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FIXED-SAMPLE OPTIMAL NON-ORTHOGONAL ESTIMATING
FUNCTIONS IN THE PRESENCE OF NUISANCE PARAMETERS

Chih-Rung Chen and Lih-Chung Wang

Abstract. In the paper, an important necessary and sufficient condition for a
commonly used non-orthogonal estimating function to be fixed-sample optimal
is proposed. The class of all fixed-sample optimal non-orthogonal estimating
functions is characterized under the proposed condition. A simple counterex-
ample without any fixed-sample optimal non-orthogonal estimating function
is constructed to show that the proposed condition does not necessarily hold.
The usefulness and applicability of the proposed method are illustrated by two
classical examples with many nuisance parameters.

1. INTRODUCTION

In the paper, consider the statistical space (Ω,F , {Pθ : θ ∈ Θ}) for experi-
ment E , where Ω is the sample space of E , F is the σ-field generated by some
subsets of Ω, θ (≡ (ψ, λ)) is the parameter with parameter space Θ (≡ Ψ×Λ), and
each Pθ is a complete probability measure on (Ω,F ). Assume that ψ is the parame-
ter of interest in a known non-empty open subset Ψ of the p-dimensional Euclidean
space Rp for some p ∈ {1, 2, . . .} (≡ N ) and that λ is a nuisance parameter in a
known or unknown non-empty set Λ. Let Y be the response of E .

To proceed the discussion, some basic notations and definitions are introduced
as follows: Let R denote the set of all real numbers and let Y denote the range
of Y . For m, n ∈ N , let Mm×n(R) denote the set of all m × n matrices with
real-valued components.

Definition 1. G is called an estimating function for ψ if G : Ψ × Y �→ Rp,
i.e., G is an Rp-valued function on Ψ × Y .
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Definition 2. An estimating function G for ψ is called unbiased if for each
ψ ∈ Ψ, G(ψ, Y ) is measurable with respect to (w.r.t.) F such that Eθ(G(ψ, Y )) =
0p×1 for all λ ∈ Λ.

Throughout the paper, let G denote the class of all unbiased estimating func-
tions G for ψ such that for each θ ∈ Θ,

(i) G(ψ, Y ) is Pθ-a.s. differentiable w.r.t. ψ and

(ii) bothEθ(Ġ(ψ, Y )) and Covθ(G(ψ, Y )) are non-singular in Mp×p(R), where
Ġ : Ψ×Y �→ Mp×p(R) such that Ġ(ψ, y) = ∂G(ψ, y)/∂ψT if it exists and
0p×p otherwise.

Definition 3. For G ∈ G, G(s) is called the standardized version of G if
G(s) : Θ ×Y �→ Rp such that for each θ ∈ Θ and y ∈ Y ,

(1) G(s)(θ, y) = −Eθ
(
ĠT (ψ, Y )

)
Cov−1

θ (G(ψ, Y ))G(ψ, y).

For G ∈ G, θ ∈ Θ, and y ∈ Y , it follows from Definition 3 that G(ψ, y) = 0p×1

if and only if G(s)(θ, y) = 0p×1.

Definition 4. For G ∈ G, IG is called the information of G if IG : Θ �→
Mp×p(R) such that for each θ ∈ Θ,

(2) IG(θ) = Covθ

(
G(s)(θ, Y )

)
.

For G ∈ G, it follows from Definitions 3 and 4 that for each θ ∈ Θ,

IG(θ) = Eθ

(
ĠT (ψ, Y )

)
Cov−1

θ (G(ψ, Y ))Eθ
(
Ġ(ψ, Y )

)
.

Definition 5. Let G0 be a non-empty subclass of G. G∗ is called fixed-sample
optimal within G0 if

(i) G∗ is in G0 and

(ii) IG∗(θ)− IG(θ) is a positive semi-definite matrix in M p×p(R) for each G ∈
G0 and θ ∈ Θ.

Note that the existence of any fixed-sample optimal estimating function for ψ
within a non-empty subclass of G is by no means guaranteed. Since it is difficult
to verify whether or not part (ii) in Definition 5 holds for most commonly used
subclasses of G, Heyde (1988) proposed a simple and easily verified sufficient
condition for an estimating function for ψ to be fixed-sample optimal within a
non-empty subclass of G as follows:
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Lemma 1. (Heyde, 1988). Let G0 be a non-empty subclass of G. If G∗ is
in G0 and for each G ∈ G0 and θ ∈ Θ,

IG(θ) = Covθ
(
G(s)(θ, Y ), G∗(s)(θ, Y )

)
= Covθ

(
G∗(s)(θ, Y ), G(s)(θ, Y )

)
or, equivalently,

[
Eθ

(
Ġ(ψ, Y )

)]−1
Covθ(G(ψ, Y ), G∗(ψ, Y ))

=
[
Eθ

(
Ġ∗(ψ, Y )

)]−1
Covθ(G∗(ψ, Y )),

then G∗ is a fixed-sample optimal estimating function for ψ within G 0.

Proof. See page 14 of Heyde (1997).

Conversely, Heyde (1988) claimed that the sufficient condition in Lemma 1 is
also a necessary condition for G∗ to be a fixed-sample optimal estimating function
for ψ within a non-empty “convex” subclass of G. However, he implicitly used the
assumption given in the following lemma rather than the convexity assumption in
his proof. See pages 14 and 15 of Heyde (1997) for detail.

Lemma 2. Let G0 be a non-empty subclass of G. Suppose that there exists
a function α : G0 × G0 �→ (0,∞) such that G1 + diag{c1, . . . , cp}G2 ∈ G0 for
all c1, . . . , cp ∈ (−α(G1, G2), α(G1, G2)) and G1, G2 ∈ G0. Then the sufficient
condition in Lemma 1 is also a necessary condition for G ∗ to be a fixed-sample
optimal estimating function for ψ within G 0.

Proof. This lemma follows directly from a straightforward modification of the
proof on pages 14 and 15 of Heyde (1997).

Note that the assumption given in Lemma 2 holds but the convexity assumption
proposed by Heyde (1988) fails for most commonly used subclasses of G, e.g., the
class of all non-orthogonal estimating functions for ψ. See Section 2 for detail.
Under the assumption given in Lemma 2, the class of all fixed-sample optimal
estimating functions for ψ within a non-empty subclass of G can be characterized
as follows:

Lemma 3. Let G0 be a non-empty subclass of G. Suppose that the assumption
given in Lemma 2 holds and that G ∗

0 is a fixed-sample optimal estimating function
for ψ within G0. Then the following are equivalent:

(i) G∗ is a fixed-sample optimal estimating function for ψ within G 0;
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(ii) G∗ is in G0 and for each θ ∈ Θ,

G∗(s)(θ, Y ) = G
∗(s)
0 (θ, Y ) Pθ-a.s.;

(iii) G∗ is in G0 and for each θ ∈ Θ,

IG∗(θ) = IG∗
0
(θ).

Proof. First of all, suppose that part (i) holds. By Definition 5, both G∗ and G∗
0

are in G0. By Lemma 2,

IG∗(θ) = Covθ

(
G∗(s)(θ, Y ), G∗(s)

0 (θ, Y )
)

= Covθ

(
G

∗(s)
0 (θ, Y ), G∗(s)(θ, Y )

)
= IG∗

0
(θ)

for all θ ∈ Θ. Thus,

Eθ

([
G∗(s)(θ, Y ) −G

∗(s)
0 (θ, Y )

] [
G∗(s)(θ, Y ) −G

∗(s)
0 (θ, Y )

]T)

= Covθ

(
G∗(s)(θ, Y )−G

∗(s)
0 (θ, Y )

)
= 0p×p

for all θ ∈ Θ. Therefore, part (ii) holds. By Definition 4, part (iii) holds if part (ii)
holds. By Definition 5, part (i) holds if part (iii) holds. Consequently, this lemma
follows.

The paper is organized as follows. In Section 2, an important necessary and
sufficient condition for a commonly used non-orthogonal estimating function for ψ
to be fixed-sample optimal for ψ is proposed. The class of all fixed-sample opti-
mal non-orthogonal estimating functions for ψ is characterized under the proposed
condition. In Section 3, a simple counterexample without any fixed-sample optimal
non-orthogonal estimating function for ψ is constructed to show that the proposed
condition does not necessarily hold. Finally, in Section 4, the usefulness and appli-
cability of the proposed method are illustrated by two classical examples with many
nuisance parameters.

2. FIXED-SAMPLE OPTIMAL NON-ORTHOGONAL ESTIMATING FUNCTIONS

In this section, an important necessary and sufficient condition for a commonly
used non-orthogonal estimating function for ψ to be fixed-sample optimal for ψ is
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proposed. The class of all fixed-sample optimal non-orthogonal estimating functions
for ψ is characterized under the proposed condition.

For each θ ∈ Θ, i �= i′, and i, i′ ∈ {1, . . . , n}, assume that

(3) Eθ(hi(Y )|Fi) = µi(ψ, Y ) Pθ-a.s.,

(4) Covθ(hi(Y )|Fi) = σ2(θ) Vi(ψ, Y ) Pθ-a.s.,

and

(5)
Eθ

(
[hi(Y )− µi(ψ, Y )] [hi′(Y ) − µi′(ψ, Y )]T

∣∣Fi ∨ Fi′
)

= 0mi×mi′ Pθ-a.s.,

where hi : Y �→ Rmi is a known transformation of response Y for some mi ∈ N
such that hi(Y ) is measurable w.r.t. F ; Fi is a known sub-σ-field of F ; µi :
Ψ ×Y �→ Rmi is a known function such that µi(ψ, Y ) is measurable w.r.t. Fi and
Pθ-a.s. twice differentiable w.r.t. ψ for each θ ∈ Θ; σ2 : Θ �→ (0,∞) is a known
or unknown function; Vi : Ψ × Y �→ Mmi×mi(R) is a known function such that
Vi(ψ, Y ) is measurable w.r.t. Fi for each ψ ∈ Ψ; and Fi∨Fi′ is the smallest σ-field
containing both Fi and Fi′ .

For each i ∈ {1, . . . , n}, let µ̇i : Ψ × Y �→ Mmi×p(R) be a known function
such that for each ψ ∈ Ψ and y ∈ Y , µ̇i(ψ, y) = ∂µi(ψ, y)/∂ψT if it exists and
0mi×p otherwise. For each i ∈ {1, . . . , n}, let V +

i : Ψ × Y �→ Mmi×mi(R) be
a known function such that V +

i (ψ, y) is the Moore-Penrose inverse of Vi(ψ, y)
for each ψ ∈ Ψ and y ∈ Y . See page 26 of Rao (1973) for the definition of
the Moore-Penrose inverse. For each θ ∈ Θ, assume that V+

i (ψ, Y ) is measur-
able w.r.t. Fi and Pθ-a.s. differentiable w.r.t. ψ for each i ∈ {1, . . ., n} and that∑n

i=1 Eθ(µ̇
T
i (ψ, Y )V +

i (ψ, Y )µ̇i(ψ, Y )) is non-singular in Mp×p(R).
Let G1 denote the class of all estimating functions G in G for ψ such that for

each ψ ∈ Ψ and y ∈ Y ,

(6) G(ψ, y) =
n∑
i=1

Ai(ψ, y) [hi(y)− µi(ψ, y)],

where Ai : Ψ × Y �→ Mp×mi(R) is a known function such that Ai(ψ, Y ) is
measurable w.r.t. Fi and Pθ-a.s. differentiable w.r.t. ψ for each θ ∈ Θ. In the
paper, G1 is called the class of all non-orthogonal estimating functions for ψ and
any estimating function G in G1 for ψ is called a non-orthogonal estimating function
for ψ. There are two important special cases for G1 as follows:

Case 1. When Fi = {∅,Ω} for all i ∈ {1, . . . , n}, G1 is called the class of
all linear estimating functions for ψ and any estimating function G in G1 for ψ is
called a linear estimating function for ψ.



658 Chih-Rung Chen and Lih-Chung Wang

Case 2. When Fi ⊆ Fi+1 and hi(Y ) is measurable w.r.t. Fi+1 for each
i ∈ {1, . . . , n} with Fn+1 ≡ F , G1 is called the class of all martingale estimating
functions for ψ and any estimating function G in G1 for ψ is called a martingale
estimating function for ψ.

A necessary and sufficient condition for an estimating functionG for ψ satisfying
equation (6) to be in G1 is proposed as follows:

Lemma 4. Let G be an estimating function for ψ such that equation (6)
holds. Then the following are equivalent:

(i) G is in G1;

(ii) both
∑n

i=1Eθ(Ai(ψ, Y )µ̇i(ψ, Y )) and
∑n

i=1 Eθ(Ai(ψ, Y )Vi(ψ, Y )ATi (ψ, Y ))
are non-singular in Mp×p(R) for each θ ∈ Θ.

Proof. By equations (3) and (6),

Eθ(G(ψ, Y )) = 0p×1

and

(7) Eθ

(
Ġ(ψ, Y )

)
= −

n∑
i=1

Eθ(Ai(ψ, Y ) µ̇i(ψ, Y ))

for all θ ∈ Θ. By equations (3)-(6),

(8) Covθ(G(ψ, Y )) = σ2(θ)

[
n∑
i=1

Eθ
(
Ai(ψ, Y ) Vi(ψ, Y )ATi (ψ, Y )

)]

for all θ ∈ Θ. Since σ2(θ) > 0 for all θ ∈ Θ, this lemma follows from the defini-
tions of G and G1.

By the definition of G1, it is easy to see that G ∈ G1 if and only if −G ∈ G1.
As [G + (−G)]/2 (= 0p×1) /∈ G1, G1 cannot be a convex subclass of G and thus
the convexity assumption proposed by Heyde (1988) fails for G1. However, it is
easy to verify that the assumption given in Lemma 2 holds for G1. Consequently, it
follows from Lemma 2 that the sufficient condition in Lemma 1 is also a necessary
condition for an estimating function for ψ to be fixed-sample optimal within G1.

An important necessary and sufficient condition for an estimating function for ψ
to be fixed-sample optimal within G1 is proposed as follows:

Lemma 5. Let G∗ be the estimating function for ψ such that for each ψ ∈ Ψ
and y ∈ Y,

(9) G∗(ψ, y) =
n∑
i=1

A∗
i (ψ, y) [hi(y)− µi(ψ, y)],
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where A∗
i : Ψ × Y �→ Mp×mi(R) is a known function such that A∗

i (ψ, Y ) is
measurable w.r.t. Fi and Pθ-a.s. differentiable w.r.t. ψ for each θ ∈ Θ. Then the
following are equivalent:

(i) G∗ is fixed-sample optimal within G 1;

(ii) both
∑n

i=1 Eθ(A∗
i (ψ, Y )µ̇i(ψ, Y )) and

∑n
i=1Eθ(A∗

i (ψ, Y )Vi(ψ, Y )A∗T
i (ψ, Y )) are

non-singular in Mp×p(R) for each θ ∈ Θ and
[

n∑
i=1

Eθ(Ai(ψ, Y ) µ̇i(ψ, Y ))

]−1 [
n∑

i=1

Eθ

(
Ai(ψ, Y )Vi(ψ, Y )A∗T

i (ψ, Y )
)]

=

[
n∑

i=1

Eθ(A∗
i (ψ, Y ) µ̇i(ψ, Y ))

]−1 [
n∑

i=1

Eθ

(
A∗

i (ψ, Y )Vi(ψ, Y )A∗T
i (ψ, Y )

)]

for all G ∈ G1 satisfying equation (6) and θ ∈ Θ.

Proof. By equations (3)-(6) and (9),

(10)

Covθ (G(ψ, Y ), G∗(ψ, Y ))

= σ2(θ)

[
n∑
i=1

Eθ
(
Ai(ψ, Y ) Vi(ψ, Y )A∗T

i (ψ, Y )
)]

for all G ∈ G1 satisfying equation (6) and θ ∈ Θ. Consequently, this lemma follows
from Lemmas 2 and 4 and equations (7), (8), and (10).

A commonly used non-orthogonal estimating function for ψ in the literature is
given as follows:

Lemma 6. Let C : Ψ �→ Mp×p(R) be a known differentiable function such
that C(ψ) is non-singular for each ψ ∈ Ψ. Let G ∗

C be the estimating function for ψ
such that for each ψ ∈ Ψ and y ∈ Y,

(11) G∗
C(ψ, y) = C(ψ)

{
n∑
i=1

µ̇Ti (ψ, y) V+
i (ψ, y) [hi(y)− µi(ψ, y)]

}
.

Then G∗
C is in G1.

Proof. For each i ∈ {1, . . . , n}, let A∗
C,i : Ψ × Y �→ Mp×mi(R) such that for

each ψ ∈ Ψ and y ∈ Y ,

(12) A∗
C,i(ψ, y) = C(ψ) µ̇Ti (ψ, y) V+

i (ψ, y).
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Observe that for each θ ∈ Θ,

(13)

n∑
i=1

Eθ
(
A∗
C,i(ψ, Y ) µ̇i(ψ, Y )

)

= C(ψ)

[
n∑
i=1

Eθ
(
µ̇Ti (ψ, Y ) V +

i (ψ, Y ) µ̇i(ψ, Y )
)]

and

(14)

n∑
i=1

Eθ
(
A∗
C,i(ψ, Y ) Vi(ψ, Y )A∗T

C,i(ψ, Y )
)

= C(ψ)

[
n∑
i=1

Eθ
(
µ̇Ti (ψ, Y ) V +

i (ψ, Y ) µ̇i(ψ, Y )
)]
CT (ψ).

Since C(ψ) and
∑n

i=1 Eθ(µ̇
T
i (ψ, Y )V +

i (ψ, Y )µ̇i(ψ, Y )) are non-singular in Mp×p
(R) for all θ ∈ Θ, this lemma follows from Lemma 4.

A simple and easily verified necessary and sufficient condition for G∗
C given in

Lemma 6 to be fixed-sample optimal within G1 is proposed as follows:

Theorem 1. Let G∗
C be the estimating function for ψ given in Lemma 6. Then

the following are equivalent:
(i) G∗

C is fixed-sample optimal within G 1;

(ii) for each G ∈ G1 satisfying equation (6) and θ ∈ Θ,

n∑
i=1

Eθ
(
Ai(ψ, Y ) Vi(ψ, Y ) V +

i (ψ, Y ) µ̇i(ψ, Y )
)

=
n∑
i=1

Eθ(Ai(ψ, Y ) µ̇i(ψ, Y )).

Proof. For each i ∈ {1, . . . , n}, let A∗
C,i : Ψ × Y �→ Mp×mi(R) such that

equation (12) holds. Observe that

(15)

n∑
i=1

Eθ
(
Ai(ψ, Y ) Vi(ψ, Y )A∗T

C,i(ψ, Y )
)

=

[
n∑
i=1

Eθ
(
Ai(ψ, Y ) Vi(ψ, Y ) V +

i (ψ, Y ) µ̇i(ψ, Y )
)]
CT (ψ)
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for all G ∈ G1 satisfying equation (6) and θ ∈ Θ. Conseqently, this theorem follows
from Lemma 5 and equations (13)-(15).

A very useful sufficient condition for G∗
C given in Lemma 6 to be fixed-sample

optimal within G1 is proposed as follows:

Corollary 1. Let G∗
C be the estimating function for ψ given in Lemma 6. If

the column space of µ̇i(ψ, Y ) is Pθ-a.s. contained in the column space of V i(ψ, Y )
or, equivalently,

(16) Vi(ψ, Y ) V +
i (ψ, Y ) µ̇i(ψ, Y ) = µ̇i(ψ, Y ) Pθ-a.s.

for each θ ∈ Θ and i ∈ {1, . . . , n}, then G∗
C is fixed-sample optimal within G 1.

Proof. By part (b) of (vi) on page 26 of Rao (1973), these two proposed condi-
tions are equivalent. Consequently, this corollary follows directly from Theorem 1.

Another very useful sufficient condition for G∗
C given in Lemma 6 to be fixed-

sample optimal within G1 is proposed as follows:

Corollary 2. Let G∗
C be the estimating function for ψ given in Lemma 6.

If Vi(ψ, Y ) is Pθ-a.s. non-singular in Mmi×mi(R) for each θ ∈ Θ and i ∈ {1,
. . . , n}, then G∗

C is fixed-sample optimal within G 1.

Proof. This corollary follows directly from Corollary 1.

The necessary and sufficient condition given in Theorem 1 can be utilized
for characterizing the class of all fixed-sample optimal estimating functions for ψ
within G1 as follows:

Theorem 2. Suppose that the necessary and sufficient condition given in
Theorem 1 holds. Then the following are equivalent:

(i) G∗ is a fixed-sample optimal estimating function for ψ within G 1;

(ii) G∗ is in G1 and for each θ ∈ Θ,

G∗(s)(θ, Y ) = σ−2(θ)
{∑n

i=1 µ̇
T
i (ψ, Y )V +

i (ψ, Y ) [hi(Y ) − µi(ψ, Y )]
}

Pθ-a.s.;

(iii) G∗ is in G1 and for each θ ∈ Θ,

IG∗(θ) = σ−2(θ)

[
n∑
i=1

Eθ
(
µ̇Ti (ψ, Y ) V +

i (ψ, Y ) µ̇i(ψ, Y )
)]
.
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Proof. By Theorem 1, G∗
C is fixed-sample optimal within G1. By equations (1),

(7), (8), and (11)-(14),

G
∗(s)
C (θ, Y ) = σ−2(θ)

{
n∑
i=1

µ̇Ti (ψ, Y ) V +
i (ψ, Y ) [hi(Y ) − µi(ψ, Y )]

}

for all θ ∈ Θ. By equations (2)-(5),

IG∗
C
(θ) = σ−2(θ)

[
n∑
i=1

Eθ
(
µ̇Ti (ψ, Y ) V +

i (ψ, Y ) µ̇i(ψ, Y )
)]

for all θ ∈ Θ. Consequently, this theorem follows from Lemma 3.

3. A COUNTEREXAMPLE

In this section, a simple counterexample without any fixed-sample optimal esti-
mating function for ψ within G1 is constructed to show that part (ii) in Theorem 1
may fail and G∗

C given in Lemma 6 is not necessarily a fixed-sample optimal esti-
mating function for ψ within G1.

Counterexample 1. Let Y (≡ (Y1, Y2)T ) be the response of experiment E
such that Y is distributed as N (µ(ψ), λV (ψ)) for some unknown θ ∈ Θ, where
θ (≡ (ψ, λ)) is the parameter with parameter space Θ (≡ Ψ×Λ); ψ is the parameter
of interest in a known non-empty open subset Ψ of R; λ is a nuisance parameter
in a known or unknown non-empty subset Λ of (0,∞); µ : Ψ �→ R2 is a known
function such that µ(ψ) = (ψ, ψ)T for all ψ ∈ Ψ; V : Ψ �→ M2×2(R) is a known
function such that

V (ψ) =
(

cos2(ψ) cos(ψ) sin(ψ)
cos(ψ) sin(ψ) sin2(ψ)

)
=

(
cos(ψ)
sin(ψ)

)
(cos(ψ), sin(ψ))

for all ψ ∈ Ψ; and N (µ(ψ), λV (ψ)) is the bivariate normal distribution with
mean vector µ(ψ) and covariance matrix λV (ψ). Set n ≡ 1, h1(Y ) ≡ Y , and
F1 ≡ {∅,Ω}.

By equation (3), µ1(ψ, Y ) = µ(ψ) for all ψ ∈ Ψ, which implies that µ̇1(ψ, Y ) =
(1, 1)T for all ψ ∈ Ψ. By equation (4), σ2(θ) = λ > 0 and V1(ψ, Y ) = V (ψ) for
all ψ ∈ Ψ, which implies that V +

1 (ψ, Y ) = V (ψ) for all ψ ∈ Ψ. Since

Eθ
(
µ̇T1 (ψ, Y ) V +

1 (ψ, Y ) µ̇1(ψ, Y )
)

= [cos(ψ) + sin(ψ)]2

for all θ ∈ Θ, Eθ(µ̇T1 (ψ, Y )V +
1 (ψ, Y )µ̇1(ψ, Y )) > 0 for all θ ∈ Θ if and only if

Ψ ⊆ R\{−π/4 + kπ : k ∈ Z}, where Z denotes the set of all integers.
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In the following, assume that Ψ is a known non-empty open subset of R\{−π/4+
kπ : k ∈ Z}. Let C : Ψ �→ R\{0} be a known differentiable function. Let G∗

C be
the estimating function for ψ such that equations (11) and (12) hold. Then

G∗
C(ψ, Y ) = A∗

C,1(ψ, Y ) [h1(Y ) − µ1(ψ, Y )]

= C(ψ) µT1 (ψ, Y ) V +
1 (ψ, Y ) [Y − µ(ψ)]

= C(ψ) [cos(ψ) + sin(ψ)] [cos(ψ) (Y1 − ψ) + sin(ψ) (Y2 − ψ)]

for all ψ ∈ Ψ. By Lemma 6, G∗
C is in G1.

Let G(1) be the estimating function for ψ such that for each ψ ∈ Ψ and y ∈ Y ,

G(1)(ψ, y) ≡ A
(1)
1 (ψ, y) [h1(y) − µ1(ψ, y)] ≡ (1, 1) [y− µ(ψ)].

Since
Eθ

(
A

(1)
1 (ψ, Y ) µ̇1(ψ, Y )

)
= 2 > 0

and

Eθ

(
A

(1)
1 (ψ, Y ) V1(ψ, Y )A(1)T

1 (ψ, Y )
)

= [cos(ψ) + sin(ψ)]2 > 0

for all θ ∈ Θ, it follows from Lemma 4 that G(1) is in G1.
Observe that

Eθ

(
A

(1)
1 (ψ, Y ) V1(ψ, Y ) V +

1 (ψ, Y ) µ̇1(ψ, Y )
)

= [cos(ψ) + sin(ψ)]2

�= 2

= Eθ

(
A

(1)
1 (ψ, Y ) µ̇1(ψ, Y )

)
for all θ ∈ (Ψ\{π/4+ kπ : k ∈ Z})×Λ. Since (Ψ\{π/4+ kπ : k ∈ Z})×Λ is a
non-empty subset of Θ, part (ii) in Theorem 1 fails. Consequently, it follows from
Theorem 1 that G∗

C is not fixed-sample optimal within G1 for Counterexample 1.
Moreover, there does not exist any fixed-sample optimal estimating function

for ψ within G1 for Counterexample 1, which can be shown by a contradictory
argument as follows:

Suppose that there exists a fixed-sample optimal estimating function G∗ for ψ
within G1 such that for each ψ ∈ Ψ and y ∈ Y ,

G∗(ψ, y) ≡ A∗
1(ψ, y) [h1(y)− µ1(ψ, y)]≡ (A∗

11(ψ), A∗
12(ψ)) [y− µ(ψ)].

Let G(2) be the estimating function for ψ such that for each ψ ∈ Ψ and y ∈ Y ,

G(2)(ψ, y) ≡ A
(2)
1 (ψ, y) [h1(y) − µ1(ψ, y)] ≡ (cos(ψ), sin(ψ)) [y− µ(ψ)].
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Since
Eθ

(
A

(2)
1 (ψ, Y ) µ̇1(ψ, Y )

)
= cos(ψ) + sin(ψ) �= 0

and
Eθ

(
A

(2)
1 (ψ, Y ) V1(ψ, Y )A(2)T

1 (ψ, Y )
)

= 1 > 0

for all θ ∈ Θ, it follows from Lemma 4 that G(2) is in G1. By Lemma 5,
A∗

11(ψ) cos(ψ) + A∗
12(ψ) sin(ψ) �= 0 for all ψ ∈ Ψ. Observe that

[
Eθ

(
A

(1)
1 (ψ, Y ) µ̇1(ψ, Y )

)]−1 [
Eθ

(
A

(1)
1 (ψ, Y ) V1(ψ, Y )A∗T

1 (ψ, Y )
)]

=
[cos(ψ) + sin(ψ)] [A∗

11(ψ) cos(ψ) + A∗
12(ψ) sin(ψ)]

2

�= A∗
11(ψ) cos(ψ) + A∗

12(ψ) sin(ψ)
cos(ψ) + sin(ψ)

=
[
Eθ

(
A

(2)
1 (ψ, Y ) µ̇1(ψ, Y )

)]−1 [
Eθ

(
A

(2)
1 (ψ, Y ) V1(ψ, Y )A∗T

1 (ψ, Y )
)]

for all θ ∈ (Ψ\{π/4 + kπ : k ∈ Z}) × Λ. Since both G(1) and G(2) are in G1

and (Ψ\{π/4 + kπ : k ∈ Z}) × Λ is a non-empty subset of Θ, it follows from
Lemma 5 that G∗ is not fixed-sample optimal within G1, which is a contradiction.
Consequently, there does not exist any fixed-sample optimal estimating function
for ψ within G1 for Counterexample 1.

In the literature, many authors claimed that G∗
C given in Lemma 6 is fixed-

sample optimal within G1 without mentioning any further condition. For example,
see page 32 of Heyde (1997) when G1 is the class of all martingale estimating func-
tions for ψ. However, by Counterexample 1, part (ii) in Theorem 1 may fail and
thus G∗

C is not necessarily fixed-sample optimal within G1. Moreover, by Coun-
terexample 1, there does not necessarily exist any fixed-sample optimal estimating
function for ψ within G1. Consequently, part (ii) in Theorem 1 should be verified
or assumed before we claim that G∗

C is fixed-sample optimal within G1.

4. APPLICATIONS

In this section, the usefulness and applicability of the method proposed in Sec-
tion 2 are illustrated by two classical examples with many nuisance parameters.

Example 1. Neyman-Scott problem (1948). First of all, consider a special case
as follows: Assume that Y (≡ (Y T

1 , . . . , Y
T
n )T ) is the response of experiment E for

some n ∈ N such that



Fixed-sample Optimal Non-orthogonal Estimating 665

(1) Y1, . . . , Yn are independent random vectors and

(2) for each i ∈ {1, . . . , n}, Yi (≡ (Yi0, Yi1, . . . , Yimi)
T ) is distributed as the

(mi + 1)-variate normal distribution with mean vector λi1(mi+1)×1 and co-
variance matrix ψImi+1 for some mi ∈ N ,

where ψ is the parameter of interest in (0,∞) (≡ Ψ), (λ1, . . . , λn)T (≡ λ̃) is a
nuisance parameter in Rn, (ψ, λ̃) is the parameter with parameter space Ψ ×Rn,
and Imi+1 denotes the identity matrix of order mi + 1.

Note that the maximum likelihood estimator (MLE) ψ̂ML of ψ is given by

(17)

ψ̂ML =
1

n+
∑n

i=1 mi

n∑
i=1

mi∑
j=0

(
Yij − Ȳi·

)2

=
1

n+
∑n

i=1 mi

n∑
i=1


 mi∑
j=0

Y 2
ij − (mi + 1) Ȳ 2

i·


 ,

where Ȳi· ≡
∑mi

j=0 Yij/(mi + 1). Then ψ̂ML is distributed as ψχ2∑n
i=1mi

/(n +∑n
i=1 mi) with mean ψ

∑n
i=1 mi/(n+

∑n
i=1 mi) and variance 2ψ2

∑n
i=1 mi/(n+∑n

i=1 mi)2 → 0 as n → ∞, where χ2∑n
i=1 mi

denotes the chi-squared distribution
with

∑n
i=1 mi degrees of freedom. It follows from the central limit theorem (CLT)

that
(
∑n

i=1 mi)1/2√
2ψ

(
n+

∑n
i=1 mi∑n

i=1 mi
ψ̂ML − ψ

)
d→ N (0, 1)

as n → ∞, where N (0, 1) denotes the standard normal distribution. Moreover, it
follows from the strong law of large numbers (SLLN) that

n+
∑n

i=1 mi∑n
i=1 mi

ψ̂ML → ψ Pθ-a.s.

as n→ ∞. Consequently, the following are equivalent:

(i)
∑n

i=1 mi/n→ ∞ as n→ ∞;

(ii) ψ̂ML is a weakly consistent estimator of ψ as n→ ∞;

(iii) ψ̂ML is a strongly consistent estimator of ψ as n→ ∞;

(iv) ψ̂ML is a mean-square-error (MSE) consistent estimator of ψ as n → ∞,

i.e., Eθ((ψ̂ML − ψ)2) → 0 as n→ ∞;

(v) ψ̂ML is an asymptotically unbiased estimator of ψ as n→ ∞, i.e., E θ(ψ̂ML−
ψ) → 0 as n→ ∞.
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In practice, {mi}∞i=1 is a bounded sequence, which implies that part (i) fails. When
part (i) fails, ψ̂ML is not a weakly consistent estimator of ψ as n → ∞ and thus
should not be used for estimation of ψ. However, (n+

∑n
i=1mi)ψ̂ML/

∑n
i=1 mi is

always an unbiased and weakly, MSE, and strongly consistent estimator of ψ as
n → ∞. Consequently, (n +

∑n
i=1 mi)ψ̂ML/

∑n
i=1mi could be used for good

estimation of ψ.
Next, consider a more general case as follows: Assume that Y (≡ (Y T1 , . . . , Y

T
n )

T ) is the response of experiment E for some n ∈ N such that for each i ∈ {1, . . . , n},
Yi (≡ (Yi0, Yi1, . . . , Yimi)

T ) has mean vector λi1(mi+1)×1 and covariance ma-
trix ψImi+1 for somemi ∈ N , where ψ is the parameter of interest in Ψ (≡ (0,∞)),
(λ0, λ1, . . . , λn) (≡ λ) is a nuisance parameter in Λ0 ×Rn (≡ Λ) for some known
or unknown non-empty set Λ0, and (ψ, λ) (≡ θ) is the parameter with parameter
space Ψ × Λ (≡ Θ). For example, Λ0 is a set consisting of only one element for
the special case of Example 1.

For each i ∈ {1, . . . , n}, set Ȳi· ≡
∑mi

j=0 Yij/(mi+1) and hi(Y ) ≡ ∑mi
j=0(Yij−

Ȳi·)2. For each θ ∈ Θ, i �= i′, and i, i′ ∈ {1, . . . , n}, assume that

(18) V arθ(hi(Y )) = mi σ
2(θ)

and

(19) Covθ(hi(Y ), hi′(Y )) = 0,

where σ2 : Θ �→ (0,∞) is a known or unknown function. For example, σ2 : Θ �→
(0,∞) is a known function such that σ2(θ) = 2ψ2 for all θ ∈ Θ for the special
case of Example 1.

Assume that one of the following conditions holds:

(i) Fi = {∅,Ω} for all i ∈ {1, . . . , n}.

(ii) Fi is the σ-field generated by Ȳi· for each i ∈ {1, . . . , n}.

(iii) Fi is the σ-field generated by Ȳ1·, . . . , Ȳn· for each i ∈ {1, . . . , n}.

(iv) F1 = {∅,Ω} and Fi is the σ-field generated by Y1, . . . , Yi−1 for each i ∈
{2, . . . , n}.

(v) F1 is the σ-field generated by Ȳ1· and Fi is the σ-field generated by Y1, . . . ,

Yi−1, Ȳi· for each i ∈ {2, . . . , n}.

For each θ ∈ Θ and i, i′ ∈ {1, . . . , n}, assume that

(20) Eθ(hi(Y )|Fi) = Eθ(hi(Y )) Pθ-a.s.
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and

(21)
Eθ([hi(Y ) −Eθ(hi(Y ))] [hi′(Y ) − Eθ(hi′(Y ))]|Fi ∨ Fi′)

= Eθ([hi(Y ) −Eθ(hi(Y ))] [hi′(Y ) − Eθ(hi′(Y ))]) Pθ-a.s.

For example, equations (20) and (21) hold under any one of Conditions 1-5 for the
special case of Example 1.

For each i ∈ {1, . . . , n}, let µi, Vi : Ψ ×Y �→ R be known functions such that
µi(ψ, y) = miψ and Vi(ψ, y) = mi for all ψ ∈ Ψ and y ∈ Y . Then µ̇i(ψ, Y ) = mi

and V +
i (ψ, Y ) = 1/mi for all ψ ∈ Ψ and i ∈ {1, . . . , n}. By equations (18)-(21),

it is easy to verify that equations (3)-(5) hold.
Let C : Ψ �→ R\{0} be a known differentiable function and let G∗

C be the
estimating function for ψ given in Lemma 6. Then

G∗
C(ψ, Y ) = C(ψ) [

∑n
i=1 hi(Y ) − (

∑n
i=1 mi)ψ]

for all ψ ∈ Ψ. By Corollary 2, G∗
C is fixed-sample optimal within G1. Moreover,

by Theorem 2, the following are equivalent:

(i) G∗ is a fixed-sample optimal estimating function for ψ within G 1;
(ii) G∗ is in G1 and for each θ ∈ Θ,

G∗(s)(θ, Y ) =
∑n

i=1 hi(Y ) − (
∑n

i=1 mi)ψ
σ2(θ)

Pθ-a.s.;

(iii) G∗ is in G1 and for each θ ∈ Θ,

IG∗(θ) =
∑n

i=1 mi

σ2(θ)
.

Set
ψ̂FSO ≡

∑n
i=1 hi(Y )∑n
i=1 mi

.

Then ψ̂FSO = (n+
∑n

i=1mi)ψ̂ML/
∑n

i=1mi, where ψ̂ML is given in equation (17).
Since G∗(ψ, Y )|ψ=ψ̂FSO

= 0 Pθ-a.s. for each fixed-sample optimal estimating func-
tion G∗ for ψ within G1, ψ̂FSO is called the fixed-sample optimal estimator (FSOE)
of ψ in the paper. Note that ψ̂FSO is an unbiased estimator of ψ and

V arθ

(
ψ̂FSO

)
=

σ2(θ)∑n
i=1mi

→ 0

as n→ ∞. Thus, ψ̂FSO is an MSE consistent estimator of ψ as n→ ∞, which im-
plies that ψ̂FSO is also a weakly consistent estimator of ψ as n→ ∞. Consequently,
ψ̂FSO could be used for good estimation of ψ.
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Example 2. First of all, consider a special case as follows: Assume that
Y (≡ (Y T1 , . . . , Y

T
n )T ) is the response of experiment E for some n ∈ N such that

(1) Y1, . . . , Yn are independent random vectors and

(2) for each i ∈ {1, . . . , n}, Yi (≡ (Yi0, Yi1, . . . , Yip)T ) is distributed as the (p+
1)-variate normal distribution with mean vector λi1(p+1)×1+(0, ψ1, . . . , ψp)T

and covariance matrix λ0Ip+1 for some p ∈ N ,

where ψ is the parameter of interest in Rp (≡ Ψ), (λ0, λ1, . . . , λn)T (≡ λ̃) is a
nuisance parameter in (0,∞)×Rn, (ψ, λ̃) is the parameter with parameter space Ψ×
(0,∞)×Rn, and Ip+1 denotes the identity matrix of order p+ 1.

Note that the MLE ψ̂ML of ψ is given by

(22) ψ̂ML =
(
Ȳ·1 − Ȳ·0, . . . , Ȳ·p − Ȳ·0

)T
,

where Ȳ·j ≡ ∑n
i=1 Yij/n for each j ∈ {0, 1, . . . , p}. Then ψ̂ML is distributed

as the p-variate normal distribution with mean vector ψ and covariance matrix
λ0(Ip + 1p×11Tp×1)/n → 0p×p as n → ∞, where Ip denotes the identity matrix
of order p. Thus, ψ̂ML is an MSE consistent estimator of ψ as n → ∞, i.e.,
Eθ((ψ̂ML − ψ)T (ψ̂ML − ψ)) → 0 as n→ ∞. It follows from the CLT that√

n

λ0

(
ψ̂ML − ψ

)
d→ N

(
0p×1, Ip + 1p×11Tp×1

)
as n→ ∞, where N (0p×1, Ip+1p×11Tp×1) denotes the p-variate normal distribution
with mean vector 0p×1 and covariance matrix Ip + 1p×11Tp×1. Moreover, it follows
from the SLLN that ψ̂ML is a strongly consistent estimator of ψ as n→ ∞, which
implies that it is also a weakly consistent estimator of ψ as n→ ∞. Consequently,
ψ̂ML could be used for good estimation of ψ.

Next,consider a more general case as follows: Assume that Y(≡(Y T1 , . . . ,Y
T
n )T )

is the response of experiment E for some n ∈ N such that

(i) for each i ∈ {1, . . . , n}, Yi (≡ (Yi0, Yi1, . . . , Yip)T ) has mean vector λi1(p+1)

×1 + (0, ψ1, . . ., ψp)T and covariance matrix σ2(θ)Ip+1 for some p ∈ N ;
(ii) for each i �= i′ and i, i′ ∈ {1, . . . , n}, Covθ(Yi, Yi′) = 0(p+1)×(p+1),

where (ψ1, . . . , ψp) (≡ ψ) is the parameter of interest in Rp (≡ Ψ), (λ0, λ1, . . . , λn)
(≡ λ) is a nuisance parameter in Λ0 ×Rn (≡ Λ) for some known or unknown non-
empty set Λ0, (ψ, λ) (≡ θ) is the parameter with parameter space Ψ × Λ (≡ Θ),
and σ2 : Θ �→ (0,∞) is a known or unknown function. For example, Λ0 = (0,∞)
and σ2 : Θ �→ (0,∞) is a known function such that σ2(θ) = λ0 for all θ ∈ Θ for
the special case of Example 2.
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For each i ∈ {1, . . . , n}, set hi(Y ) ≡ (Yi1 − Yi0, . . . , Yip − Yi0)T . Assume
that one of conditions (i)-(v) given in Example 1 holds. For each θ ∈ Θ and
i, i′ ∈ {1, . . . , n}, assume that

(23) Eθ(hi(Y )|Fi) = Eθ(hi(Y )) Pθ-a.s.

and

(24)
Eθ

(
[hi(Y ) − Eθ(hi(Y ))] [hi′(Y )− Eθ(hi′(Y ))]T

∣∣Fi ∨ Fi′
)

= Eθ
(
[hi(Y ) − Eθ(hi(Y ))] [hi′(Y ) −Eθ(hi′(Y ))]T

)
Pθ-a.s.

For example, equations (23) and (24) hold under any one of Conditions 1-5 for the
special case of Example 2.

For each i ∈ {1, . . . , n}, let µi : Ψ × Y �→ Rp and Vi : Ψ × Y �→ Mp×p(R)
be known functions such that µi(ψ, y) = ψ and Vi(ψ, y) = Ip + 1p×11Tp×1 for all
ψ ∈ Ψ and y ∈ Y . Then µ̇i(ψ, Y ) = Ip and V +

i (ψ, Y ) = Ip − 1p×11Tp×1/(p+ 1)
for all ψ ∈ Ψ and i ∈ {1, . . . , n}. By equations (23) and (24), it is easy to verify
that equations (3)-(5) hold.

Let C : Ψ �→ Mp×p(R) be a known differentiable function such that C(ψ) is
non-singular for each ψ ∈ Ψ. Let G∗

C be the estimating function for ψ given in
Lemma 6. Then

G∗
C(ψ, Y ) = nC(ψ)

(
Ip − 1

p+ 1
1p×11Tp×1

)
(
Ȳ·1 − Ȳ·0 − ψ1, . . . , Ȳ·p − Ȳ·0 − ψp

)T
for all ψ ∈ Ψ, where Ȳ·j ≡

∑n
i=1 Yij/n for each j ∈ {0, 1, . . . , p}. By Corollary 2,

G∗
C is fixed-sample optimal within G1. Moreover, by Theorem 2, the following are

equivalent:

(i) G∗ is a fixed-sample optimal estimating function for ψ within G 1;

(ii) G∗ is in G1 and for each θ ∈ Θ,

G∗(s)(θ, Y )

= nσ−2(θ)
(
Ip − 1

p+1 1p×11Tp×1

)(
Ȳ·1 − Ȳ·0 − ψ1, . . . , Ȳ·p − Ȳ·0 − ψp

)T
Pθ-a.s.;

(iii) G∗ is in G1 and for each θ ∈ Θ,

IG∗(θ) = nσ−2(θ)
(
Ip − 1

p+1 1p×11Tp×1

)
.
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Set
ψ̂FSO ≡ (

Ȳ·1 − Ȳ·0, . . . , Ȳ·p − Ȳ·0
)T
.

Then ψ̂FSO = ψ̂ML, where ψ̂ML is given in equation (22). Since G∗(ψ, Y )|ψ=ψ̂FSO

= 0p×1 Pθ-a.s. for each fixed-sample optimal estimating functionG∗ for ψ withinG1,
ψ̂FSO is the FSOE of ψ. Note that ψ̂FSO is an unbiased estimator of ψ and

Covθ

(
ψ̂FSO

)
=
σ2(θ)
n

(
Ip + 1p×11Tp×1

) → 0p×p

as n→ ∞. Thus, ψ̂FSO is an MSE consistent estimator of ψ as n→ ∞, which im-
plies that ψ̂FSO is also a weakly consistent estimator of ψ as n→ ∞. Consequently,
ψ̂FSO could be used for good estimation of ψ.
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