

Lemma 4. A connected graph G is 2-choosable if and only if the core of G

is either a K1, an even cycle, or a θ2,2,2r-graph, where r ≥ 1.

Theorem 5. A connected graph G is equitably 2-choosable if and only if G

is a bipartite graph satisfying the following two conditions.

(i) The core of G is either a K1, an even cycle, or a θ2,2,2r-graph, where r ≥ 1.

(ii) G has two parts X and Y such that ||X | − |Y || ≤ 1.

Proof. Suppose that G is equitably 2-choosable, hence 2-choosable. Thus G
is a bipartite graph with two parts, say X and Y . Statement (i) follows from
Lemma 4. Let L be a 2-uniform list assignment for G with L(v) = {1, 2} for all
v ∈ V (G). Then G has a unique equitable L-coloring π such that π(x) = 1 for all
x ∈ X and π(y) = 2 for all y ∈ Y . Thus |X | ≤ �|G|/2� = �(|X |+ |Y |)/2� and
|Y | ≤ �(|X |+ |Y |)/2�. It follows that ||X | − |Y || ≤ 1, therefore (ii) holds.

Now suppose that G is a bipartite graph with two parts X and Y satisfying (i)
and (ii). By (i) and Lemma 4, G is 2-choosable. For any 2-uniform list assign-
ment L for G, we know that G has an L-coloring π. By (ii), B(π) ≤ α(G) ≤
max{|X |, |Y |} ≤ �|G|/2�. Hence π is equitable by Lemma 3.

3. GRAPHS WITH MAXIMUM DEGREE 3

The following basic result was proved in [8], which will be frequently used in
the subsequent sections.

Lemma 6. Let G be graph with a k-uniform list assignment L. Let S =
{x1, x2, . . . , xk} be a set of k vertices in G such that G − S has an equitable
L-coloring. If

|NG(xi) \ S|+ (i − 1) ≤ k − 1 (∗)
for 1 ≤ i ≤ k, then G has an equitable L-coloring.
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We can generalize Lemma 6 to the following.

Lemma 7. Let G be graph with a k-uniform list assignment L. Let ∅ �= A ⊆
V (G) such that G − A has an equitable L-coloring π. For every vertex v ∈ A,

define a list assignment

Lπ(v) = L(v) \ {π(x) | x ∈ NG(v) ∩ (V (G) \ A)}.
If G[A] has an Lπ-coloring σ such that B(σ) ≤ �|A|/k�, then G has an equitable
L-coloring.

Proof. Clearly, by combining the colorings π and σ, we can set up an L-coloring
φ of G. Furthermore, B(G; L) ≤ B(G − A; L) + B(G[A]; Lπ) ≤ �|G − A|/k� +
�|A|/k� = �(|G|−|A|)/k�+�|A|/k� ≤ �|G|/k�. Thus φ is an equitable L-coloring
of G.

In the sequel, Lπ is called an induced list assignment of the set A for the
coloring π.

Lemma 8. Let H be a graph with V (H) = {u1, u2, u3, u4}, and let L be a
list assignment for H .

If L satisfies one of the following conditions, then H has an L-coloring such
that B(H ; L) = 1.

(1) |L(ui)| ≥ i for i = 1, 2, 3, 4;
(2) |L(u1)| ≥ 1, |L(u2)| ≥ 2, |L(u3)| = |L(u4)| = 3, and L(u3) �= L(u4);
(3) |L(u4)| = 4, |L(u1)| ≥ 1, |L(u2)| = |L(u3)| = 2, and L(u2) �= L(u3).

Proof. The result is obvious if (1) holds. Suppose now that (2) holds. We first
color u1 with a color a ∈ L(u1), and u2 with b ∈ L(u2) \ {a}. Since |L(u3)| =
|L(u4)| = 3 and L(u3) �= L(u4), it follows that L(u3) \ {a, b} �= L(u4) \ {a, b}
and |L(ui) \ {a, b}| ≥ 1 for i = 3, 4. Thus there exist c ∈ L(u3) \ {a, b} and
d ∈ L(u4) \ {a, b} such that c �= d. We further color u3 with c and u4 with d.
Since a, b, c, and d are distinct, we have B(H ; L) = 1.

Finally suppose that (3) holds. First we color u1 with some color a from L(u1).
Since |L(u2)| = |L(u3)| = 2 and L(u2) �= L(u3), there exist b ∈ L(u2) \ {a} and
c ∈ L(u3) \ {a} such that b �= c. We color u2 with b and u3 with c. Afterwards,
we color u4 with some color from L(u4) \ {a, b, c}. Therefore B(H ; L) = 1, and
the proof is complete.

Let H∗ denote the graph consisting of a 4-cycle C = u1u2u3u4u1 and four
pendant edges uivi, i = 1, 2, 3, 4, such that all the vertices, ui’s and vj ’s, are
distinct.
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Lemma 9. Let L be a list assignment for H ∗ that satisfies |L(u i)| = 4 and
|L(vi)| ≥ 2 for i = 1, 2, 3, 4. Then H∗ has an L-coloring such that B(H ∗; L) ≤ 2.

Proof. We first give a partial L-coloring π for the vertices v1, v2, v3 and v4

such that every color is used at most twice. Such a coloring exists obviously as
|L(vi)| ≥ 2 for all i = 1, 2, 3, 4. There are several possibilities as follows.

Case 1. {π(v1), π(v2), π(v3), π(v4)} = {1, 2}.

Define a list assignment L′(ui) = L(ui) \ {1, 2} for i = 1, 2, 3, 4. It is easy
to see that |L′(ui)| ≥ 2 and the 4-cycle u1u2u3u4u1 is L′-colorable. We note that
every color appears on the 4-cycle at most twice. Thus B(H∗; L) ≤ 2.

Case 2. |{π(v1), π(v2), π(v3), π(v4)}| = 4.

We may suppose that π(vi) = i for i = 1, 2, 3, 4. Let L′(ui) = L(ui) \ {1, 2}
for i = 1, 2 and L′(ui) = L(ui)\{3, 4} for i = 3, 4. Since |L′(ui)| ≥ 2, the 4-cycle
u1u2u3u4u1 has an L′-coloring such that each of the colors 1, 2, 3, 4 is used at most
once on this cycle and other colors at most twice. Hence B(H∗; L) ≤ 2.

Case 3. |{π(v1), π(v2), π(v3), π(v4)}| = 3.

Subcase 3.1. π(v1) = π(v2) = 1, π(v3) = 2, and π(v4) = 3.

If 3 ∈ L(u3), we color u3 with 3, u2 with a color a ∈ L(u2)\{1, 2, 3}, u1 with
b ∈ L(u1) \ {1, 3, a}, and u4 with c ∈ L(u4) \ {1, 3, b}. If 2 ∈ L(u4), we have a
similar proof. Hence suppose that 3 /∈ L(u3) and 2 /∈ L(u4). In this case, we color
u4 with a ∈ L(u4)\{1, 3}, u3 with b ∈ L(u3)\{1, 2, a}, u2 with c ∈ L(u2)\{1, b},
and u1 with d ∈ L(u1) \ {1, a, c}. It is easy to observe that every color is used at
most twice, thus B(H∗; L) ≤ 2.

Subcase 3.2. π(v1) = π(v3) = 1, π(v2) = 2, and π(v4) = 3.

If 2 ∈ L(u1), we color u1 with 2, u4 with a color a ∈ L(u4) \ {1, 2, 3}, u3

with b ∈ L(u3) \ {1, 2, a}, and u2 with c ∈ L(u2) \ {1, 2, b}. We can establish
a similar coloring for cases 2 ∈ L(u3) or 3 ∈ L(u1) ∪ L(u3). Thus we assume
that 2, 3 /∈ L(u1) ∪ L(u3). Color u2 with a color a ∈ L(u2) \ {1, 2}, u4 with
b ∈ L(u4) \ {1, 3}, u1 with c ∈ L(u1) \ {1, a, b}, and u3 with d ∈ L(u3) \ {1, a, b}.
It is not difficult to see that every color is used at most twice in the previous
colorings. Therefore B(H∗; L) ≤ 2. The proof of the lemma is complete.

Lemma 10. If G is a graph with ∆(G) ≤ 2, then G is equitably k-choosable
for any k ≥ 3.

Proof. If k ≥ 5 or G is a forest, the result follows from Theorems 2 or 4 of
[8]. Thus suppose that k ≤ 4 and G contains a cycle. We do induction on the order
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|G|. If |G| ≤ k, the conclusion holds clearly because we may color all vertices
with distinct colors. Let G be a graph with ∆(G) ≤ 2 and |G| ≥ k + 1. Let
C = u1u2 · · ·unu1 be a cycle of G, where n ≥ 3. Suppose that L is a k-uniform
list assignment for G. If k = 3, we let x3 = u2, x2 = u1, and x1 = u3. Suppose
k = 4. If n ≥ 4, we let x4 = u2, x3 = u3, x2 = u1, and x1 = u4. If n = 3, we
let x4 = u1, x3 = u2, x2 = u3, and x1 ∈ V (G) \ V (C). It is easy to check that
the set S = {x1, x2, . . . , x4} satisfies (∗). By the induction assumption, G − S is
equitably L-colorable. By Lemma 6, G is equitably L-colorable. This completes
the proof.

Lemma 11. Let G be a graph with ∆(G) = 3. Then, for any k ≥ 5, G is
equitably k-choosable.

Proof. We do induction on the order |G|. If |G| ≤ k, the result is straight-
forward. Let G be a graph with ∆(G) = 3 and |G| ≥ k + 1. Suppose that
L is a k-uniform list assignment for G. We are going to construct a set S =
{x1, x2, . . . , xk} ⊂ V (G) which satisfies (∗). Since ∆(G) = 3, G contains a
vertex u of degree 3 with neighbors v, w, and y. We need to treat the following
cases.

Case 1. G[{u, v, w, y}] is a component of G.

In this case, it suffices to let xk = u, xk−1 = v, xk−2 = w, xk−3 = y,
xk−4, . . . , x1 ∈ V (G) \ {u, v, w, y}. In fact, when k − 3 ≤ i ≤ k, we have
NG(xi) \ S = ∅. Thus |NG(xi) \ S| + (i − 1) = i − 1 ≤ k − 1. When 1 ≤
i ≤ k − 4, |NG(xi) \ S| ≤ |NG(xi)| = dG(xi) ≤ ∆(G) = 3 and furthermore
|NG(xi) \ S| + (i − 1) ≤ 3 + (i − 1) ≤ 3 + (k − 4 − 1) = k − 2. Hence the set
S = {x1, x2, . . . , xk} satisfies (∗).

Case 2. G[{u, v, w, y}] is not a component of G.

Without loss of generality, suppose that v is adjacent to a vertex t that is different
from u, w, and y. We define xk = u, xk−1 = v, xk−2 = t, xk−3 = w, xk−4 = y,

and xk−5, . . . , x1 ∈ V (G) \ {u, v, w, y, t}. It is easy to see that, if i ≤ k − 3,
then |NG(xi) \ S| + (i − 1) ≤ 3 + (i − 1) ≤ 3 + (k − 3 − 1) = k − 1. Since
v ∈ S and t is adjacent to v in G, we derive that |NG(xk−2) \ S| + (k − 2 −
1) ≤ 2 + (k − 3) = k − 1. Since u, t ∈ S and v is adjacent to u and t, so
|NG(xk−1) \S|+(k−1−1) ≤ 1+(k−2) = k−1. Similarly, since NG(xk) ⊆ S,
we get |NG(xk−1) \ S| + (k − 1) = k − 1. The argument implies that the set
S = {x1, x2, . . . , xk} satisfies (∗).

Now let H = G− S. If ∆(H) ≤ 2, H is equitably L-colorable by Lemma 10.
If ∆(H) = 3, the induction hypothesis asserts that H is equitably L-colorable. By
Lemma 6, G is equitably L-colorable. The proof is complete.
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Lemma 12. Every graph G with ∆(G) = 3 is equitably 4-choosable.

Proof. Suppose that the lemma is false. Let G be a counterexample graph with
the fewest vertices. Let L be a 4-uniform list assignment such that G is not equitably
L-colorable. Then G possesses the properties stated in the following claims.

Claim 1. The minimum degree δ(G) is 3.

Proof. Since an isolated vertex can be assigned any color from its list, we see
that δ(G) ≥ 1. Assume that G contains a vertex u of degree 1. Let v denote the
unique neighbor of u. If dG(v) = 1, let x4 = u, x3 = v, x1, x2 ∈ V (G) \ {u, v}
with x1x2 ∈ E(G). If dG(v) ≥ 2, let x4 = u, x3 = v, x2 ∈ NG(v) \ {u}, and
x1 ∈ V (G)\{x2, x3, x4}. It is easy to verify that S = {x1, x2, x3, x4} satisfies (∗).
By the minimality of G or Lemma 10, G−S is equitably L-colorable. Furthermore, it
follows from Lemma 6 that G is equitably L-colorable, contradicting the assumption
on G. Thus δ(G) ≥ 2.

Suppose that G contains a vertex u of degree 2 with two neighbors y and z.
If G[{u, y, z}] forms a component of G, we let x4 = u, x3 = y, x2 = z, and
x1 ∈ V (G) \ {u, y, z}. Otherwise, we suppose that y is adjacent to a vertex t

different from u and z. Let x4 = u, x3 = y, x2 = z, and x1 = t. It is easy to
check that S = {x1, x2, x3, x4} satisfies (∗). A similar contradiction will follow.
Therefore δ(G) = 3.

Claim 2. There are no 3-cycles in G.

Proof. Suppose that G contains a 3-cycle C = u1u2u3u1. Let A = {u1, u2,
u3, u4}, where u4 is a neighbor of u1 that differs from u2 and u3. Thus G − A

admits an equitable L-coloring π. The induced assignment Lπ of A for π satisfies
the following: |Lπ(u1)| = 4, |Lπ(ui)| ≥ 3 for i = 2, 3, and |Lπ(u4)| ≥ 2. By
Lemma 8, we know that G[A] has an Lπ-coloring such that B(G[A]; Lπ) = 1.
By Lemma 7, it follows that G is equitably L-colorable. This contradiction proves
Claim 2.

Claim 3. There are no 4-cycles in G.

Proof. Suppose that G contains a 4-cycle C = u1u2u3u4u1. As G does not
contain 3-cycles by Claim 2, u1u3, u2u4 /∈ E(G). Let vi ∈ NG(ui) \ V (C) for
i = 1, 2, 3, 4. So v1 �= v2, v2 �= v3, v3 �= v4, and v4 �= v1. The proof is divided
into two subcases.

Subcase 3.1. Assume that v1 = v3.

If v2 = v4, a similar proof can be established. Let A = {u1, u2, u3, u4, v1} and
let π be an equitable L-coloring of G − A. Obviously, |Lπ(u1)| = |Lπ(u3)| = 4,
and |Lπ(t)| ≥ 3 for each t ∈ {u2, u4, v1}. If there exists a color a ∈ (Lπ(u2) ∪
Lπ(u4)∪Lπ(v1)) \Lπ(uj) for j = 1, or 3, say a ∈ Lπ(v1) \Lπ(u1), then we color
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v1 with the color a, u2 with b ∈ Lπ(u2)\{a}, u4 with c ∈ Lπ(u4)\{a, b}, u3 with
d ∈ Lπ(u3) \ {a, b, c}, and u1 with a color from Lπ(u1) \ {b, c, d}. Thus an Lπ-
coloring of G[A] is constructed with the property that B(G[A]; Lπ) ≤ 1. By Lemma
7, G is equitably L-colorable. This is a contradiction. Hence suppose Lπ(u2) ∪
Lπ(u4) ∪Lπ(v1) ⊆ Lπ(u1)∩ Lπ(u3). If there exists a color a ∈ Lπ(u1) \Lπ(u3),
clearly a /∈ Lπ(u2)∪Lπ(u4) ∪Lπ(v1), an Lπ-coloring of G[A] can be constructed
similarly to satisfy B(G[A]; Lπ) ≤ 1. So suppose Lπ(u1) = Lπ(u3) = {1, 2, 3, 4},
and Lπ(t) ⊆ {1, 2, 3, 4} for all t ∈ {u2, u4, v1}. It suffices to show that G[A] has an
Lπ-coloring such that some color, say 1, is used twice on vertices of A and each of
the remaining colors, 2, 3, 4, occurs exactly once on A. In fact, if the color 1 belongs
to two of the sets Lπ(u2), Lπ(u4), and Lπ(v1), say 1 ∈ Lπ(u2)∩Lπ(u4), we color
u2 and u4 with 1, v1 with a ∈ Lπ(v1) \ {1}, u1 with b ∈ Lπ(u1) \ {1, a}, and u3

with a color from Lπ(u3) \ {1, a, b}. Otherwise, suppose 1 /∈ Lπ(u2) ∪ Lπ(u4).
Color u1 and u3 with 1, v1 with a ∈ Lπ(v1) \ {1}, u2 with b ∈ Lπ(u2) \ {a}, and
u4 with a color from Lπ(u4)\{a, b}. It is easy to check that the current Lπ-coloring
satisfies our requirements.

Subcase 3.2. Assume that v1 �= v3 and v2 �= v4.

Let A = {u1, . . . , u4, v1, . . . , v4}. Then G[A] is a graph H∗ as defined in
Lemma 9. For any L-coloring π of G − A, the induced assignment Lπ of A
satisfies |Lπ(ui)| = 4 and |Lπ(vi)| ≥ 2 for all i = 1, 2, 3, 4. By Lemma 9, G[A]
has an Lπ-coloring such that B(G[A]; Lπ) ≤ 2. It follows from Lemma 7 that G
is equitably L-colorable, which is absurd. The proof of Claim 3 is complete.

Claim 4. For each edge xy ∈ E(G), |L(x) \ L(y)| = 1.

Proof. Suppose that G has an edge xy such that |L(x)\L(y)| �= 1, i.e., L(x) =
L(y) or |L(x) \ L(y)| ≥ 2. Let u1, u2 ∈ NG(x) \ {y} and v1, v2 ∈ NG(y) \ {x}.
Since G contains neither 3-cycles nor 4-cycles, x, y, u1, u2, v1, and v2 are distinct
and u2v2 /∈ E(G). Let A = {u1, x, y, v1} and H = G−A+u2v2. By the minimality
of G, H has an equitable L-coloring π. Thus the induced assignment of A for π
satisfies the following: |Lπ(u1)| ≥ 2, |Lπ(v1)| ≥ 2, |Lπ(x)| ≥ 3, and |Lπ(y)| ≥ 3.
Noting that u2 is adjacent to v2 in H , we derive π(u2) �= π(v2). Together with
the assumption that |L(x) \ L(y)| �= 1, this implies that Lπ(x) �= Lπ(y). So G[A]
has an Lπ-coloring with B(G[A]; Lπ) = 1 by Lemma 8. We have arrived at a
contradiction.

Claim 5. There are no 5-cycles in G.

Proof. Suppose that G contains a 5-cycle C = u1u2 · · ·u5u1. Since G does
not contain 3-cycles by Claim 2, u1 is adjacent to a vertex v outside V (C). We
use w1 and w2 to denote the neighbors of v that are different from u1. Let A =
{v, w1, w2, u1, u2, . . . , u5}. By Claims 2 and 3, |A| = 8 and there do not exist
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edges between the set {u2, u5} and the set {w1, w2}. Let π denote an equitable
L-coloring of G − A. We are going to construct an Lπ-coloring of G[A] such that
B(G[A]; Lπ) ≤ 2. Consequently, a contradiction follows from Lemma 7 and the
minimality of G.

Assume that u3w2 ∈ E(G). Then u4w2 /∈ E(G) for, otherwise, G would
contain a 3-cycle u3u4w2u3, contradicting Claim 2. Note that |Lπ(w1)| ≥ 2,
|Lπ(t)| ≥ 3 for each t ∈ {u2, u4, u5, w2}, and Lπ(s) = L(s) for each s ∈
{u1, u3, v}. Moreover, Lπ(u1) \ Lπ(u2) �= ∅ because L(u1) �= L(u2) by Claim
4. We color u1 with a color a ∈ Lπ(u1) \ Lπ(u2), w1 with b ∈ Lπ(w1) \ {a}, u5

with c ∈ Lπ(u5)\{a, b}, v with d ∈ Lπ(v)\{a, b, c}, u4 with a′ ∈ Lπ(u4)\{b, c},
w2 with b′ ∈ Lπ(w2) \ {d, a′}, u2 with c′ ∈ Lπ(u2) \ {a′, b′}, and u3 with
d′ ∈ Lπ(u3) \ {a′, b′, c′}. We note that a, b, c, and d are distinct, and so are
a′, b′, c′, and d′. It follows that B(G[A]; Lπ) ≤ 2.

The above argument works if one of u3w1, u4w1, and u4w2 belongs to E(G).
Assume now that u3w1, u3w2, u4w1, u4w2 /∈ E(G). Then |Lπ(wi)| ≥ 2 for

i = 1, 2, Lπ(t) = L(t) for t ∈ {u1, v}, and |Lπ(ui)| ≥ 3 for all i = 2, 3, 4, 5.
Without loss of generality, we suppose that |Lπ(ui)| = 3 for i ≥ 2. (If |Lπ(ui)| = 4,
we may take a 3-set of Lπ(ui).) If Lπ(u2) �= Lπ(u3), we first color w1, w2, u5, and
v with mutually distinct colors. Based on this coloring, we further color u1, u4, u2,
and u3 with distinct colors by Lemma 8. If Lπ(u4) �= Lπ(u5), a similar coloring
can be established. If Lπ(u3) �= Lπ(u4), we color w1, w2, u1, and v with distinct
colors. Afterwards, we color u2, u5, u3, and u4 with distinct colors. It is easy to
see that B(G[A]; Lπ) ≤ 2 for the current colorings.

Now suppose Lπ(u2) = Lπ(u3) = Lπ(u4) = Lπ(u5) = L∗. If Lπ(w1) ∩
Lπ(w2) �= ∅, we color w1 and w2 with a color a ∈ Lπ(w1) ∩ Lπ(w2), u2 and u4

with b ∈ L∗ \ {a}, and u3 and u5 with c ∈ L∗ \ {a, b}. Because L(u1) �= L(v)
by Claim 4, it follows that L(u1) \ {a, b, c} �= L(v) \ {a, b, c}. We can color u1

with d ∈ L(u1) \ {a, b, c} and v with d′ ∈ L(v) \ {a, b, c} such that d �= d′. Thus
B(G[A]; Lπ) ≤ 2.

So suppose Lπ(w1)∩Lπ(w2) = ∅. Since |(Lπ(w1)∪Lπ(w2))\L∗| ≥ |Lπ(w1)|+
|Lπ(w2)| − |L∗| ≥ 2+2−3 = 1, there exists a color a ∈ (Lπ(w1)∪Lπ(w2)) \L∗.
Assume that a ∈ Lπ(w1) \L∗ and let β ∈ L(u1) \L(v) by Claim 4. Color w1 with
a, u5 with b ∈ L∗ \ {β}, u4 with c ∈ L∗ \ {b}, and u3 with d ∈ L∗ \ {b, c}. Now
let us define a list assignment L ′ for the set A′ = {u1, u2, v, w2} with L′(u1) =
L(u1) \ {b}, L′(u2) = L∗ \ {d}, L′(v) = L(v) \ {a}, and L′(w2) = Lπ(w2). It
is easy to see that |L′(u1)| ≥ 3, |L′(v)| ≥ 3, |L′(u2)| ≥ 2, and |L′(w2)| ≥ 2.
Since β ∈ L′(u1), but β /∈ L′(v), we see L′(u1) �= L′(v). Lemma 8 asserts that
the induced subgraph G[A′] has an L′-coloring with B(G[A′]; L′) = 1. Hence
B(G[A]; Lπ) ≤ 2. The proof of Claim 5 is complete.

Suppose that xy is an edge of G with u, v ∈ NG(x) \ {y} and w, z ∈ NG(y) \
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{x}. By Claim 4, we assume that L(x) = {1, 2, 3, 4} and L(y) = {1, 2, 3, 5}. We
simply write P for L(u)∪L(v)∪L(w)∪L(z) and Q for L(u)∩L(v)∩L(w)∩L(z).

Observation 1. 4 ∈ L(u) ∪ L(v) and 5 ∈ L(w) ∪ L(z).

Suppose to the contrary that 4 /∈ L(u). (A similar argument can be given in
other cases.) Let A = {v, x, y, z}. So G−A has an equitable L-coloring π, and A

admits an induced assignment Lπ such that |Lπ(v)| ≥ 2, |Lπ(z)| ≥ 2, |Lπ(x)| ≥ 3,
and |Lπ(y)| ≥ 3. Since 4 /∈ L(u), π gives u a color different from 4. Hence
4 ∈ Lπ(x). On the other hand, it is obvious that 4 /∈ Lπ(y) as 4 /∈ L(y). It follows
that Lπ(x) �= Lπ(y) and hence G[A] has an Lπ-coloring with B(G[A]; Lπ) = 1 by
Lemma 8. However, G is equitably L-colorable by Lemma 7. A contradiction is
obtained.

Observation 2. 1, 2, 3 ∈ P .

Suppose that 1 /∈ P . (A similar proof can be established for other cases.) Let
z′ denote a neighbor of z and z′ �= y. Let A = {x, y, z, z′}. For each L-coloring π
of G − A, A has an induced assignment Lπ such that |Lπ(z′)| ≥ 2, |Lπ(x)| ≥ 2,
|Lπ(y)| ≥ 3, and |Lπ(z)| ≥ 3. Since π(w) �= 1 and 1 /∈ L(z), it follows that
1 ∈ Lπ(y) \ Lπ(z). Thus Lπ(y) �= Lπ(z). A contradiction follows again from
Lemmas 7 and 8.

Observation 3. |Q ∩ {1, 2, 3}| ≤ 1.

Suppose that |Q∩{1, 2, 3}| ≥ 2, say, 1, 2 ∈ Q. Since 4 ∈ L(u) by Observation
1 and |L(u) \ L(x)| = 1 by Claim 4, we see that 3 /∈ L(u). Similarly, we can
derive 3 /∈ L(t) for each t ∈ {v, w, z}. This implies that 3 /∈ P , which contradicts
Observation 2.

Observation 4. There exist s∗ ∈ {u, v} and t∗ ∈ {w, z} such that |L(s∗) ∩
L(t∗) ∩ {1, 2, 3}|= 1.

By Observation 1 and Claim 4, L(r) contains exactly two of the colors 1, 2, and 3
for each r ∈ {u, v, w, z}. So we suppose {1, 2} ⊆ L(u). If {1, 2} ⊆ L(w)∩ L(z),
then {1, 2} \ L(v) �= ∅ by Observation 3. We thus take s∗ = v and t∗ = w.
Otherwise, suppose {1, 2} \ L(z) �= ∅. It suffices to take s∗ = u and t∗ = z. We
always have L(s∗)∩L(t∗)∩{1, 2, 3} = {1} or {2}. The proof of Observation 4 is
complete.

By Observation 4, we suppose that L(u) = {1, 2, 4, a} and L(w) = {2, 3, 5, b},
where a �= 3 and b �= 1. Let u′ ∈ NG(u) \ {x} and w′ ∈ NG(w) \ {y}. Let
A = {u, u′, v, w, w′, x, y, z}. Since G does not contain cycles of lengths at most
5, the vertices in A are distinct. Moreover, if u′w′ /∈ E(G), then G[A] is a tree.
For any equitable L-coloring π of G − A, A has an induced assignment Lπ such
that Lπ(x) = L(x), Lπ(y) = L(y), |Lπ(u)| ≥ 3, |Lπ(w)| ≥ 3, and |Lπ(t)| ≥ 2 for
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all t ∈ {v, z, u′, w′}. If u′ is adjacent to w′ in G, then both |Lπ(u′)| and |Lπ(w′)|
are at least 3. Without loss of generality, suppose that |Lπ(u)| = |Lπ(w)| =
3. In the following, we are going to construct an Lπ-coloring of G[A] such that
B(G[A]; Lπ) ≤ 2. Thus a contradiction will be derived.

Assume that a ∈ Lπ(u). At first, we color z, w′, w, and y with four different
colors, and use β to denote the color assigned to y. If a ∈ Lπ(v), we further
color v with a, u′ with b ∈ Lπ(u′) \ {a}, u with c ∈ Lπ(u) \ {a, b}, and x with
d ∈ L(x) \ {b, c, β}. If a /∈ Lπ(v), we color u with a, u′ with b ∈ Lπ(u′) \ {a},
v with c ∈ Lπ(v) \ {b}, and x with d ∈ L(x) \ {b, c, β}. Because a /∈ L(x), the
current colorings satisfy our requirements.

If b ∈ Lπ(w), an analogous proof can be given. Thus suppose that Lπ(u) =
{1, 2, 4} and Lπ(w) = {2, 3, 5}. If there exists a color a ∈ Lπ(v)\{1, 2, 4}, we first
color z, w′, w, and y with distinct colors. Let β denote the color of y. Afterwards,
we color v with a, u′ with b ∈ Lπ(u′) \ {a}, x with c ∈ Lπ(x) \ {a, b, β}, and u

with d ∈ Lπ(u) \ {b, c}. If there exists a ∈ Lπ(u′) \ {1, 2, 4} and a /∈ Lπ(v), we
color z, w′, w, and y with distinct colors, then color u′ with a, x with 4, v with
b ∈ Lπ(v) \ {4}, and u with a color from Lπ(u) \ {4, b}. Since 4 /∈ L(y), the
coloring is available.

Finally, suppose Lπ(v) ∪ Lπ(u′) ⊆ {1, 2, 4} and, similarly, Lπ(z) ∪ Lπ(w′) ⊆
{2, 3, 5}. First color x with 3 and y with 1. Then we color u, u′, and v with 1, 2, 4
and w, w′, and z with 2, 3, 5 such that all these vertices receive distinct colors. The
proof of Lemma 12 is complete.

Combining Lemmas 11 and 12, we can derive the following.

Theorem 13. Conjecture 1 holds for a graph with maximum degree at most 3.

4. EQUITABLE (∆− 1)2-CHOOSABILITY

The distance between two vertices in a graph G is the length of a shortest path
connecting them. For v ∈ V (G), let MG(v) denote the set of vertices which have
distance 2 to the vertex v.

Theorem 14. Let G be a graph with ∆(G) ≥ 3. If k ≥ (∆(G)− 1)2, then
G is equitably k-choosable.

Proof. If ∆(G) = 3, then k ≥ (3 − 1)2 = 4. By Theorem 13, G is equitably
k-choosable. Suppose that the theorem holds for all graphs with maximum degree
less than m, m ≥ 4. We will prove the theorem for graphs with maximum degree
m. Once m is fixed, we further use induction on the order |G|. If |G| ≤ k, the
conclusion is evident. Let G be a graph with ∆(G) = m and |G| ≥ k+1. Suppose
that L is a k-uniform list assignment for G, where k ≥ (m− 1)2. We are going to
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define a set S = {x1, x2, . . . , xk} satisfying (∗). Afterwards, we let H = G − S.
If ∆(H) < ∆(G), then k ≥ (∆(G) − 1)2 > (∆(H) − 1)2. By the induction
hypothesis on the maximum degree, H is equitably L-colorable. If ∆(H) = ∆(G),
H is equitably L-colorable by the induction hypothesis on the number of vertices.
Therefore, G is equitably L-colorable by Lemma 6.

Suppose that u is a vertex of maximum degree in G. We see that |NG(u)| =
dG(u) = m. Since m ≥ 4, we have k ≥ (m − 1)2 > m + 1. Define xk = u, and
let xk−1, xk−2 . . . , xk−m be the m neighbors of u. Let

Yi = MG(u) ∩ NG(xi),

for i = k − m, k − m + 1, . . . , k − 1. Then let

Y =
k−1⋃

i=k−m+3

Yi,

and p = |Y |. Take xk−m−1, xk−m−2, . . . , xk−m−p ∈ Y , xk−m−p−1 ∈ Yk−m+2,
and xk−m−p−2, xk−m−p−3, . . . , x1 ∈ V (G)\{xk−m−p−1, xk−m−p, . . . , xk}. Since
m ≥ 4 and

p = |Y | ≤
k−1∑

i=k−m+3

|Yi| ≤ (m − 3)(m− 1),

we derive

k − m − p − 1 ≥ (m− 1)2 − m − (m − 3)(m− 1)− 1 = m − 3 ≥ 1.

This implies that Y ⊆ S, and xk−m−p−1 ∈ Yk−m+2. Hence S is well-defined. It
remains to check that S satisfies (∗). First we note that |NG(xi) \S| ≤ |NG(xi)| =
dG(xi) ≤ ∆(G) = m for any xi ∈ S. Thus, when i ≤ k − m, we have |NG(xi) \
S|+ (i− 1) ≤ m + (k − m − 1) = k − 1.

Assume that i = k − m + 1. Since xk−m+1 is adjacent to xk and xk ∈ S, it
follows that |NG(xk−m+1) \ S| ≤ m − 1 and thus |NG(xk−m+1) \ S|+ (k − m +
1 − 1) ≤ m − 1 + (k − m) = k − 1.

Assume that i = k−m + 2. Since xk−m+2xk, xk−m+2xk−m−p−1 ∈ E(G) and
xk, xk−m−p−1 ∈ S, we have |NG(xk−m+2) \ S| ≤ m − 2. Thus |NG(xk−m+2) \
S|+ (k − m + 2− 1) ≤ m − 2 + (k − m + 1) = k − 1.

Assume that k−m+3 ≤ i ≤ k. It is easy to see that NG(xi) ⊆ S by definition,
so |NG(xi) \ S| = 0. Therefore |NG(xi) \ S|+ (i − 1) = (i − 1) ≤ k − 1.
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