ON LOCAL STABLE REDUCTION OF SINGULARITY $\left(y^{a}-x^{b}\right)\left(y^{p}-x^{q}\right)$

Pyung-Lyun Kang and Sun-Mi Sun

Abstract

We consider a local stable reduction of a family of curves with smooth fibers except a central fiber that has a singularity like $\left(y^{a}-x^{b}\right)\left(y^{p}-\right.$ x^{q}).

1. Introduction

We consider one-dimensional family of curves with smooth fibers except a central fiber. By the local stable reduction theorem, after suitable blow-ups, base changes and contractions of some rational curves we obtain a family extending the original family such that the new central fiber is a stable curve. The local stable reduction process(see [1] or [2]) can be divided in two parts; one is an embedded resolution of the singularity of the central fiber and the other is to make the curve obtained in the first part reduced via base changes and following normalizations. Both are well known and not hard to work out. The singularity of type $y^{p}-x^{q}$ is called a toric singularity and the above question for a toric singularity has been studied in [3] and [4].

In this short paper we give a simple description for both parts when the central fiber C_{0} has only one singularity locally given by $\left(y^{a}-x^{b}\right)\left(y^{p}-x^{q}\right)$, a singularity that is locally given as a union of two toric singularities. For the resolution part we may assume that $C_{0} \subset S_{0}=\operatorname{Spec} \mathbb{C}[[x, y]]$. Let $P_{0}=(0,0)$ and call X_{0}, Y_{0} the branches of C_{0} given by $y^{p}-x^{q}$ and $y^{a}-x^{b}$ respectively. If $f: S \rightarrow S_{0}$ is a minimal embedded resolution of C_{0} and \mathcal{E} the divisor of exceptional curves of f, then we have the following. For the precise definition of a minimal embedded resolution, see [3].

Proposition 1. \mathcal{E} forms a chain of exceptional curves if $\frac{q}{p} \neq \frac{b}{a}$.
Received April 29, 2003; revised May 14, 2003.
Communicated by J. Yu.
1991 Mathematics Subject Classification: 14H10.
Key words and phrases: Stable reduction, Stable curves, Minimal resolution.
The author is supported by Korea Research Foundation, \#2001-002-D00008

Proposition 2. Let E and F be distinct components of \mathcal{E} that meet the proper transform of a branch $y^{p}-x^{q}$ and the proper transform of a branch $y^{a}-x^{b}$ respectively and let E_{1} be the exceptional curve in \mathcal{E} we get from the first blow up. Then the greatest common divisors of the multiplicities of any two adjacent components of \mathcal{E} are as follows:
(Type A) suppose a subchain from E_{1} through E does not contain F, then the greatest common divisor of the multiplicities of any two adjacent exceptional curves between E_{1} and E is $p+a$, the greatest common divisor of the multiplicities of any two adjacent exceptional curves between E and F is (q, a), and the greatest common divisor of the multiplicities of any two adjacent exceptional curves between F and the other end is $q+b$;
(Type B) suppose a subchain from E_{1} through E contains F, then the greatest common divisor of the multiplicities of any two adjacent exceptional curves between E_{1} and F is $p+a$, the greatest common divisor of the multiplicities of any two adjacent exceptional curves between F and E is (p, b), and the greatest common divisor of the multiplicities of any two adjacent exceptional curves between E and the other end is $q+b$.

Theorem. Let $\pi: S_{0} \rightarrow \Delta^{*}$ be a flat family of smooth projective curves of genus $g \geq 2$ over a punctured open disk Δ^{*} degenerating to an irreducible curve $C_{0} \subset S_{0}$ with only one singular point P topologically equivalent to $\left(y^{a}-x^{b}\right)\left(y^{p}-\right.$ x^{q}) with $2 \leq p \leq q$. Suppose that S_{0} is smooth. Then this family can be extended via stable reduction theorem to a flat family $\tilde{\pi}: \tilde{S} \rightarrow \Delta$, new central fiber of which is a stable curve consisting of three components: the normalization C of C_{0}, \bar{E} and \bar{F} of genus, respectively,

$$
\begin{aligned}
& \left\{\begin{aligned}
g(\bar{E})= & \frac{1}{2}\{p q+a q-(p, q)-p-a-(q, a)\}+1 \\
g(\bar{F})= & \frac{1}{2}\{a q+a b-(a, b)-q-b-(a, q)\}+1
\end{aligned} \text { for type } A\right. \\
& \left\{\begin{array}{l}
g(\bar{E})=\frac{1}{2}\{p q+p b-(p, q)-q-b-(p, b)\}+1 \\
g(\bar{F})=\frac{1}{2}\{a b+b p-(a, b)-p-a-(p, b)\}+1
\end{array} \quad \text { for type } B\right. \\
& g(C)=p_{a}\left(C_{0}\right)-\delta\left(P_{0}\right)
\end{aligned}
$$

where $g(C)$ is a genus of $C, p_{a}\left(C_{0}\right)$ is an arithmetic genus of C_{0}. Here, C meets \bar{E} and \bar{F} respectively at (p, q) and (a, b) points, and \bar{E} and \bar{F} meet at (q, a) points.

Using a genus formula of a connected nodal curve, one also gets

$$
\delta\left(P_{0}\right)= \begin{cases}\frac{1}{2}\{a b-a-b+(a, b)\}+\frac{1}{2}\{p q-p-q+(p, q)\}+a q & \text { for type } A \\ \frac{1}{2}\{a b-a-b+(a, b)\}+\frac{1}{2}\{p q-p-q+(p, q)\}+b p & \text { for type } B\end{cases}
$$

Note that $\delta\left(y^{p}-x^{q}\right)=\frac{1}{2}\{p q-p-q+(p, q)\}$ and that, when P_{0} is a singular point of a curve D in a surface, that $\delta\left(P_{0}\right)$ can be computed as $\sum \frac{1}{2} m_{Q}\left(m_{Q}-1\right)$ taken over all infinitely near singular points Q lying over P_{0} including P_{0} where m_{Q} is a multiplicity at Q of some subsequent partial normalization of D. See [4] for example.

2. Euclidean Algorithm

We introduce Euclidean algorithm of two pairs of integers p, q and a, b, respectively:

$$
\begin{align*}
& s_{-1}=q, s_{0}=p, s_{i-1}=s_{i} r_{i+1}+s_{i+1} \\
& 0 \leq s_{i+1}<s_{i}, s_{k+1}=0 \text { for } 0 \leq i \leq k \tag{1}\\
& d_{-1}=b, d_{0}=a, d_{i-1}=d_{i} c_{i+1}+d_{i+1} \\
& 0 \leq d_{i+1}<d_{i}, d_{h+1}=0 \text { for } 0 \leq i \leq h \tag{2}
\end{align*}
$$

Here $s_{k}=(p, q), d_{h}=(a, b)$, where (a, b) denotes the greatest common divisor of two integers a, b. Note $c_{1}=0$ and $d_{1}=b$ if $a>b$. Define four sequences $\left\{p_{i}\right\},\left\{q_{i}\right\},\left\{a_{i}\right\},\left\{b_{i}\right\}$ of integers as follows:

$$
\begin{equation*}
p_{-1}=0, p_{0}=1, \cdots, p_{i}=p_{i-2}+p_{i-1} r_{i} \text { for } 1 \leq i \leq k+1 \tag{3}
\end{equation*}
$$

$$
\begin{equation*}
q_{-1}=1, q_{0}=0, \cdots, q_{i}=q_{i-2}+q_{i-1} r_{i} \text { for } 1 \leq i \leq k+1 \tag{4}
\end{equation*}
$$

$$
\begin{equation*}
a_{-1}=0, a_{0}=1, \cdots, a_{i}=a_{i-2}+a_{i-1} c_{i} \text { for } 1 \leq i \leq h+1 \tag{5}
\end{equation*}
$$

$$
\begin{equation*}
b_{-1}=1, b_{0}=0, \cdots, b_{i}=b_{i-2}+b_{i-1} c_{i} \text { for } 1 \leq i \leq h+1 \tag{6}
\end{equation*}
$$

Then as in [4],

$$
\begin{equation*}
s_{i}=(-1)^{i}\left(p p_{i}-q q_{i}\right) \text { for }-1 \leq i \leq k+1 \tag{7}
\end{equation*}
$$

$$
\begin{equation*}
d_{i}=(-1)^{i}\left(a a_{i}-b b_{i}\right) \text { for }-1 \leq i \leq h+1 \tag{8}
\end{equation*}
$$

$$
\begin{equation*}
\left(p_{i}, p_{i+1}\right)=\left(q_{i}, q_{i+1}\right)=\left(a_{i}, a_{i+1}\right)=\left(b_{i}, b_{i+1}\right)=1 \tag{9}
\end{equation*}
$$

Define m to be the largest integer between 0 and h such that

$$
\begin{equation*}
c_{i}=r_{i} \quad \text { for all } \quad i \leq m \tag{10}
\end{equation*}
$$

Then $a_{i}=p_{i}$ and $b_{i}=q_{i}$ for all $i \leq m$. Note $m=0$ if $c_{1} \neq r_{1}$.
We now briefly review the case of a toric singularity in [4].
Let $X_{0} \subset S_{0}=\operatorname{Spec} \mathbb{C}[[x, y]]$ be given by $y^{p}-x^{q}(=0)$ and let $f_{i}: S_{i} \rightarrow S_{i-1}$ the i-th blow up from S_{0} at $P_{0}=(0,0)$ where E_{i} an exceptional curve of f_{i}. Let X_{i} the proper transform of X_{0} in S_{i} and $P_{i}=X_{i} \cap E_{i}$. Write $(i)=\sum_{l=1}^{i} r_{l}$. Then we have

Lemma 1. [4, Lemma 2.4] $X_{(i)+l}$ is tangent to $E_{(i)}$ for $0 \leq l<r_{i+1}$ and on the minimal resolution $S_{(k+1)}$ of $X_{0} \subset S_{0}$ the proper transform X of X_{0} meets only $E_{(k+1)}$ at (p, q) points transversely. Moreover all exceptional curves $\left\{E_{l} \mid 1 \leq\right.$ $\left.l \leq(k+1)=\sum_{j=1}^{k+1} r_{j}\right\}$ on $S_{(k+1)}$ form a chain with E_{1} and $E_{r_{1}+1}$ as its two end components. The exceptional curves $E_{(i)+l}$ where i is even and $1 \leq l \leq r_{i+1}$ lie between E_{1} and $E_{(k+1)}$, while $E_{(i)+l}$ where i is odd and $1 \leq l \leq r_{i+1}$ lie between $E_{r_{1}+1}$ and $E_{(k+1)}$ in increasing order of subindex. The multiplicity of each component is as follows:

$$
\begin{gather*}
m_{P_{j}}\left(X_{j}\right)=s_{i} \text { for } \sum_{l=1}^{i} r_{l} \leq j<\sum_{l=1}^{i+1} r_{l} \tag{11}\\
m\left(E_{(i)+l}\right)=l\left\{m\left(E_{(i)}\right)+s_{i}\right\}+m\left(E_{(i-1)}\right) \text { for } 1 \leq l \leq r_{i+1} \\
= \begin{cases}l p p_{i}+p p_{i-1} & \text { for even } i \\
l q q_{i}+q q_{i-1} & \text { for odd } i\end{cases} \tag{12}\\
m\left(E_{(i)}\right)= \begin{cases}p p_{i} & \text { for odd } i \\
q q_{i} & \text { for even } i\end{cases} \tag{13}
\end{gather*}
$$

For the proof of proposition 1, we state the following lemma 2, the proof of which is clear.

Lemma 2. Suppose that $f: X^{\prime} \rightarrow X$ is a birational morphism of smooth surfaces that is a blow-up at a point P lying on a chain \mathcal{F} of rational curves in X. Then $f^{*}(\mathcal{F})$ forms a chain if and only if either P is an intersection point of two components of \mathcal{F} or P lies on the end component of \mathcal{E}.

3. Proofs of Three Statements in Section 1

For the resolution part we assume that $C_{0} \subset S_{0}=\operatorname{Spec} \mathbb{C}[[x, y]]$ is a union of two curves $y^{p}-x^{q}$ and $y^{a}-x^{b}$. We let $P_{0}=(0,0)$ and X_{0}, Y_{0} the branches of C_{0} given by $y^{p}-x^{q}$ and $y^{a}-x^{b}$ respectively. We now blow up S_{0} at P_{0} until we resolve one component X_{0} of C_{0} completely as in Lemma 1. Let $f_{i}: S_{i} \rightarrow S_{i-1}$ be the blow-up of S_{i-1} at P_{i-1}, E_{i} the exceptional divisor of f_{i}, X_{i} the proper transforms of X_{i-1} respectively, $P_{i}=X_{i} \cap E_{i}, \tilde{f}_{i}=f_{i} \circ f_{i-1} \circ \cdots \circ f_{1}$, and \mathcal{E}_{i} the union of exceptional curves of \tilde{f}_{i}. Suppose the proper transforms of X_{0} and Y_{0} separate first time on $S_{i_{0}+1}$ (See the proof of Proposition 1 and equation (14)). Then for $1 \leq i \leq i_{0}+1$, we let Y_{i} be the proper transform of Y_{i-1} under f_{i} and $C_{i}=X_{i}+Y_{i}$. For, $i>i_{0}+1, Y_{i_{0}+1}$ remains unchanged under f_{i}. Thus we still call $Y_{i_{0}+1}$ for the inverse image of $Y_{i_{0}+1}$ under f_{i} for $i>i_{0}+1$. Then the exceptional curves $\mathcal{E}_{(k+1)}$ in $S_{(k+1)}$ form a chain by Lemma 1 .

Remark. Consider the case that is excluded in Proposition 1: $h=k, c_{i}=$ r_{i} for all $i \leq k+1$. Then $S_{(k+1)}$ is a minimal resolution for both X_{0} and Y_{0} meeting each of their transforms only one exceptional curve $E_{(k+1)}$. Therefore $S_{(k+1)}$ becomes a minimal resolution of C_{0} if and only if $X_{(k+1)}$ and $Y_{(k+1)}$ do not meet along $E_{(k+1)}$. If this happens $\left(y^{a}-x^{b}\right)\left(y^{p}-x^{q}\right)$ is analytically (and topologically) equivalent to $y^{a+p}-x^{b+q}$ and we have

$$
b+q=(a+p) r_{1}+d_{1}+s_{1}, d_{i-1}+s_{i-1}=\left(d_{i}+s_{i}\right) r_{i+1}+\left(d_{i+1}+s_{i+1}\right)
$$

If they meet, it produces triple points which are the intersection of $X_{(k+1)}, Y_{(k+1)}$ and $E_{(k+1)}$. Therefore we need more blow-ups at these triple points to get a minimal resolution and due to Lemma 2 we cannot have a chain of exceptional curves on a minimal resolution.

Proof of Proposition 1. If $m=h+1$, then Y_{0} is resolved completely on $S_{(h+1)}$. So, the minimal resolution space S of C_{0} is $S_{(k+1)}$ and $\mathcal{E}=\mathcal{E}_{(k+1)}$ forms a chain. Now assume $m \leq h$ and $c_{m+1}<r_{m+1}$, otherwise we exchange the roles of X_{0} and Y_{0}. Since $r_{i}=c_{i}$ for $i \leq m$ and $c_{m+1}<r_{m+1}, X_{l}$ and Y_{l} are tangential to the same exceptional curve by Lemma 1 for

$$
\begin{equation*}
l<\sum_{i=1}^{m+1} c_{i}=\sum_{i=1}^{m} r_{i}+c_{m+1}=i_{0} \tag{14}
\end{equation*}
$$

On $S_{i_{0}}, X_{i_{0}}$ and $Y_{i_{0}}$ meet at $P_{i_{0}}$ while $X_{i_{0}}$ is tangent to $E_{(m)}$ and $Y_{i_{0}}$ is tangent to $E_{i_{0}}$. Therefore, $Y_{i_{0}+1}$ becomes separated from $X_{i_{0}+1}$ but still passes the intersection point of $E_{i_{0}+1}$ and $E_{i_{0}}$. Now the minimal embedded resolution S of C_{0} is that of $Y_{i_{0}+1} \subset S_{(k+1)}$ and \mathcal{E} is a union of (proper transforms if necessary) of E_{i} and F_{j}
where $1 \leq i \leq(k+1)$ and $[m+1]+1 \leq j \leq[h+1]$. Therefore \mathcal{E} is a chain due to Lemma 1 and 2.

Proof of Proposition 2. Call F_{i} the exceptional curves we get from the resolution of $Y_{i_{0}}$ (so, of Y_{0}). Note that the subindex in F_{i} is the number of blow-ups when we resolve the singularity of Y_{0}. Since $C_{j}=X_{j}+Y_{j}$ and $m_{P_{j}}\left(C_{j}\right)=m_{P_{j}}\left(X_{j}\right)+$ $m_{P_{j}}\left(Y_{j}\right)$ for $1 \leq j \leq i_{0}=(m)+c_{m+1}$, we have, due to Lemma 1,

$$
\begin{gather*}
m\left(E_{(i)}\right)= \begin{cases}p p_{i}+a a_{i} & \text { for odd } i \leq m \\
q q_{i}+b b_{i} & \text { for even } i \leq m\end{cases} \tag{15}\\
m\left(E_{(i)+l}\right)=l\left\{m\left(E_{(i)}\right)+s_{i}+d_{i}\right\}+m\left(E_{(i-1)}\right) \text { if } i \leq m \\
\quad \text { and } 1 \leq l \leq c_{i+1} \\
m\left(E_{(m)+l}\right)=l\left\{m\left(E_{(m)}\right)+s_{m}\right\}+m\left(E_{(m-1)}\right)+c_{m+1} d_{m} \tag{16}\\
\\
\quad+d_{m+1} \text { if } c_{m+1}<l \leq r_{m+1}
\end{gather*}
$$

Thus, we have

$$
\begin{aligned}
m\left(E_{(m)+1}\right) & =r_{m+1}\left\{m\left(E_{(m)}\right)+s_{m}\right\}+m\left(E_{(m-1)}\right)+c_{m+1} d_{m}+d_{m+1} \\
& = \begin{cases}p p_{m+1}+b q_{m+1} & \text { if } m \text { is even } \\
q q_{m+1}+a p_{m+1} & \text { if } m \text { is odd }\end{cases}
\end{aligned}
$$

from (1)-(8), (12), (15) and (16). Note that

$$
i \geq m+1 \Longrightarrow m\left(E_{(i)+l}\right)=l\left\{m\left(E_{(i)}\right)+s_{i}\right\}+m\left(E_{(i-1)}\right), \quad \text { for } 1 \leq l \leq r_{i+1}
$$

So, we have

$$
\begin{aligned}
& m \text { is even and } i \geq m+1 \Longrightarrow m\left(E_{(i)}\right)= \begin{cases}p p_{i}+b q_{i} & \text { for odd } i \\
q q_{i}+b q_{i} & \text { for even } i\end{cases} \\
& m \text { is odd and } i \geq m+1 \Longrightarrow m\left(E_{(i)}\right)= \begin{cases}p p_{i}+a p_{i} & \text { for odd } i \\
q q_{i}+a p_{i} & \text { for even } i\end{cases}
\end{aligned}
$$

Let $[i]=\sum_{l=1}^{i} c_{l}$. Then $E_{(m)+c_{m+1}}=F_{[m+1]}$. By (16) and (3)-(9),

$$
m\left(F_{[m+1]}\right)= \begin{cases}a a_{m+1}+p a_{m+1} & \text { if } m \text { is even } \\ b b_{m+1}+q b_{m+1} & \text { if } m \text { is odd }\end{cases}
$$

Since

$$
\begin{aligned}
m\left(F_{[m+1]+1}\right) & =m\left(F_{[m+1]}\right)+s_{m}+d_{m+1}+m\left(E_{(m)}\right) \\
m\left(F_{[m+1]+l}\right) & =l\left(m\left(F_{[m+1]}\right)+d_{m+1}\right)+m\left(E_{(m)}\right)+s_{m} \text { for } 1 \leq l \leq c_{m+2} \\
m\left(F_{[i]+l}\right) & =l\left(m\left(F_{[i]}\right)+d_{i}\right)+m\left(F_{[i-1]}\right) \text { for } i>m+1 \text { and } 1 \leq l \leq c_{i+1}
\end{aligned}
$$

we have

$$
\begin{aligned}
& m \text { is even and } i \geq m+1 \Longrightarrow m\left(F_{[i]}\right)= \begin{cases}a a_{i}+p a_{i} & \text { for odd } i \\
b b_{i}+p a_{i} & \text { for even } i ;\end{cases} \\
& m \text { is odd and } i \geq m+1 \Longrightarrow m\left(F_{[i]}\right)= \begin{cases}a a_{i}+q b_{i} & \text { for odd } i \\
b b_{i}+q b_{i} & \text { for even } i .\end{cases}
\end{aligned}
$$

For the remaining part of proof, we assume that m is odd. Recall from the proof of Proposition 1, $Y_{i_{0}+1}$ becomes separated from $X_{i_{0}+1}$ but still passes the intersection point of $E_{i_{0}+1}$ and $E_{i_{0}}$ where $i_{0}=(m)+c_{m+1}$. Since m is odd, $E_{i_{0}}$ and $E_{i_{0}+1}$ lies between $E_{r_{1}+1}$ and $E_{(k+1)}$. Therefore all exceptional curves E_{j} between E_{1} and $E_{(k+1)}$ will be remained untouched when we resolve $Y_{i_{0}+1}$ and $F_{[h+1]}$ which meets the normalization of Y_{0} at (a, b) distinct points will lie between $E_{i_{0}}$ and $E_{i_{0}+1}$. So, if m is odd, we get a type A. Similarly, we get a type B if m is even.

We divide the chain as a sum of subchains $\mathcal{G}_{1}, \mathcal{G}_{2}, \mathcal{G}_{3}, \mathcal{G}_{4}, \mathcal{G}_{5}$, where

$$
\begin{aligned}
& \mathcal{G}_{1}=\left\{E_{(i)+l} \mid i: \text { even }, 1 \leq l \leq r_{i+1}\right\} \\
& \mathcal{G}_{2}=\left\{E_{(i)+l} \mid i: \text { odd },(i)+l \geq(m)+c_{m+1}+1,1 \leq l \leq r_{i+1}\right\} \\
& \mathcal{G}_{3}=\left\{F_{[i]+l} \mid i: \text { even, } 1 \leq l \leq c_{i+1}\right\} \\
& \mathcal{G}_{4}=\left\{F_{[i]+l} \mid i: \text { odd, } 1 \leq l \leq c_{i+1}\right\} \\
& \mathcal{G}_{5}=\left\{E_{(i)+l} \mid i: \text { odd, }(i)+l \leq(m)+c_{m+1}, 1 \leq l \leq r_{i+1}\right\}
\end{aligned}
$$

Note that \mathcal{G}_{1} and \mathcal{G}_{2} is connected by $E_{(k+1)}$ and that \mathcal{G}_{3} and \mathcal{G}_{4} by $F_{[h+1]}$. When we compute the greatest common divisors of two adjacent exceptional curves, we use the easy fact

$$
(a+b c, b)=(a, b), \text { for every integer } a, b, c .
$$

For two adjacent exceptional curves in \mathcal{G}_{1} with $i \leq m$,

$$
\begin{aligned}
\left(m\left(E_{(i)+l}\right), m\left(E_{(i)+l+1}\right)\right) & =\left(m\left(E_{(i-1)}\right), m\left(E_{(i)}\right)+s_{i}+d_{i}\right) \\
& =\left(p p_{i-1}+a a_{i-1}, p p_{i}+a a_{i}\right) \\
& =(p+a)\left(p_{i-1}, p_{i}\right) \\
& =p+a ; \\
\left(m\left(E_{(i)+l}\right), m\left(E_{(i)+l+1}\right)\right) & =\left(m\left(E_{(i-1)}\right), m\left(E_{(i)}\right)+s_{i}\right) \\
& =\left(p p_{i-1}+a p_{i-1}, p p_{i}+a p_{i}\right) \\
& =(p+a)\left(p_{i}, p_{i-1}\right) \\
& =p+a .
\end{aligned}
$$

For two adjacent components of \mathcal{G}_{2},

$$
\begin{aligned}
& \left(m\left(E_{(i)+l}\right), m\left(E_{(i)+l+1}\right)\right)=\left(m\left(E_{(i-1)}\right), m\left(E_{(i)}\right)+s_{i}\right) \\
= & \left(q q_{i-1}+a p_{i-1}, q q_{i}+a p_{i}\right)=\left(q q_{i-1}+a p_{i-1}, q q_{i-2}+a p_{i-2}\right) \\
= & \cdots=\left(q q_{0}+a p_{0}, q q_{-1}+a p_{-1}\right)=(a, q) ;\left(m\left(E_{(m)+l}\right), m\left(E_{(m)+l+1}\right)\right)=(a, q) .
\end{aligned}
$$

Similarly, one can show

$$
\begin{array}{rlll}
\left(m\left(F_{l}\right), m\left(F_{l+1}\right)\right)=(q, a) & \text { if } & F_{l}, F_{l+1} \in \mathcal{G}_{3} \\
\left(m\left(F_{l}\right), m\left(F_{l+1}\right)\right)=q+b & \text { if } & F_{l}, F_{l+1} \in \mathcal{G}_{4} \\
\left(m\left(E_{l}\right), m\left(E_{l+1}\right)\right)=q+b & \text { if } & E_{l}, E_{l+1} \in \mathcal{G}_{5}
\end{array}
$$

by (3)-(9). Also, one has to compute $\left(m\left(E_{(i)}, m\left(E_{(i+1)+1}\right)\right)\right.$ whenever they meet. Finally, we know, by Lemma 1, that the proper transforms of X_{0} and Y_{0} meet only $E_{(k+1)}$ and $F_{[h+1]}$ respectively. Put

$$
E=E_{(k+1)}, \quad F=F_{[h+1]} .
$$

Proof of Theorem. We explain only type A. Let $\pi^{\prime}: S \rightarrow S_{0} \rightarrow \Delta$ be a composition of π and all blow-ups we have taken for the resolution of C_{0}. Note that in this theorem C_{0} is connected and $\pi^{-1}(0)=C+\sum_{E \in \mathcal{E}} m(E) E$. Note that C is the proper transform of C_{0} which is the normalization of C_{0}. Since a new central fiber is not reduced, we take a base change of order of the least common multiple of all components of \mathcal{E} and a normalization S^{\prime} to make the central fiber reduced. Note that as far as the multiplicities of two adjacent components are relatively prime the intersection points are always ramified. Because of this reason, S^{\prime} is ramified over C and, on each component G of \mathcal{E}, only the base change of degree $m(G)$ will make something happen to G. Therefore, except the components E and F, we have $p+a$ copies of $\mathcal{E}_{1},(q, a)$ copies of \mathcal{G}_{2} and \mathcal{G}_{3}, and $q+b$ copies of \mathcal{G}_{4} and \mathcal{G}_{5}; while each copy of \mathcal{E}_{1} meets the curve \bar{E} over E, one end of each copy of \mathcal{G}_{2} meets \bar{E}, one end of each copy of \mathcal{G}_{3} meets \bar{F} over F, and one end of each copy of \mathcal{G}_{4} meets \bar{F}. We always use Hurwitz formula to compute $g(X)$ of a finite morphism $f: X \rightarrow Y$ of curves. Remember that X is rational if $f: X \rightarrow \mathbb{P}^{1}$ is completely branched at two points.

Since C is ramified under this base change, we have $\bar{E} \rightarrow E$ is a degree $q^{\prime}(p+a)$ morphism totally ramified at s_{k} points, evenly $(p+a)$-ramified at one point, evenly (q, a)-ramified at one point; $\bar{F} \rightarrow F$ is a degree $a^{\prime}(q+b)$ morphism totally ramified at d_{h} points, evenly $(q+b)$-ramified at one point, evenly (q, a)-ramified at one point

Therefore, by Hurwitz formula, we have

$$
\begin{aligned}
& g(\bar{E})=\frac{1}{2}\left\{p q+a q-s_{k}-p-a-(q, a)\right\}+1 \\
& g(\bar{F})=\frac{1}{2}\left\{a b+a q-d_{k}-q-b-(q, a)\right\}+1
\end{aligned}
$$

For the formula of $\delta\left(P_{0}\right)$, we recall the genus formula ([2], p.48) of a connected nodal curve which extends the arithmetic genus of an irreducible nodal curve: if D has δ nodes and ν irreducible components $D_{1}, D_{2}, \cdots, D_{\nu}$ of geometric genera $g_{1}, g_{2}, \cdots, g_{\nu}$, then

$$
g(D)=\left(\sum_{i=1}^{\nu} g_{i}\right)+\delta-\nu+1 .
$$

Since genera of all fibers of a flat family of curves are constant, we have

$$
g=g\left(\tilde{\pi}^{-1}(0)\right)=g(C)+g(\bar{E})+g(\bar{F})+(p, q)+(a, b)+(q, a)-3+1
$$

Since $g(C)=p_{a}\left(C_{0}\right)-\delta\left(P_{0}\right)=g-\delta\left(P_{0}\right)$, we have

$$
\begin{aligned}
\delta\left(P_{0}\right) & =g(\bar{E})+g(\bar{F})+(p, q)+(a, b)+(q, a)-2 \\
& =\frac{1}{2}\{a b-a-b+(a, b)\}+\frac{1}{2}\{p q-p-q+(p, q)\}+a q
\end{aligned}
$$

Contracting all copies of rational exceptional curves from S^{\prime}, we get $\tilde{\pi}: \tilde{S} \rightarrow \Delta$ in Theorem. Note that the contraction of (q, a) copies of \mathcal{G}_{2} and \mathcal{G}_{3} makes that \bar{E} and \bar{F} intersect at (q, a) points.

Similarly, we get type B if m is even. If this happens, we have that $\bar{E} \rightarrow E$ is a degree $q^{\prime}(p+a)$ morphism totally ramified at s_{k} points, evenly $(q+b)$-ramified at one point, evenly (p, b)-ramified at one point; $\bar{F} \rightarrow F$ is a degree $a^{\prime}(q+b)$ morphism totally ramified at d_{h} points, evenly $(p+a)$-ramified at one point, evenly (p, b)-ramified at one point. So, Hurwitz gives the answer.

Remark. As in [4], one can describe tails \bar{E} and \bar{F} as plane curves from the information of ramifications. If we have a singular point that is a union of several toric singularities, we get the similar formulas according when each component becomes separated from the others.

References

1. F. Bardelli, Lectures on stable curves, Lectures on Riemann Surfaces, World Scientific, 1989, pp. 648-704.
2. J. Harris and I. Morrison, Moduli of curves, Springer, 1998.
3. B. Hassett, Local stable reduction of plane curve singularities, to appear in J. Reine und Angew. Math. 520 (2000), 169-194.
4. P. Kang, On singular plane quartics as limits of smooth curves of genus three, J. Korean Math. Soc. 37 (2000), 411-436.

Pyung-Lyun Kang and Sun-Mi Sun
Department of Mathematics,
Chungnam National University,
Daejon 305-764,
Korea
E-mail: plkang@math.cnu.ac.kr

