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Abstract. In this paper, we investigate a minimax complex programming
problem. Several sufficient Optimality conditions are established under the
framework of generalized convexity for analytic functions. Employing the
sufficient optimality conditions, we have proved the weak, strong and strict
converse duality theorems for the complex minimax programming problem.

1. INTRODUCTION AND PRELIMINARIES

It is known that a necessary optimality condition for a differentiable function f
is satisfying f ′(x) = 0. While the sufficient optimality condition, we may regard it
as the converse of the necessary condition by adding some extra assumptions. For
instance, if x0 minimizes a differentiable function, then f ′(x0) = 0. Conversely, if
f ′(x) = 0 has a solution x0, then x0 may or may not be an optimal (min/ or max)
for f(x). If f ∈ C2 and f ′′(x0) > 0 (f ′′(x0) < 0), then x0 is a minimum (resp.
maximum) for f(x).

Based on the above reason, in an optimization problem as well as a mathematical
programming problem, many authors made every effort to study the extra conditions
for which a feasible solution might be optimal, that is, to establish the sufficient
optimality conditions.
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In general, convexity for a function is very useful nature in optimization analysis
to establishing the existence of optimal solution. If a real-valued nonlinear functional
f is convex at x0 ∈ X , a normed linear space, then for any x ∈ X and λ ∈ [0, 1],
we have

f(λx + (1 − λ)x0) ≤ λf(x) + (1 − λ)f(x0).

If 0 < λ < 1, the above inequality yields

f(x)− f(x0) ≥ 1
λ

[f(λ(x− x0) + x) − f(x0)].

Further if f is also differentiable at x0, then as λ → 0, we obtain

(1.1) f(x)− f(x0) ≥ f ′(x0)(x− x0).

This f ′(x0) is a bounded linear functional on X , that is, f ′(x0) ∈ X∗, the dual
space of X . The equality in (1.1) can be expressed as

(1.2) f(x) − f(x0) = f ′(x0)(x − x0) + ρθ

where θ = θ(x, x0) is small enough whenever x near x0, and ρ ∈ R. From (1.1) and
(1.2), the convexity is then extended to generalized convexity; for example, invex,
pseudoconvex, quasiconvex etc. If f′(x0)(x− x0) in (1.1) (or (1.2)) is replaced by
a functional F : X × X × X∗ → R, the convexity is extended to the F -invex, that
is

f(x)− f(x0) ≥ F (x, x0 : f ′(x0)),

combining (1.1) and (1.2), we call that function f is (F, ρ, θ)-convex (resp. strictly
(F, ρ, θ)-convex), if

(1.3)
f(x)− f(x0) ≥ F (x, x0 : f ′(x0)) + ρθ(x, x0)

(resp. f(x) − f(x0) > F (x, x0 : f ′(x0)) + ρθ(x, x0)).

For more detailed application, one can refer Chen and Lai [1] as well as Lee and
Lai [13].

In this paper, we will apply such concept of generalized convexity to deal with
the minimax programming problem in complex spaces described as the form:

(Pc) min
ξ∈X

max
η∈Y

Re ϕ(ξ, η)

subject to −g(ξ) ∈ S ⊂ C
p

where X = {ξ = (z, z̄) ∈ C
2n|z ∈ C

n}; Y = {η = (w, w̄) ∈ C
2m|w ∈ C

m} is
a compact subset in C2m; S is a polyhedral cone in Cp; and for each η ∈ Y , the
maps

ϕ(•, η) : C
2n → C and g(•) : C

2n → C
p
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are assumed to be analytic over the manifold X .
In real variable case, problem (Pc) was considered as the form

(Pr) Min Max f(x, y)
x ∈ X y ∈ Y

subject to −g(x) ≤ 0 for x ∈ X ⊂ Rn

where Y is a compact subset of R
m, f : R

n × R
m → R and g : R

n → R
m are

continuously differentiable maps. In [16], Schmittendor established the necessary
and sufficient optimality conditions for the minimax programming problem (Pr)
under the assumptions of convexity in f and g. Later, Tanimoto [17] proved the
duality theorems for (Pr). Henceafter, many authors investigated the minimax pro-
gramming problem in fractional or nonfractional nonlinear programming (cf. Lai et
al. [5, 9, 11] and their references).

On the other aspect, programming problems could be considered in complex
spaces, so called complex programming problems. It has many applications in
electrical network with alternating currents/voltages by using complex variable z ∈
Cn to stand for elements of network. In variant fields of electric engineering, like
the complex programming problems which are employed in blind deconvolution,
blind equalization, minimal entropy, optimal receiver etc (cf. Lai and Liu [7, 8]).
Concerning the complex programming, Levinson [14] was firstly studied in linear
case, then Swarup and Sharma [16] studied the linear fractional programming in
complex space. Henceforth, many authors investigated nonlinear fractional as well
as non-fractional nonlinear programming in complex spaces (see [2-4], [6-8] and
[15]).

It is remarkable that the manifold X is a closed convex cone over the real field
R (not over complex field C). In order to have the convexity of the real part for a
nonlinear complex function, the function ϕ(ξ, η) in (Pc) is taking the variables in
the form

ξ = (z, z̄) ∈ C
2n and η = (w, w̄) ∈ C

2m

for our requirement of complex minimax problem since any nonlinear analytic

function f(z), z ∈ C
n can not have convex real part (cf. Ferrero [3]).

In this paper, we will establish the sufficient optimality conditions for problem
(Pc) under the framework of generalized quasi/pseudo-convexity which extends
the results of Datta and Bhatia [2]. Employing the existent theorems for optimal
solution, we also treat with the duality problem to the minimax problem (Pc), and
prove the weak, strong as well as the strict converse duality theorems.

Rather than explore optimality conditions, let us now start our work by some
preparation. We describe some notations and definitions for complex programming
in the next section.
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2. DEFINITIONS AND NOTATIONS

We say that a subset S ⊂ C
p is a polyhedral cone if there is an integer k ∈ N

and a matrix A ∈ Cp×k such that

S = AR
k
+ = {Ax|x ∈ R

k
+},

that is, S is generated by a finite number of vectors. Correspondingly, S ⊂ Cp

is a polyhedral cone if it is the intersection of a finite number of closed half-
spaces having the origin on the boundary or there is an integer k ∈ N and k-points
u1, u2, · · · , uk in Cp such that

S =
k⋂

j=1

H(uj) = {z ∈ C
p|Re 〈z, uj〉 ≥ 0, j = 1, 2, · · · , k}

where H(uj), j = 1, 2, · · · , k are closed half-spaces involving the point uj , the
polar (or dual) of the set S is given by

S∗ = {u ∈ C
p|Re 〈z, u〉 ≥ 0 for all z ∈ S}.

Clearly S∗∗ = S, and S∗ = S in the finite dimensional space.
For each ξ ∈ X ⊂ C

2n, if Y is a compact subset in C
2m, the set

Y (ξ) = {η ∈ Y |Re ϕ(ξ, η) = sup
ζ∈Y

Re ϕ(ξ, ζ)}

is a nonempty compact subset of C
2m when ϕ(ξ, •) is analytic on Y ⊂ C

2m.
For each η = (w, w̃) ∈ Y , the mappings

ϕ(•, η) : C
2n → C and g(•) : C

2n → C
p

are analytic on ξ = (z, z̄) ∈ X ⊂ C2n, and by the general Mean Value theorem,

ϕ(ξ, η)− ϕ(ξ0, η) = ϕ′
ξ(ξ0, η)(ξ − ξ0) + o(|ξ − ξ0|)

and
g(ξ)− g(ξ0) = g′(ξ0)(ξ − ξ0) + o(|ξ − ξ0|), ξ0 = (z0, z̄0) ∈ X

where

ϕ′
ξ(ξ0, η)(ξ − ξ0) = (�zϕ(ξ0, η),�z̄ϕ(ξ0, η))

(
z − z0

z̄ − z0

)
= �zϕ(ξ0, η)(z − z0) + �z̄ϕ(ξ0, η)(z̄ − z0)

∈ C,

g′(ξ0)(ξ − ξ0) = (�zg(ξ0),�z̄g(ξ0))
(

z − z0

z̄ − z0

)
= �zg(ξ0)(z − z0) + �z̄g(ξ0)(z̄ − z0)

∈ C
p.
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In view of the expression (1.3), it behooves us to recall the definition of (F , ρ, θ)-
convexity concerning analytic functions. Suppose that the functional F : C

n×C
n×

Cn → R is sublinear with respect to the 3rd argument. That is,

F (z1, z2; u1 + u2) ≤ F (z1, z2; u1) + F (z1, z2; u2)

and
F (z1, z2, αu) = αF (z1, z2; u) for α ≥ 0.

Let θ : C
n × C

n → R+ be such that θ(z1, z2) = 0 only if z1 = z2, and let ρ ∈ R.
Now for simplicity, given any η ∈ Y ⊂ C

2m, ξ = (z, z̄) and ξ0 = (z0, z0) in
X, we use the notations:

(2.1)
A = Re [ϕ(ξ, η)− ϕ(ξ0, η)]

B = F (z, z0;∇zϕ(ξ0, η) + ∇z̄ϕ(ξ0, η)) + ρθ(z, z0)

}
and for any µ ∈ S, the polyhedral cone in C

p, we use:

(2.2)
Ã = Re 〈µ, g(ξ)− g(ξ0)〉
B̃ = F (z, z0; µ�∇zg(ξ0) + µH∇z̄g(ξ0)) + ρθ(z, z0)

}

where µ� stands for transpose of µ, and µH denotes the hermitian of µ, that is,
µH = (µ̄)�.
Then the (F , ρ, θ)-convexity, -quasiconvexity, -pseudoconvexity of the analytic func-
tions ϕ(•, η) and g(•) on X are defined as follows (cf. Lai et al. [7,8]).

Definitions

1. (a) The real part Re ϕ(•, η) of the function ϕ(•, η) : X ⊂ C2n → C is (F ,

ρ, θ)- convex [resp. strictly (F , ρ, θ)-convex] with respect to (=w.r.t. for
abbreviation) R+,
if A ≥ B [resp. A > B].

(b) The mapping g : X ⊂ C2n → Cp is (F , ρ, θ)-convex [resp. strictly (F ,

ρ, θ)-convex] w.r.t. the polyhedral cone S ⊂ C
p,

if Ã ≥ B̃ [resp Ã > B̃].

2. (a) Re ϕ(•, η) is (F , ρ, θ)-quasiconvex [resp. strictly (F , ρ, θ)-quasiconvex],
if A ≤ 0 ⇒ B ≤ 0 [resp. A < 0 ⇒ B ≤ 0].
Equivalently, B > 0 ⇒ A > 0 [resp. B > 0 ⇒ A ≥ 0].

(b) The mapping g : X ⊂ C
2n → C

p is (F , ρ, θ)-quasiconvex [resp. strictly
(F , ρ, θ)-quasiconvex] w.r.t. polyhedral cone S in Cp

if Ã ≤ 0 ⇒ B̃ ≤ 0 [resp. Ã < 0 ⇒ B̃ ≤ 0].
Equivalently, B̃ > 0 ⇒ Ã > 0 [resp. B̃ > 0 ⇒ Ã ≥ 0].
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3. (a) Re ϕ(•, η) is (F , ρ, θ)-pseudoconvex [resp. strictly (F , ρ, θ)-pseudoconvex]
w.r.t. R+,
if B ≥ 0 ⇒ A ≥ 0 [resp. B ≥ 0 ⇒ A > 0].
Equivalently, A < 0 ⇒ B < 0 [resp. A ≤ 0 ⇒ B < 0].

(b) The mapping g : X ⊂ C2n → Cp is (F , ρ, θ)-pseudoconvex [resp. strictly
(F , ρ, θ)-pseudoconvex] w.r.t. the polyhedral cone S ⊂ C

p,
if B̃ ≥ 0 ⇒ Ã ≥ 0 [resp. B̃ ≥ 0 ⇒ Ã > 0].
Equivalently, Ã < 0 ⇒ B̃ < 0 [resp. Ã ≤ 0 ⇒ B̃ < 0].

3. OPTIMALITY CONDITIONS

By Fritz John type optimality conditions in the complex programming problem
(Pc), the following theorem will be useful in discussion of optimality.

Theorem 3.1. (Necessary optimality condition). Let ξ0 = (z0, z0) be an
optimal solution of (P c), and ξ0 is a regular point for the constraint function
g : C2n → Cp, that is, the gradient components g ′

1(ξ0), g′2(ξ0), · · · , g′p(ξ0) of g(ξ0)
are linearly independent, equivalently

〈g′(ξ0), µ〉 = 0 ⇒ µ = 0 in C
p.

Then for k ∈ N, the set of natural numbers, there exist multipliers λ ∈ R
k
+ with

|λ| =
∑k

i=1 λi = 1, a nonzero µ ∈ S∗ ⊂ C
p and vectors ηi ∈ Y (ξ0), i =

1, 2, · · · , k such that

(3.1)
k∑

i=1

λi(�zϕ(ξ0, ηi) + �z̄ϕ(ξ0, ηi)) + 〈µ,�zg(ξ0)〉+ 〈µ,�z̄g(ξ0)〉 = 0

(3.2) Re 〈µ, g(ξ0)〉 = 0

where 〈•, •〉 stands for inner product in C
p and 〈µ,�z̄g(ξ0)〉 ≡ µH �z̄ g(ξ0).

The existence of optimal solution in a programming problem can be deduced
from the converse of necessary optimality conditions by extra assumptions. Thus,
instead of convexity, many authors explore the possibility of the extra conditions. e.g.
the invexity, pseudo/quasi convexity etc. Recently, Lai and Liu defined the (F , ρ, θ)-
convexity (See [7, 8], cf also [12]), and employed such generalized convexity to treat
with the sufficient optimality conditions on complex fractional programming. We
will use the crucial role that convexity plays in the complex minimax programming
problem (Pc) and its duality problem.

Based on the above Definitions, we can establish the following results.

Theorem 3.2. (Sufficient optimality condition I). Suppose that



Optimality Conditions for Minimax Programming of Analytic Functions 679

(A1) Let ξ0 = (z0, z0) ∈ XPc ⊂ C2n be a feasible solution of (P c). For a positive
integer k, there exist λ = (λ1, λ2, · · ·, λk) ∈ R

k
+ with Σk

i=1λi = 1, a nonzero
multiplier µ ∈ S ∗, polar of S in Cp, and vectors ηi ∈ Y (ξ0), i = 1, 2, · · ·, k
such that the results (3.1) and (3.2) hold in Theorem 3.1.
In addition, suppose that

(A2) (i) Re
[∑k

i=1 λiϕ(•, ηi)
]

is a strict (F , ρ1, θ)-quasiconvex function w.r.t.
R+ on X,

(ii) g(•) : X ⊂ C2n → Cp is a strict (F , ρ2, θ)-pseudoconvex map w.r.t.
the polyhedral cone S ⊂ C

p on X,

(iii) ρ1 + ρ2 ≥ 0.

Then ξ0 = (z0, z0) is an optimal solution of (P c).

Proof. Suppose on the contrary that ξ0 = (z, z0) were not an optimal solution
of (Pc). Then there is a ξ = (z, z) such that

sup
η∈Y

Re ϕ(ξ, η) < sup
η∈Y

Re ϕ(ξ0, η).

It follows that, for a positive k ∈ N, ηi ∈ Y (ξ0), i = 1, 2, · · ·, k, we have

Re ϕ(ξ, ηi) < Re ϕ(ξ0, ηi), i = 1, 2, · · ·, k.

Now for λ = (λi), λi ≥ 0, |λ| =
∑k

i=1 λi = 1, we have

(3.3) Re

[
k∑

i=1

λi(ϕ(ξ, ηi) − ϕ(ξ0, ηi))

]
< 0.

By hypothesis, Re
∑k

i=1 λiϕ(•, ηi) is strictly (F , ρ1, θ)-quasiconvex, then (3.3)
implies that

(3.4) F
(

z, z0;
k∑

i=1

λi

(�zϕ(ξ0, ηi) + �zϕ(ξ0, ηi)
)) ≤ −ρ1θ(z, z0).

On the other hand ξ ∈ XPc , ξ0 satisfies (2.2) and so for µ ∈ S∗, we see that

(3.5)
Re 〈µ, g(ξ)〉 ≤ 0 = Re 〈µ, g(ξ0)〉 ,

Re 〈µ, g(ξ)− g(ξ0)〉 ≤ 0.

By assumption (ii), g(•) is a strict (F , ρ2, θ) -pseudoconvex map w.r.t. the polyhe-
dral cone S, then (3.5) implies that

(3.6) F
(
z, z0; µ��zg(ξ0) + µH �z g(ξ0)

)
< −ρ2θ(z, z0).
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Adding (3.4) and (3.6), we conclude from sublinearity of F (z, z0; 0) and condition
(3.1) that

0 < −(ρ1 + ρ2)θ(z, z0),

that is,
ρ1 + ρ2 < 0 since θ(z, z0) > 0 if z �= z0.

This inequality contradicts the fact of ρ1 + ρ2 ≥ 0. Hence ξ0 is an optimal solution
of (Pc).

Theorem 3.3. (Sufficient optimality condition II). Suppose that the assump-
tions (A1) and (A2)(i) in Theorem 3.2 are fulfilled. Further assume that

(A3) (i) the same as (A2)(i),

(ii) g(•) is (F , ρ2, θ)-quasiconvex w.r.t. S ⊂ Cp on X and

(iii) ρ1 + ρ2 > 0.

Then ξ0 = (z0, z0) is an optimal solution of (P c).

Proof. If ξ0 = (z0, z0) were not an optimal of (Pc) then like the proof given
in the first part of Theorem 3.2, we have the inequalities (3.3) and (3.4). Here, by
the strict (F , ρ1, θ)-quasiconvexity, (3.3) implies (3.4), that is,

(3.4) F
(

z, z0;
k∑

i=1

λi

(�zϕ(ξ0, ηi) + �zϕ(ξ0, ηi)
)) ≤ −ρ1θ(z, z0).

Now if g(•) is (F, ρ2, θ)-quasiconvex w.r.t. the polyhedral cone S, then (3.5) would
imply

(3.7) F
(
z, z0; µ��zg(ξ0) + µH �z g(ξ0)

)
≤ −ρ2θ(z, z0).

Adding (3.4) and (3.7), and by the sublinearity of F (z, z0; •) and the condition
(3.1), we obtain

0 ≤ −(ρ1 + ρ2)θ(z, z0),

or
ρ1 + ρ2 ≤ 0 whenever θ(z, z0) > 0 (z �= z0).

This result contradicts the fact of ρ1 + ρ2 > 0. Hence ξ0 is an optimal solution of
(Pc).

Theorem 3.4. (Sufficient optimality condition III).
Suppose that the assumption A1 in Theorem 3.2 holds. In addition, assume that
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(A4) (i) Re
(∑k

i=1 λiϕ(•, ηi) + µHg(•)
)

is a strictly (F, ρ, θ)-quasiconvex w.r.t. R+

on X, and

(ii) ρ > 0.

Then ξ0 = (z0, z0) is an optimal solution of (P c).

Proof. Suppose on the contrary that, there is another feasible point ξ = (z, z) ∈
XPc such that

sup
η∈Y

Re ϕ(ξ, η) < sup
η∈Y

Re ϕ(ξ0, η).

Since Y is compact, there are finite points η1, η2, · · ·, ηk in Y (ξ0) such that

Re ϕ(ξ, ηi) < Re ϕ(ξ0, ηi) for i = 1, 2, · · ·, k.

Then, for λ ∈ R
k
+ with |λ| =

∑k
i=1 λi = 1, we have

(3.9) Re

[
k∑

i=1

λi(ϕ(ξ, ηi) − ϕ(ξ0, ηi))

]
< 0.

On the other hand, the λ, ξ0 and µ ∈ S∗ ⊂ Cp satisfy (3.1), and ξ is a feasible
point of (Pc), we then obtain

(3.10) Re 〈µ, g(ξ)〉 ≤ Re 〈µ, g(ξ0)〉
or Re 〈µ, g(ξ)− g(ξ0)〉 ≤ 0.

Thus adding (3.9) and (3.10), we have

Re

[
k∑

i=1

λi (ϕ(ξ, ηi) − ϕ(ξ0, ηi)) + µH (g(ξ)− g(ξ0))

]
< 0.(3.11)

Since Re (
∑k

i=1 λiϕ(•, ηi)+µHg(•)) is strictly (F , ρ, θ)-quasiconvex w.r.t. R+ on
X , thus (3.11) implies that

(3.12)
F (z, z0;�zϕ(ξ0, η) + �zϕ(ξ0, η) + µ��zg(ξ0)

+µH �z g(ξ0)
) ≤ −ρθ(z, z0).

Since F is sublinear, and by condition (2.1), we have

0 ≤ −ρθ(z, z0) or ρθ(z, z0) ≤ 0,

it leads ρ ≤ 0 since θ(z, z0) > 0. This contradicts the assumption (A3)(ii).
Hence ξ0 = (z0, z0) is an optimal solution.
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4. DUALITY MODEL

The minimax programming problem (Pc) can be rewritten as the following form:

(Pc) Min f(ξ), f(ξ) = sup Re ϕ(ξ, η)
ξ∈X η∈Y

subject to −g(ξ) ∈ S ⊂ C
p

where X = {ξ = (z, z̄) ∈ C2n, z ∈ Cn}, Y is compact in C2m, and S is a
polyhedral cone in C

p.
Since Y is compact, for each ξ ∈ X , the sup

η∈Y
Re ϕ(ξ, η) is attainable if ϕ(ξ, •)

is analytic in C2m. Let

(4.1) Y (ξ) = {η ∈ Y |Reϕ(ξ, η) = sup
ζ∈Y

Re ϕ(ξ, ζ)},

(4.2)
W (ξ) =

{
(k, λ, ηk) ∈ N × Rk

+ × C2mk
∣∣∣λ ∈ Rk

+ with |λ| =
∑k

j=1 λj = 1,

and ηk = (η1, η2, · · · , ηk), ηj ∈ Y (ξ)
}

.

Then by employing the sufficient optimality conditions for problem (Pc), we can
constitute a duality model as the form

(D) max
(k, λ, ηk)∈W (ξ)

sup
(ξ, µ, µ)∈X̃(k,λ, ηk)

f(ξ)

where W (ξ) is defined by (4.2), and for (k, λ, ηk) ∈ W (ξ),

X̃(k, λ, ηk) =
{
(ξ, µ, µ) ∈ C

2n × C
p × C

p | µ �= 0 in S∗, Re 〈µ, g(ξ)〉 ≥ 0
}

is the set of points (ξ, µ, µ̄) satisfying the condition (3.1) and

(4.3) Re 〈µ, g(ξ)〉 ≥ 0.

Here for (k, λ, ηk) ∈ W (ξ), if the set X̃(k, λ, ηk) = ∅, we define the supremun
over X̃ to be -∞.

We prove that (D) plays a duality to the primary problem (Pc), and the duality
theorems are established in the next section.

5. DUALITY THEOREMS

Theorem 5.1. (Weak Duality). Let ζ = (z, z̄) ∈ XPc and (k, λ, ηk, ξ, µ, µ)
be the feasible solutions of (P c) and (D), respectively. Suppose that any one of the
conditions (a)∼(c) is satisfied:
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(a) (A2) in Theorem 3.2,

(b) (A3) in Theorem 3.3,

(c) (A4) in Theorem 3.4.

Then f(ξ) ≤ f(ζ). Equivalently,

sup
η∈Y

Re ϕ(ξ, η) ≤ sup
η∈Y

Re ϕ(ζ, η).

Proof. Suppose on the contrary that there is another feasible point ξ = (z, z)
such that

f(ζ) < f(ξ),

equivalently

(5.1) sup Re ϕ(ζ, η) < sup
η∈Y

Re ϕ(ξ, η).

Then we have

(5.2) Re ϕ(ζ, η̃) < Re ϕ(ξ, η̃) for all η̃ ∈ Y (ξ) ⊂ Y.

Since Y (ξ) is compact, there exist finite points η̃j ∈ Y (ξ), j = 1, 2, · · · , k such
that

(5.3) sup
η∈Y

Re ϕ(ξ, η) = Re ϕ(ξ, η̃j), j = 1, 2, · · · , k.

By (5.2) and (5.3), we get

Re ϕ(ξ, η̃j) < Re ϕ(ξ, η̃j), j = 1, 2, · · · , k.

Multiplying λj ≥ 0 on the both sides of the last inequality, and summing up with
condition

∑k
j=1 λj = 1, then we have

(5.4)
k∑

j=1

Re [λjϕ(ζ, η̃j)] <

k∑
j=1

Re [λjϕ(ξ, η̃j)].

Since ζ ∈ XPc , thus for a nonzero µ ∈ S∗ and condition (4.3) we have

(5.5)
Re 〈µ, g(ζ)〉 ≤ 0 ≤ Re 〈µ, g(ξ)〉,
Re 〈µ, g(ζ)− g(ξ)〉 ≤ 0.
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If hypothesis (a) holds, by (A2)(i), the function Re [
∑k

j=1 λjϕ(•, ηj)] is strictly
(F , ρ1, θ)-quasiconvex w.r.t. R+ on X , it follows that the inequality (5.4) implies

(5.6) F
z, z0;

k∑
j=1

λj�zϕ(ξ, η̃j) +
k∑

j=1

λj �z̄ ϕ(ξ, η̃)

 ≤ −ρ1θ(z, z1).

By (A2)(ii), g(•) is strict (F , ρ2, θ)-pseudoconvex w.r.t. the polyhedral cone S,
the inequality (5.5) implies that

(5.7) F (z, z1; µ��zg(ξ) + µH �z̄ g(ξ)) < −ρ2θ(z, z1).

Adding (5.6) and (5.7), and by the sublinearity of F (z, z1; •) and condition (3.1),
we obtain

0 < −(ρ1 + ρ2)θ(z, z1).

It leads to ρ1 + ρ2 < 0 when θ(z, z1) > 0 (z �= z1). This contradicts the fact
(A2)(iii): ρ1 + ρ2 ≥ 0. Hence f(ξ) ≤ f(ζ).

If hypothesis (b) holds, it can be proved by the same line as the case in (a), and
get the expressions (5.1)∼(5.6). While the condition (A3)(ii): g(•) is (F , ρ2, θ)-
quasiconvex, it follows that (5.5) implies

(5.8) F (z, z1; µ��zg(ξ) + µH �z̄ g(ξ)) ≤ −ρ2θ(z, z1).

By adding (5.6) and (5.8), the condition of (3.1) and the sublinearity of F (z, z1 : •)
reduce to

0 ≤ −(ρ1 + ρ2)θ(z, z1).

It leads to ρ1 + ρ2 ≤ 0. This contradicts the fact of ρ1 + ρ2 > 0.
If hypothesis (c) holds, the proof can be carried by the same line (a) as well

as (b).

Suppose that the assumptions of Theorem 5.1 are fulfilled. Then the optimal
solution ξ0 of problem (Pc) could reduce to an optimal solution of the dual problem
(D) and the two optimal values of (P ) and (D) are equal. More specifically, we
summarize the result in the following theorem.

Theorem 5.2. (Strong Duality). Let ξ0 be an optimal solution of problem
(Pc). If ξ0 is also a regular point for the mapping g : C 2m → Cp. Then there
exist (k, λ, ηk) ∈ W (ξ0) and (ξ0, µ, µ) ∈ X̃(k, λ, ηk) such that (k, λ, ηk, ξ0, µ, µ)
is a feasible solution for (D). If the assumptions of Theorem 5.1 are fulfilled, then
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(k, λ, ηk, ξ0, µ, µ) is an optimal solution of (D), and the two optimal values of (P c)
and (D) are equal.

Proof. If ξ0 is an optimal solution of (Pc), by Theorem 2.1, there exist
(k, λ, η) ∈ W (ξ0) and (ξ0, µ, µ) ∈ X̃(k, λ, η) satisfying (2.1), that is, (k, λ, η, ξ0, µ, µ)
is a feasible solution of (D). Since (Pc) and (D) have the same objective function,
it follows that the feasible point (k, λ, η, ξ0, µ, µ) is an optimal solution for (D),
and the optimal values of (Pc) and (D) are equal.

Now, if both problems (Pc) and (D) have their own optimal solutions respec-
tively, then Theorem 5.2 implies that the optimal solution of (Pc) induces to an
optimal solution of (D). The question rises that does the induced optimal solution
of (D) coincide with the original (D)-optimal ? This argument is the converse
duality of (D).

Actually, the optimal solution of (D) can also reduce to an optimal solution of
(Pc), and the induced optimal solution coincide with the original solution of (Pc)
provided that assumptions of Theorem 5.1 are fulfilled. Precisely, we can state this
result as the following theorem.

Theorem 5.3. (Stirct Converse Duality). Let ζ̂ and (k̂, λ̂, η̂, ξ̂, µ̂, ˆ̄µ) be optimal
solutions of (Pc) and (D) respectively. Suppose that the assumptions of Theorem
5.2 are fulfilled. Then the optimal solution of (D) reduces to the optimal solution
ζ̂ such that ξ̂ = ζ̂, and their optimal values are equal.

Remark. One can reduce the sufficient optimality conditions by using the
appropriate combination for the generalized convexity of Re ϕ(•, η) as well as the
analytic map g(•) in the framework of the paper, and the relative duality theorems
are also established.
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