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AN ELEMENTARY PROOF OF MACWILLIAMS-DELSARTE IDENTITY

Rongzheng Jiao and Hongwen Lu

Abstract. The MacWilliams-Delsarte identity is very important in coding
theory. We will give a new proof of the identity using elementary method in
this paper, which is much simpler than the original one [1].

1. INTRODUCTION

The MacWilliams-Delsarte identity is very important in coding theory. There is
a proof in the widespread encyclopedic book the theory of error-correcting codes
[1]. First let’s introduce some notations. Let V (n, 2) be the binary vector space of
dimension n , dH(·, ·) and ωH(·) denote the hamming distance and weight respec-
tively, and < ·, · > be the scalar product of two binary vectors. For any set E , |E|
denote the number of the elements in E .

Let C be a binary code of length n with M codewords. Let

(1) Di =
1

M2
|{(a, b) : a, b ∈ C, dH(a, b) = i}|, i = 0, 1, . . . , n,

where {Di}n
0 is the distribution of code C, and

f(z) =
∑n

i=0 Diz
i be the distance enumerator of code C. Let

(2) Di =
1

M2

∑
u∈V (n,2):

ωH(u)=i

[
∑
a∈C

(−1)<u,a>]2, i = 0, 1, . . . , n.

Obviously, Di ≥ 0. Set g(z) =
∑n

i=0 Diz
i.
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The MacWilliams-Delsarte identity assert the relationship between these two
kinds of distance enumerator of code C as follow:

Theorem (the MacWilliams-Delsarte identity)

(3) g(z) = (1 + z)nf(
1 − z

1 + z
),

(4) f(z) =
1
2n

(1 + z)ng(
1− z

1 + z
).

2. PROOF OF THE IDENTITY

Obviously, the equations (3) and (4) are equivalent: replacing z by 1−z
1+z in (3)

we obtain (4), and similary replacing z by 1−z
1+z in (4) we obtain (3). So we need

only to prove (3).
For u, v in V (n, 2) , let u = (u1, u2, . . . , un) and v = (v1, v2, . . . , vn) . First

we define the scalar product

(5) < u, v >= |{i : ui = vi = 1, }|,

(i.e. < u, v > denote the number of positions where both binary vectors u and v is
1), then it follows that and

(6) < 1 − u, 1− v >= |{i : ui = vi = 0, }|,

where 1 = (1, 1, . . . , 1) ∈ V (n, 2) . (i.e. < 1 − u, 1 − v > denote the number of
positions where both binary vectors u and v is 0.) On the other hand, we have

(7)
< 1− u, 1− v >=< 1, 1 > − < 1, v > − < u, 1 > − < u, v >

= n − ωH(u) − ωH(v)+ < u, v >,

and obviously we have

(8) dH(u, v) = n− < 1 − u, 1− v > − < u, v > .

From (6),(7)and(8) we obtain

(9) < u, v >=
ωH(u) + ωH(v)− dH(u, v)

2
.

From (2), the definition of Di, we have
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(10)

Di =
1

M2

∑
u∈V (n,2):

ωH(u)=i

[
∑
a∈C

(−1)<u,a>]2

=
1

M2

∑
u∈V (n,2):

ωH(u)=i

∑
a∈C

(−1)<u,a>
∑
b∈C

(−1)−<u,b>

=
1

M2

∑
u∈V (n,2):

ωH(u)=i

∑
a∈C

∑
b∈C

(−1)<u,a−b>.

Using (9) we have

(11)

Di =
1

M2

∑
u∈V (n,2):

ωH(u)=i

∑
a∈C

∑
b∈C

(−1)
ωH(u) + ωH(a − b)− dH(u, a− b)

2

=
1

M2

∑
u∈V (n,2):

ωH(u)=i

∑
a∈C

∑
b∈C

(−1)
i + ωH(a − b) − dH(u, a− b)

2 .

It follows that

(12)

∑
u∈V (n,2):

ωH(u)=i

∑
a∈C

∑
b∈C

(−1)
i + ωH(a − b)− dH(u, a− b)

2

=
∑

u∈V (n,2):

ωH(u)=i

n∑
j=0

∑
a∈C

∑
b∈C,

dH(a,b)=j

(−1)
i + j − dH(u, a− b)

2

=
n∑

j=0

∑
a∈C

∑
b∈C,

dH(a,b)=j

∑
u∈V (n,2):

ωH(u)=i

(−1)
i + j − dH(u, a− b)

2 .

We shall deal with the summand
∑

u∈V (n,2):ωH(u)=i(−1)
i+j−dH (u,a−b)

2 in the
identity (12) with dH(a, b) = j in the following segment. There are j positions in
the n-dim binary vector a − b where is 1, since dH(a, b) = j. At first we suppose
that there are s positions where is 1 both in vectors a − b and u. In this case
i+j−dH (u,a−b)

2 = s, and the number s ranges from 0 to j, for every such fixed pair
(a, b) of binary vectors. For every such binary vector a − b, there are

(
j
s

) · (n−j
i−s

)
such binary vectors u, because ωH(u) = i.

From the definition of Di , (11), (12) and the above, we have
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(13) Di =
n∑

j=0

j∑
s=0

Dj(−1)s

(
j

s

)(
n − j

i − s

)
.

Now we complete the proof of (3) by (13)

(1 + z)nf(
1− z

1 + z
) =

n∑
j=0

Dj(1 + z)n−j(1 − z)j

=
n∑

j=0

Dj

j∑
s=0

(
j

s

)
(−1)szs

n−j∑
t=0

(
n − j

t

)
zt

=
n∑

j=0

j∑
s=0

n−j∑
t=0

(−1)s

(
j

s

)(
n − j

t

)
zs+tDj = g(z).
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